Download citation
Download citation
link to html
Pyroxene-type germanate compounds with the composition CaCuGe2O6–CaZnGe2O6 have been synthesized via a solid-state ceramic sintering route. Phase-pure polycrystalline and small single-crystal material was obtained all over the series, representing a complete solid-solution series. Differential thermal analysis, single-crystal X-ray diffraction and Raman spectroscopy were used to characterize phase stability, phase changes and structural alterations induced by the substitution of Cu2+ with Zn2+. Whereas pure CaCuGe2O6 exhibits P21/c symmetry with a strong distortion of the M1 octahedra and two different Ge sites, one of them with an unusual fivefold coordination, the replacement of Cu2+ by Zn2+ induces a chemically driven phase change to the C2/c symmetry. The phase change takes place around Zn2+ contents of 0.12 formula units and is associated with large changes in the unit-cell parameters. Here, the increase of c by as much as 3.2% is remarkable and it is mainly controlled by an expansion of the tetrahedral chains. Further differences between the P21/c and C2/c structures are a more regular chain of edge-sharing M1 octahedra as a consequence of more and more reduced Jahn–Teller distortion and a less kinked, symmetry-equivalent tetrahedral chain. The coordination of the Ca site increases from sevenfold to eightfold with large changes in the Ca—O bond lengths during the phase change. Raman spectroscopy was mainly used to monitor the P21/c to C2/c phase change as a function of composition, but also as a function of temperature and to follow changes in specific Raman modes throughout the solid-solution series.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252061700381X/rm5003sup1.cif
Contains datablocks CaCu_1, Cu95_2, shelx_Cu90_7, shelx_Cu88_3, Cu80_1, Cu60_2, Cu40_3, Cu10_9

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003CaCu_1sup2.hkl
Contains datablock CaCu_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003Cu95_2sup3.hkl
Contains datablock Cu95_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003shelx_Cu90_7sup4.hkl
Contains datablock shelx_Cu90_7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003shelx_Cu88_3sup5.hkl
Contains datablock shelx_Cu88_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003Cu80_1sup6.hkl
Contains datablock Cu80_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003Cu60_2sup7.hkl
Contains datablock Cu60_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003Cu40_3sup8.hkl
Contains datablock Cu40_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061700381X/rm5003Cu10_9sup9.hkl
Contains datablock Cu10_9

