Download citation
Download citation
link to html
The reaction of di­chlorido­(cod)palladium(II) (cod = 1,5-cyclo­octa­diene) with 2-(benzyl­sulfanyl)aniline followed by heating in N,N-di­methyl­formamide (DMF) produces the linear trinuclear Pd3 complex bis­(μ2-1,3-benzo­thia­zole-2-thiol­ato)bis[μ2-2-(benzyl­sulfanyl)anilinido]di­chlorido­tri­palla­dium(II) N,N-di­methyl­formamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The mol­ecule has \overline{1} symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square-planar geometry formed by an N,S-chelating 2-(benzyl­sulfanyl)anilinide ligand, a chloride ligand and the thiol­ate S atom of a bridging 1,3-benzo­thia­zole-2-thiol­ate ligand, while the central PdII core shows an all N-coordinated square-planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3-benzo­thia­zole-2-thiol­ate ligands are only N-coordinated to one Pd centre. The 1,3-benzo­thia­zole-2-thiol­ate ligands were formed in situ from 2-(benzyl­sulfanyl)aniline.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229613032828/bg3169sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613032828/bg3169Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229613032828/bg3169Isup3.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229613032828/bg3169Isup4.pdf
Supplementary material

CCDC reference: 975011

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1,3-benzothiazole-2-thiolato)bis[µ2-2-(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N-dimethylformamide disolvate top
Crystal data top
[Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NOF(000) = 1296
Mr = 1297.35Dx = 1.693 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4298 (6) ÅCell parameters from 5378 reflections
b = 10.6137 (5) Åθ = 2.2–23.3°
c = 19.562 (1) ŵ = 1.44 mm1
β = 99.5443 (7)°T = 173 K
V = 2545.0 (2) Å3Rod, yellow
Z = 20.33 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4013 reflections with I > 2σ(I)
ω scansRint = 0.060
Absorption correction: integration
SADABS (Bruker, 2008)
θmax = 26.4°, θmin = 1.8°
Tmin = 0.828, Tmax = 0.957h = 1515
19908 measured reflectionsk = 1313
5222 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0286P)2 + 5.4894P]
where P = (Fo2 + 2Fc2)/3
5222 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Experimental. Spectroscopic analysis for [2-(benzylsulfanyl)aniline]PdCl2, (2): 1H NMR (400 MHz, dmso-d6): δ = 4.50 (s, 2H, CH2-S), 5.50 (br, 2H, NH2), 7.16 (d, J = 7.3 Hz, 1H, CH arom.), 7.22–7.40 (m, 7H, CH arom.), 7.51 (dd, J1 = 8 Hz, J2 = 1.2 Hz, 1H, CH arom.); 13C{1H} NMR (100.6 MHz, dmso-d6): δ = 45.5 (CH2—S), 127.2, 127.3 (C-CH2), 127.9, 128.5, 130.2, 131.1, 132.1, 133.5 (C-S), 147.1(C-NH2). HRMS analysis: m/z 324.9764 (8%), 323.9736 (42), 322.9749 (15), 321.9718 (87), 320.9732 (19), 319.9712 (100), 318.9737 (75), 317.9684 (43), 316.9585 (10), 315.9609 (7); theoretical 323.9731 (40), 322.9731 (15), 321.9731 (90), 320.9731 (22), 319.9731 (100), 318.9731 (80), 317.9731 (38).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.50000.02409 (12)
Pd20.22120 (3)0.10788 (3)0.45895 (2)0.02543 (10)
Cl10.35824 (10)0.25800 (12)0.48951 (7)0.0405 (3)
S10.10261 (11)0.31894 (13)0.34993 (8)0.0453 (3)
S20.09909 (10)0.27521 (11)0.45263 (6)0.0323 (3)
S30.34647 (10)0.04961 (12)0.47700 (6)0.0333 (3)
N10.0744 (3)0.1174 (3)0.42414 (19)0.0275 (8)
N20.1096 (3)0.0305 (4)0.4342 (2)0.0271 (9)
H2N0.079 (4)0.006 (4)0.400 (2)0.022 (13)*
C10.0247 (4)0.2249 (4)0.4130 (2)0.0322 (11)
C20.2045 (4)0.2044 (5)0.3368 (3)0.0403 (12)
C30.1734 (4)0.1020 (5)0.3794 (2)0.0312 (10)
C40.2381 (4)0.0072 (5)0.3733 (3)0.0410 (12)
H40.21690.07920.40110.049*
C50.3334 (4)0.0069 (6)0.3257 (3)0.0492 (15)
H50.37820.07990.32120.059*
C60.3651 (5)0.0960 (7)0.2849 (3)0.0579 (17)
H60.43190.09340.25320.070*
C70.3011 (5)0.2034 (6)0.2891 (3)0.0547 (16)
H70.32250.27430.26040.066*
C100.4334 (4)0.0488 (5)0.4103 (3)0.0409 (12)
H10A0.48990.11450.42220.049*
H10B0.47150.03340.41250.049*
C110.3800 (4)0.0697 (5)0.3374 (3)0.0334 (11)
C120.3246 (4)0.0269 (5)0.2991 (3)0.0443 (13)
H120.31620.10610.32020.053*
C130.2815 (5)0.0079 (6)0.2301 (3)0.0535 (16)
H130.24180.07330.20410.064*
C140.2961 (5)0.1061 (6)0.1989 (3)0.0525 (15)
H140.26690.11890.15140.063*
C150.3526 (4)0.2006 (5)0.2366 (3)0.0454 (13)
H150.36330.27870.21500.054*
C160.3938 (4)0.1831 (5)0.3051 (3)0.0395 (12)
H160.43240.24960.33090.047*
C210.2601 (4)0.1813 (4)0.4554 (2)0.0299 (10)
C220.1505 (4)0.1567 (4)0.4352 (2)0.0307 (11)
C230.0799 (4)0.2585 (5)0.4187 (3)0.0394 (12)
H230.00430.24420.40310.047*
C240.1198 (5)0.3803 (5)0.4251 (3)0.0476 (14)
H240.07110.44900.41410.057*
C250.2295 (5)0.4037 (5)0.4473 (3)0.0473 (14)
H250.25560.48790.45270.057*
C260.3010 (4)0.3033 (5)0.4616 (3)0.0401 (12)
H260.37700.31760.47540.048*
O1S0.0054 (3)0.0068 (4)0.29370 (19)0.0567 (11)
N1S0.0430 (5)0.0268 (6)0.1793 (2)0.0665 (16)