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205252061700381X/rm5003sup10.pdf
Supporting text and figures

Computing details top

For all compounds, data collection: Bruker APEX2 (Bruker, 2012); cell refinement: Bruker APEX2 (Bruker, 2012); data reduction: Bruker APEX2 (Bruker, 2012); program(s) used to solve structure: SHELXL2014/7 (Sheldrick, 2014); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Diamonds 3.2g (Brandenburg,2006); software used to prepare material for publication: WinGX v1.70.01 (Farrugia 2012).

(CaCu_1) top
Crystal data top
CaCuGe2O6F(000) = 644
Mr = 344.80Dx = 4.860 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1958 (5) ÅCell parameters from 6243 reflections
b = 9.2140 (6) Åθ = 2.1–30.0°
c = 5.2101 (3) ŵ = 18.19 mm1
β = 105.682 (2)°T = 293 K
V = 471.24 (5) Å3Prismatic, pale green
Z = 40.12 × 0.08 × 0.07 mm
Data collection top
SMART APEX
diffractometer
1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
rotation, ω–scans at 4 different φ positionsθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1313
Tmin = 0.359, Tmax = 0.746k = 1212
6243 measured reflectionsl = 67
1310 independent reflections
Refinement top
Refinement on F291 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.017P)2 + 1.0882P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.61 e Å3
1310 reflectionsΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.28336 (6)0.45273 (6)0.80910 (12)0.00832 (12)
Cu10.22735 (4)0.66145 (4)0.25606 (7)0.00712 (9)
GeA0.04908 (3)0.34919 (3)0.20950 (6)0.00527 (8)
GeB0.49117 (3)0.35080 (3)0.40131 (6)0.00568 (8)
O1A0.1268 (2)0.3612 (2)0.1154 (4)0.0078 (4)
O1B0.6582 (2)0.3205 (2)0.3789 (4)0.0070 (4)
O2A0.1458 (2)0.4889 (2)0.3757 (4)0.0104 (4)
O2B0.4323 (2)0.5217 (2)0.2602 (4)0.0098 (4)
O3A0.1029 (2)0.1945 (2)0.4202 (4)0.0085 (4)
O3B0.4001 (2)0.2516 (2)0.5900 (4)0.0073 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0091 (3)0.0078 (3)0.0077 (3)0.0003 (2)0.0019 (2)0.0009 (2)
Cu10.00781 (17)0.00667 (17)0.00574 (16)0.00152 (12)0.00015 (13)0.00006 (12)
GeA0.00461 (14)0.00557 (14)0.00517 (14)0.00055 (10)0.00054 (11)0.00026 (10)
GeB0.00534 (14)0.00487 (14)0.00729 (15)0.00017 (10)0.00247 (11)0.00085 (10)
O1A0.0038 (9)0.0099 (10)0.0093 (10)0.0006 (7)0.0009 (8)0.0005 (8)
O1B0.0063 (9)0.0062 (9)0.0087 (10)0.0005 (7)0.0024 (8)0.0007 (7)
O2A0.0122 (10)0.0081 (10)0.0082 (10)0.0052 (8)0.0018 (8)0.0005 (8)
O2B0.0146 (10)0.0060 (9)0.0079 (10)0.0020 (8)0.0014 (8)0.0005 (7)
O3A0.0097 (10)0.0082 (9)0.0092 (10)0.0028 (8)0.0054 (8)0.0031 (8)
O3B0.0068 (9)0.0083 (10)0.0065 (9)0.0026 (7)0.0014 (8)0.0011 (7)
Geometric parameters (Å, º) top
Ca1—O2A2.338 (2)Cu1—O1Avii2.294 (2)
Ca1—O1Ai2.446 (2)Cu1—O2B2.450 (2)
Ca1—O1Bii2.448 (2)GeA—O2A1.708 (2)