C1S0.0115 (5)0.0477 (6)0.2422 (3)0.0528 (15)
H1S0.06760.10950.24730.063*
C2S0.1323 (6)0.0610 (8)0.1675 (4)0.087 (3)
H2SA0.20120.01470.15660.104*
H2SB0.13260.11180.20930.104*
H2SC0.12390.11620.12860.104*
C3S0.0199 (8)0.0979 (11)0.1201 (4)0.137 (4)
H3SA0.03160.16580.13620.165*
H3SB0.08770.13410.09520.165*
H3SC0.01220.04190.08910.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0281 (3)0.0218 (2)0.0229 (2)0.0046 (2)0.0061 (2)0.0013 (2)
Pd20.02734 (19)0.02373 (18)0.02492 (18)0.00238 (15)0.00345 (14)0.00043 (15)
Cl10.0342 (7)0.0322 (7)0.0519 (8)0.0078 (5)0.0023 (6)0.0014 (6)
S10.0432 (8)0.0375 (8)0.0531 (8)0.0099 (6)0.0016 (7)0.0138 (6)
S20.0337 (7)0.0223 (6)0.0412 (7)0.0000 (5)0.0070 (5)0.0021 (5)
S30.0326 (7)0.0334 (6)0.0311 (6)0.0033 (5)0.0023 (5)0.0023 (5)
N10.027 (2)0.029 (2)0.0267 (19)0.0011 (17)0.0057 (16)0.0035 (16)
N20.034 (2)0.024 (2)0.023 (2)0.0024 (17)0.0054 (18)0.0038 (17)
C10.052 (3)0.018 (2)0.030 (2)0.000 (2)0.018 (2)0.0025 (19)
C20.032 (3)0.049 (3)0.040 (3)0.007 (2)0.004 (2)0.001 (3)
C30.025 (2)0.044 (3)0.024 (2)0.002 (2)0.0046 (19)0.002 (2)
C40.034 (3)0.057 (3)0.034 (3)0.011 (3)0.012 (2)0.006 (3)
C50.031 (3)0.079 (4)0.038 (3)0.014 (3)0.006 (2)0.009 (3)
C60.029 (3)0.096 (5)0.045 (3)0.003 (3)0.004 (3)0.011 (4)
C70.044 (4)0.074 (4)0.042 (3)0.015 (3)0.004 (3)0.005 (3)
C100.027 (3)0.042 (3)0.052 (3)0.000 (2)0.003 (2)0.005 (3)
C110.023 (2)0.038 (3)0.040 (3)0.001 (2)0.009 (2)0.002 (2)
C120.052 (3)0.040 (3)0.044 (3)0.008 (3)0.017 (3)0.005 (2)
C130.066 (4)0.058 (4)0.038 (3)0.027 (3)0.013 (3)0.008 (3)
C140.059 (4)0.066 (4)0.034 (3)0.003 (3)0.011 (3)0.006 (3)
C150.055 (4)0.039 (3)0.045 (3)0.007 (3)0.015 (3)0.007 (3)
C160.038 (3)0.033 (3)0.048 (3)0.003 (2)0.010 (2)0.000 (2)
C210.042 (3)0.024 (2)0.024 (2)0.002 (2)0.005 (2)0.0016 (18)
C220.043 (3)0.025 (2)0.026 (2)0.006 (2)0.013 (2)0.0015 (19)
C230.045 (3)0.032 (3)0.042 (3)0.009 (2)0.010 (2)0.005 (2)
C240.063 (4)0.025 (3)0.057 (4)0.006 (3)0.019 (3)0.006 (2)
C250.073 (4)0.024 (3)0.046 (3)0.009 (3)0.014 (3)0.002 (2)
C260.045 (3)0.038 (3)0.035 (3)0.009 (2)0.003 (2)0.001 (2)
O1S0.062 (3)0.077 (3)0.031 (2)0.007 (2)0.0068 (19)0.007 (2)
N1S0.067 (4)0.100 (5)0.033 (3)0.021 (3)0.009 (3)0.016 (3)
C1S0.042 (3)0.064 (4)0.053 (4)0.004 (3)0.010 (3)0.008 (3)
C2S0.068 (5)0.134 (7)0.055 (4)0.013 (5)0.001 (4)0.029 (5)
C3S0.140 (9)0.220 (12)0.059 (5)0.033 (8)0.038 (6)0.066 (7)
Geometric parameters (Å, º) top
Pd1—N12.039 (4)C11—C121.385 (7)