Ca1—O3Aiii2.477 (2)GeA—O1A1.730 (2)
Ca1—O3Biii2.482 (2)GeA—O3Aviii1.784 (2)
Ca1—O2Biv2.511 (2)GeA—O3A1.792 (2)
Ca1—O3B2.624 (2)GeB—O1B1.761 (2)
Ca1—O2Bii3.026 (2)GeB—O2B1.772 (2)
Cu1—O1Av1.941 (2)GeB—O3B1.777 (2)
Cu1—O1Bii1.951 (2)GeB—O3Bviii1.890 (2)
Cu1—O2A1.972 (2)GeB—O2Bii2.087 (2)
Cu1—O1Bvi2.109 (2)
O2A—Ca1—O1Ai78.94 (7)Ca1—Cu1—Ca1x120.63 (2)
O2A—Ca1—O1Bii68.86 (7)O2A—GeA—O1A120.49 (10)
O1Ai—Ca1—O1Bii72.93 (7)O2A—GeA—O3Aviii109.35 (10)
O2A—Ca1—O3Aiii90.80 (7)O1A—GeA—O3Aviii107.87 (10)
O1Ai—Ca1—O3Aiii77.75 (7)O2A—GeA—O3A104.46 (10)
O1Bii—Ca1—O3Aiii146.84 (7)O1A—GeA—O3A110.30 (9)
O2A—Ca1—O3Biii138.10 (7)O3Aviii—GeA—O3A103.00 (7)
O1Ai—Ca1—O3Biii131.80 (7)O2A—GeA—Ca135.31 (7)
O1Bii—Ca1—O3Biii138.89 (7)O1A—GeA—Ca1129.66 (7)
O3Aiii—Ca1—O3Biii73.43 (7)O3Aviii—GeA—Ca1121.49 (7)
O2A—Ca1—O2Biv157.12 (7)O3A—GeA—Ca169.47 (7)
O1Ai—Ca1—O2Biv85.87 (7)O2A—GeA—Ca1viii103.82 (7)
O1Bii—Ca1—O2Biv90.44 (7)O1A—GeA—Ca1viii133.22 (7)
O3Aiii—Ca1—O2Biv102.66 (7)O3Aviii—GeA—Ca1viii66.74 (7)
O3Biii—Ca1—O2Biv64.39 (7)O3A—GeA—Ca1viii38.58 (6)
O2A—Ca1—O3B84.53 (7)Ca1—GeA—Ca1viii79.461 (18)
O1Ai—Ca1—O3B163.20 (7)O1B—GeB—O2B109.80 (10)
O1Bii—Ca1—O3B103.91 (7)O1B—GeB—O3B127.94 (9)
O3Aiii—Ca1—O3B99.66 (7)O2B—GeB—O3B121.13 (10)
O3Biii—Ca1—O3B61.27 (3)O1B—GeB—O3Bviii97.11 (9)
O2Biv—Ca1—O3B110.81 (7)O2B—GeB—O3Bviii93.14 (9)
O2A—Ca1—O2Bii102.57 (7)O3B—GeB—O3Bviii90.51 (6)
O1Ai—Ca1—O2Bii130.75 (6)O1B—GeB—O2Bii89.86 (9)
O1Bii—Ca1—O2Bii62.69 (6)O2B—GeB—O2Bii81.82 (9)
O3Aiii—Ca1—O2Bii150.07 (6)O3B—GeB—O2Bii87.38 (9)
O3Biii—Ca1—O2Bii78.90 (6)O3Bviii—GeB—O2Bii172.49 (8)
O2Biv—Ca1—O2Bii74.67 (7)O1B—GeB—GeBii101.75 (7)
O3B—Ca1—O2Bii56.04 (6)O2B—GeB—GeBii44.96 (7)
O2A—Ca1—Cu1iv116.13 (6)O3B—GeB—GeBii106.30 (7)
O1Ai—Ca1—Cu1iv37.46 (5)O3Bviii—GeB—GeBii137.81 (6)
O1Bii—Ca1—Cu1iv83.60 (5)O2Bii—GeB—GeBii36.86 (6)
O3Aiii—Ca1—Cu1iv82.46 (5)O1B—GeB—Cu1ii39.84 (7)
O3Biii—Ca1—Cu1iv100.31 (5)O2B—GeB—Cu1ii116.82 (7)
O2Biv—Ca1—Cu1iv49.16 (5)O3B—GeB—Cu1ii102.39 (7)
O3B—Ca1—Cu1iv159.29 (5)O3Bviii—GeB—Cu1ii132.36 (6)
O2Bii—Ca1—Cu1iv113.99 (4)O2Bii—GeB—Cu1ii55.15 (6)
O2A—Ca1—GeBii83.81 (5)GeBii—GeB—Cu1ii82.271 (14)
O1Ai—Ca1—GeBii102.15 (5)O1B—GeB—Ca1ii45.51 (7)
O1Bii—Ca1—GeBii30.86 (5)O2B—GeB—Ca1ii64.41 (7)
O3Aiii—Ca1—GeBii174.51 (5)O3B—GeB—Ca1ii166.08 (7)
O3Biii—Ca1—GeBii110.02 (5)O3Bviii—GeB—Ca1ii102.21 (6)
O2Biv—Ca1—GeBii82.78 (5)O2Bii—GeB—Ca1ii80.70 (6)
O3B—Ca1—GeBii78.83 (5)GeBii—GeB—Ca1ii67.845 (15)
O2Bii—Ca1—GeBii31.88 (4)Cu1ii—GeB—Ca1ii64.822 (14)
Cu1iv—Ca1—GeBii100.843 (18)O1B—GeB—Ca1ix111.32 (7)
O2A—Ca1—GeBiv171.36 (6)O2B—GeB—Ca1ix46.68 (7)
O1Ai—Ca1—GeBiv108.92 (5)O3B—GeB—Ca1ix110.88 (7)
O1Bii—Ca1—GeBiv116.32 (5)O3Bviii—GeB—Ca1ix46.50 (6)
O3Aiii—Ca1—GeBiv87.50 (5)O2Bii—GeB—Ca1ix128.00 (6)
O3Biii—Ca1—GeBiv33.52 (5)GeBii—GeB—Ca1ix91.357 (16)
O2Biv—Ca1—GeBiv30.90 (5)Cu1ii—GeB—Ca1ix146.562 (16)
O3B—Ca1—GeBiv87.41 (5)Ca1ii—GeB—Ca1ix82.326 (17)
O2Bii—Ca1—GeBiv75.25 (4)O1B—GeB—Ca1viii115.43 (7)
Cu1iv—Ca1—GeBiv72.050 (15)O2B—GeB—Ca1viii122.26 (7)
GeBii—Ca1—GeBiv97.674 (17)O3B—GeB—Ca1viii43.09 (7)
O2A—Ca1—Cu134.61 (5)O3Bviii—GeB—Ca1viii48.48 (6)
O1Ai—Ca1—Cu176.78 (5)O2Bii—GeB—Ca1viii130.32 (6)
O1Bii—Ca1—Cu134.64 (5)GeBii—GeB—Ca1viii141.763 (18)
O3Aiii—Ca1—Cu1123.05 (5)Cu1ii—GeB—Ca1viii120.849 (15)
O3Biii—Ca1—Cu1151.31 (5)Ca1ii—GeB—Ca1viii147.448 (14)
O2Biv—Ca1—Cu1125.02 (5)Ca1ix—GeB—Ca1viii83.592 (19)
O3B—Ca1—Cu191.31 (5)O1B—GeB—Ca1146.68 (7)
O2Bii—Ca1—Cu178.50 (4)O2B—GeB—Ca179.69 (7)
Cu1iv—Ca1—Cu1104.889 (19)O3B—GeB—Ca146.48 (7)
GeBii—Ca1—Cu151.978 (12)O3Bviii—GeB—Ca1114.60 (6)
GeBiv—Ca1—Cu1149.10 (2)O2Bii—GeB—Ca159.14 (6)
O1Av—Cu1—O1Bii175.31 (8)GeBii—GeB—Ca161.664 (14)
O1Av—Cu1—O2A94.24 (8)Cu1ii—GeB—Ca1106.994 (15)
O1Bii—Cu1—O2A87.29 (8)Ca1ii—GeB—Ca1129.509 (12)
O1Av—Cu1—O1Bvi86.18 (8)Ca1ix—GeB—Ca198.432 (17)
O1Bii—Cu1—O1Bvi91.54 (8)Ca1viii—GeB—Ca181.562 (18)
O2A—Cu1—O1Bvi169.86 (8)GeA—O1A—Cu1v120.24 (11)
O1Av—Cu1—O1Avii102.72 (8)GeA—O1A—Cu1xi112.13 (10)
O1Bii—Cu1—O1Avii81.01 (8)Cu1v—O1A—Cu1xi92.71 (8)
O2A—Cu1—O1Avii107.15 (8)GeA—O1A—Ca1i132.15 (10)
O1Bvi—Cu1—O1Avii82.58 (7)Cu1v—O1A—Ca1i92.52 (8)
O1Av—Cu1—GeBii140.01 (6)Cu1xi—O1A—Ca1i98.78 (7)
O1Bii—Cu1—GeBii35.32 (6)GeB—O1B—Cu1ii104.85 (10)
O2A—Cu1—GeBii101.69 (6)GeB—O1B—Cu1xii139.87 (11)
O1Bvi—Cu1—GeBii72.08 (6)Cu1ii—O1B—Cu1xii98.35 (9)
O1Avii—Cu1—GeBii107.05 (5)GeB—O1B—Ca1ii103.63 (9)
O1Av—Cu1—Ca1ix50.02 (6)Cu1ii—O1B—Ca1ii99.86 (8)
O1Bii—Cu1—Ca1ix125.83 (6)Cu1xii—O1B—Ca1ii104.08 (8)
O2A—Cu1—Ca1ix85.33 (6)GeA—O2A—Cu1133.03 (12)
O1Bvi—Cu1—Ca1ix87.20 (6)GeA—O2A—Ca1119.72 (10)
O1Avii—Cu1—Ca1ix151.63 (5)Cu1—O2A—Ca1103.06 (9)
GeBii—Cu1—Ca1ix94.706 (16)GeB—O2B—GeBii98.18 (9)
O1Av—Cu1—Ca1135.25 (6)GeB—O2B—Ca1ix102.42 (9)
O1Bii—Cu1—Ca145.50 (6)GeBii—O2B—Ca1ix157.95 (10)
O2A—Cu1—Ca142.33 (6)GeB—O2B—Ca1ii83.72 (8)
O1Bvi—Cu1—Ca1134.27 (6)GeBii—O2B—Ca1ii84.56 (7)
O1Avii—Cu1—Ca1101.15 (5)Ca1ix—O2B—Ca1ii105.33 (7)
GeBii—Cu1—Ca163.199 (13)GeAiii—O3A—GeA125.72 (11)
Ca1ix—Cu1—Ca1104.889 (19)GeAiii—O3A—Ca1viii119.42 (10)
O1Av—Cu1—Ca1x102.30 (6)GeA—O3A—Ca1viii114.60 (9)
O1Bii—Cu1—Ca1x78.48 (6)GeB—O3B—GeBiii121.51 (11)
O2A—Cu1—Ca1x147.55 (7)GeB—O3B—Ca1viii107.64 (9)
O1Bvi—Cu1—Ca1x41.29 (6)GeBiii—O3B—Ca1viii99.97 (8)
O1Avii—Cu1—Ca1x42.18 (5)GeB—O3B—Ca1104.11 (9)
GeBii—Cu1—Ca1x83.275 (14)GeBiii—O3B—Ca198.90 (8)
Ca1ix—Cu1—Ca1x126.57 (2)Ca1viii—O3B—Ca1126.20 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2; (ix) x, y, z1; (x) x, y+3/2, z1/2; (xi) x, y1/2, z+1/2; (xii) x+1, y1/2, z+1/2.