Pd1—N1i2.039 (4)C12—C131.380 (8)
Pd1—N2i2.050 (4)C12—H120.9500
Pd1—N22.050 (4)C13—C141.381 (8)
Pd1—Pd2i3.2012 (4)C13—H130.9500
Pd2—N22.023 (4)C14—C151.367 (8)
Pd2—S32.2718 (13)C14—H140.9500
Pd2—S22.3261 (12)C15—C161.366 (7)
Pd2—Cl12.3366 (12)C15—H150.9500
S1—C21.743 (6)C16—H160.9500
S1—C11.749 (5)C21—C221.379 (7)
S2—C11.690 (5)C21—C261.389 (6)
S3—C211.770 (5)C22—C231.396 (6)
S3—C101.828 (5)C23—C241.383 (7)
N1—C11.333 (6)C23—H230.9500
N1—C31.396 (6)C24—C251.383 (8)
N2—C221.431 (6)C24—H240.9500
N2—H2N0.76 (5)C25—C261.387 (7)
C2—C31.386 (7)C25—H250.9500
C2—C71.394 (7)C26—H260.9500
C3—C41.405 (7)O1S—C1S1.210 (7)
C4—C51.379 (7)N1S—C1S1.322 (8)
C4—H40.9500N1S—C2S1.438 (9)
C5—C61.372 (9)N1S—C3S1.449 (9)
C5—H50.9500C1S—H1S0.9500
C6—C71.385 (9)C2S—H2SA0.9800
C6—H60.9500C2S—H2SB0.9800
C7—H70.9500C2S—H2SC0.9800
C10—C111.486 (7)C3S—H3SA0.9800
C10—H10A0.9900C3S—H3SB0.9800
C10—H10B0.9900C3S—H3SC0.9800
C11—C161.383 (7)
N1—Pd1—N1i180.00 (19)H10A—C10—H10B107.2
N1—Pd1—N2i95.28 (15)C16—C11—C12119.0 (5)
N1i—Pd1—N2i84.72 (15)C16—C11—C10119.9 (5)
N1—Pd1—N284.72 (15)C12—C11—C10120.8 (5)
N1i—Pd1—N295.28 (15)C13—C12—C11119.9 (5)
N2i—Pd1—N2180.0C13—C12—H12120.1
N1—Pd1—Pd2i95.54 (10)C11—C12—H12120.1
N1i—Pd1—Pd2i84.46 (10)C12—C13—C14120.1 (5)
N2i—Pd1—Pd2i37.90 (11)C12—C13—H13119.9
N2—Pd1—Pd2i142.10 (11)C14—C13—H13119.9
N2—Pd2—S385.87 (12)C15—C14—C13119.8 (5)
N2—Pd2—S297.26 (12)C15—C14—H14120.1
S3—Pd2—S2173.94 (5)C13—C14—H14120.1
N2—Pd2—Cl1176.43 (12)C16—C15—C14120.3 (5)
S3—Pd2—Cl190.59 (5)C16—C15—H15119.9
S2—Pd2—Cl186.25 (4)C14—C15—H15119.9
C2—S1—C190.6 (2)C15—C16—C11120.8 (5)
C1—S2—Pd2108.63 (16)C15—C16—H16119.6
C21—S3—C10103.9 (2)C11—C16—H16119.6
C21—S3—Pd299.83 (16)C22—C21—C26122.1 (5)
C10—S3—Pd2110.90 (18)C22—C21—S3116.8 (3)
C1—N1—C3112.5 (4)C26—C21—S3121.1 (4)
C1—N1—Pd1118.4 (3)C21—C22—C23118.3 (5)
C3—N1—Pd1129.1 (3)C21—C22—N2120.8 (4)
C22—N2—Pd2116.6 (3)C23—C22—N2120.9 (4)
C22—N2—Pd1114.2 (3)C24—C23—C22120.0 (5)
Pd2—N2—Pd1103.61 (17)C24—C23—H23120.0
C22—N2—H2N117 (4)C22—C23—H23120.0
Pd2—N2—H2N101 (4)C23—C24—C25121.1 (5)
Pd1—N2—H2N102 (4)C23—C24—H24119.4
N1—C1—S2127.3 (4)C25—C24—H24119.4
N1—C1—S1112.7 (4)C24—C25—C26119.4 (5)
S2—C1—S1119.9 (3)C24—C25—H25120.3
C3—C2—C7121.4 (5)C26—C25—H25120.3
C3—C2—S1109.6 (4)C25—C26—C21119.1 (5)
C7—C2—S1128.9 (5)C25—C26—H26120.5
C2—C3—N1114.5 (4)C21—C26—H26120.5
C2—C3—C4119.8 (5)C1S—N1S—C2S121.4 (6)
N1—C3—C4125.7 (5)C1S—N1S—C3S121.1 (7)
C5—C4—C3118.2 (5)C2S—N1S—C3S117.4 (7)