(Cu95_2) top
Crystal data top
CaCu0.95Ge2O6Zn0.05F(000) = 644
Mr = 344.89Dx = 4.855 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2081 (7) ÅCell parameters from 5299 reflections
b = 9.2091 (7) Åθ = 2.1–29.9°
c = 5.2142 (4) ŵ = 18.19 mm1
β = 105.726 (3)°T = 293 K
V = 471.83 (6) Å3Prismatic, pale green
Z = 40.14 × 0.09 × 0.07 mm
Data collection top
SMART APEX
diffractometer
1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
rotation, ω–scans at 4 different φ positionsθmax = 29.9°, θmin = 2.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1313
Tmin = 0.15, Tmax = 0.28k = 1212
5299 measured reflectionsl = 77
1298 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0174P)2 + 0.5542P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max < 0.001
wR(F2) = 0.039Δρmax = 0.41 e Å3
S = 1.15Δρmin = 0.78 e Å3
1298 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
92 parametersExtinction coefficient: 0.0060 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.28269 (5)0.45246 (5)0.80890 (9)0.00910 (10)
Cu10.22749 (3)0.66153 (3)0.25715 (6)0.00787 (8)0.95
Zn10.22749 (3)0.66153 (3)0.25715 (6)0.00787 (8)0.05
GeA0.04867 (2)0.34912 (2)0.21047 (5)0.00586 (7)
GeB0.49093 (2)0.35083 (2)0.40057 (5)0.00628 (7)
O1A0.12743 (17)0.36066 (17)0.1154 (3)0.0086 (3)
O1B0.65814 (17)0.32099 (17)0.3774 (3)0.0079 (3)
O2A0.14462 (18)0.48928 (18)0.3760 (3)0.0118 (3)
O2B0.43104 (18)0.52171 (17)0.2609 (3)0.0104 (3)
O3A0.10279 (17)0.19476 (18)0.4215 (3)0.0091 (3)
O3B0.39974 (16)0.25188 (17)0.5890 (3)0.0080 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0107 (2)0.0082 (2)0.0084 (2)0.00029 (16)0.00258 (17)0.00119 (15)
Cu10.00843 (15)0.00777 (14)0.00648 (13)0.00156 (10)0.00046 (10)0.00005 (10)
Zn10.00843 (15)0.00777 (14)0.00648 (13)0.00156 (10)0.00046 (10)0.00005 (10)
GeA0.00559 (12)0.00609 (12)0.00575 (11)0.00042 (8)0.00130 (9)0.00026 (8)
GeB0.00627 (13)0.00555 (12)0.00781 (12)0.00033 (8)0.00328 (9)0.00090 (8)
O1A0.0069 (8)0.0108 (8)0.0081 (7)0.0008 (6)0.0023 (6)0.0006 (6)
O1B0.0066 (8)0.0085 (7)0.0089 (7)0.0001 (6)0.0026 (6)0.0010 (6)
O2A0.0148 (9)0.0101 (8)0.0088 (7)0.0045 (6)0.0005 (6)0.0005 (6)
O2B0.0165 (9)0.0055 (7)0.0083 (7)0.0011 (6)0.0016 (6)0.0008 (6)
O3A0.0106 (8)0.0100 (8)0.0078 (7)0.0027 (6)0.0042 (6)0.0028 (6)
O3B0.0069 (7)0.0105 (8)0.0068 (7)0.0012 (6)0.0023 (6)0.0013 (6)
Geometric parameters (Å, º) top
Ca1—O2A2.3391 (18)Cu1—O1Avii2.2838 (16)
Ca1—O1Ai2.4432 (16)Cu1—O2B2.4400 (19)
Ca1—O1Bii2.4451 (17)GeA—O2A1.7065 (17)
Ca1—O3Aiii2.4778 (17)GeA—O1A1.7336 (17)
Ca1—O3Biii2.4812 (17)GeA—O3Aviii1.7863 (15)
Ca1—O2Biv2.5139 (17)GeA—O3A1.7907 (16)
Ca1—O3B2.6261 (16)GeB—O1B1.7651 (16)
Ca1—O2Bii3.0503 (18)GeB—O2B1.7718 (16)
Cu1—O1Av1.9450 (17)GeB—O3B1.7771 (15)
Cu1—O1Bii1.9531 (17)GeB—O3Bviii1.8922 (16)
Cu1—O2A1.9750 (17)GeB—O2Bii2.0895 (16)
Cu1—O1Bvi2.1108 (16)
O2A—Ca1—O1Ai78.82 (6)O3B—Ca1—O2Bii55.86 (5)
O2A—Ca1—O1Bii69.03 (6)O1Av—Cu1—O1Bii175.13 (7)
O1Ai—Ca1—O1Bii72.79 (5)O1Av—Cu1—O2A94.32 (7)
O2A—Ca1—O3Aiii90.94 (6)O1Bii—Cu1—O2A87.34 (7)
O1Ai—Ca1—O3Aiii78.01 (6)O1Av—Cu1—O1Bvi85.95 (7)
O1Bii—Ca1—O3Aiii147.11 (6)O1Bii—Cu1—O1Bvi91.64 (6)
O2A—Ca1—O3Biii138.25 (6)O2A—Cu1—O1Bvi170.28 (7)
O1Ai—Ca1—O3Biii132.00 (6)O1Av—Cu1—O1Avii102.70 (7)
O1Bii—Ca1—O3Biii138.55 (6)O1Bii—Cu1—O1Avii81.15 (6)
O3Aiii—Ca1—O3Biii73.45 (5)O2A—Cu1—O1Avii106.87 (7)
O2A—Ca1—O2Biv156.95 (6)O1Bvi—Cu1—O1Avii82.50 (6)
O1Ai—Ca1—O2Biv85.54 (6)O2A—GeA—O1A120.45 (8)
O1Bii—Ca1—O2Biv90.29 (5)O2A—GeA—O3Aviii109.36 (8)
O3Aiii—Ca1—O2Biv102.33 (5)O1A—GeA—O3Aviii107.84 (8)
O3Biii—Ca1—O2Biv64.46 (5)O2A—GeA—O3A104.50 (8)
O2A—Ca1—O3B84.67 (6)O1A—GeA—O3A110.34 (7)
O1Ai—Ca1—O3B163.31 (6)O3Aviii—GeA—O3A102.96 (5)
O1Bii—Ca1—O3B103.66 (5)O1B—GeB—O2B110.02 (8)
O3Aiii—Ca1—O3B99.94 (5)O1B—GeB—O3B128.26 (7)
O3Biii—Ca1—O3B61.32 (2)O2B—GeB—O3B120.58 (8)
O2Biv—Ca1—O3B110.97 (6)O1B—GeB—O3Bviii97.07 (7)
O2A—Ca1—O2Bii102.70 (5)O2B—GeB—O3Bviii93.23 (7)
O1Ai—Ca1—O2Bii130.45 (5)O3B—GeB—O3Bviii90.51 (5)
O1Bii—Ca1—O2Bii62.50 (5)O1B—GeB—O2Bii89.49 (7)
O3Aiii—Ca1—O2Bii150.04 (5)O2B—GeB—O2Bii81.86 (7)
O3Biii—Ca1—O2Bii78.77 (5)O3B—GeB—O2Bii87.58 (7)
O2Biv—Ca1—O2Bii74.86 (5)O3Bviii—GeB—O2Bii172.87 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2.
(shelx_Cu90_7) top
Crystal data top
CaCu0.90Ge2O6Zn0.10F(000) = 644
Mr = 344.98Dx = 4.851 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2193 (4) ÅCell parameters from 6214 reflections
b = 9.2041 (4) Åθ = 2.1–29