C5—C4—H4120.9O1S—C1S—N1S124.2 (6)
C3—C4—H4120.9O1S—C1S—H1S117.9
C6—C5—C4121.7 (6)N1S—C1S—H1S117.9
C6—C5—H5119.1N1S—C2S—H2SA109.5
C4—C5—H5119.1N1S—C2S—H2SB109.5
C5—C6—C7120.9 (5)H2SA—C2S—H2SB109.5
C5—C6—H6119.5N1S—C2S—H2SC109.5
C7—C6—H6119.5H2SA—C2S—H2SC109.5
C6—C7—C2117.9 (6)H2SB—C2S—H2SC109.5
C6—C7—H7121.0N1S—C3S—H3SA109.5
C2—C7—H7121.0N1S—C3S—H3SB109.5
C11—C10—S3117.5 (3)H3SA—C3S—H3SB109.5
C11—C10—H10A107.9N1S—C3S—H3SC109.5
S3—C10—H10A107.9H3SA—C3S—H3SC109.5
C11—C10—H10B107.9H3SB—C3S—H3SC109.5
S3—C10—H10B107.9
N2—Pd2—S2—C113.2 (2)C2—C3—C4—C52.0 (7)
Cl1—Pd2—S2—C1167.44 (17)N1—C3—C4—C5179.2 (4)
N2—Pd2—S3—C211.04 (18)C3—C4—C5—C60.4 (8)
Cl1—Pd2—S3—C21179.32 (15)C4—C5—C6—C71.1 (9)
N2—Pd2—S3—C10110.2 (2)C5—C6—C7—C20.9 (9)
Cl1—Pd2—S3—C1070.19 (18)C3—C2—C7—C60.8 (8)
N2i—Pd1—N1—C1109.9 (3)S1—C2—C7—C6174.7 (4)
N2—Pd1—N1—C170.1 (3)C21—S3—C10—C1144.4 (5)
Pd2i—Pd1—N1—C1148.0 (3)Pd2—S3—C10—C1162.0 (4)
N2i—Pd1—N1—C370.7 (4)S3—C10—C11—C16107.0 (5)
N2—Pd1—N1—C3109.3 (4)S3—C10—C11—C1279.0 (6)
Pd2i—Pd1—N1—C332.7 (4)C16—C11—C12—C131.8 (8)
S3—Pd2—N2—C222.2 (3)C10—C11—C12—C13175.8 (5)
S2—Pd2—N2—C22177.0 (3)C11—C12—C13—C141.7 (9)
S3—Pd2—N2—Pd1124.25 (16)C12—C13—C14—C150.5 (9)
S2—Pd2—N2—Pd150.53 (16)C13—C14—C15—C160.6 (9)
N1—Pd1—N2—C22144.3 (3)C14—C15—C16—C110.5 (8)
N1i—Pd1—N2—C2235.7 (3)C12—C11—C16—C150.7 (7)
Pd2i—Pd1—N2—C2252.0 (4)C10—C11—C16—C15174.8 (5)
N1—Pd1—N2—Pd287.76 (18)C10—S3—C21—C22114.5 (4)
N1i—Pd1—N2—Pd292.24 (18)Pd2—S3—C21—C220.1 (4)
Pd2i—Pd1—N2—Pd2180.000 (1)C10—S3—C21—C2668.2 (4)
C3—N1—C1—S2176.4 (3)Pd2—S3—C21—C26177.3 (4)
Pd1—N1—C1—S23.0 (5)C26—C21—C22—C231.8 (7)
C3—N1—C1—S14.1 (5)S3—C21—C22—C23179.2 (3)
Pd1—N1—C1—S1176.44 (19)C26—C21—C22—N2175.4 (4)
Pd2—S2—C1—N144.2 (4)S3—C21—C22—N22.0 (6)
Pd2—S2—C1—S1136.3 (2)Pd2—N2—C22—C213.0 (5)
C2—S1—C1—N11.8 (4)Pd1—N2—C22—C21118.0 (4)
C2—S1—C1—S2178.7 (3)Pd2—N2—C22—C23179.8 (3)
C1—S1—C2—C31.0 (4)Pd1—N2—C22—C2359.2 (5)
C1—S1—C2—C7176.9 (5)C21—C22—C23—C242.2 (7)
C7—C2—C3—N1179.8 (5)N2—C22—C23—C24175.0 (4)
S1—C2—C3—N13.5 (5)C22—C23—C24—C250.4 (8)
C7—C2—C3—C42.2 (7)C23—C24—C25—C261.7 (8)
S1—C2—C3—C4174.1 (4)C24—C25—C26—C212.1 (8)
C1—N1—C3—C25.0 (6)C22—C21—C26—C250.3 (7)
Pd1—N1—C3—C2175.6 (3)S3—C21—C26—C25176.9 (4)
C1—N1—C3—C4172.4 (4)C2S—N1S—C1S—O1S2.8 (10)
Pd1—N1—C3—C47.0 (7)C3S—N1S—C1S—O1S178.6 (7)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1S0.76 (5)2.17 (5)2.907 (6)163 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds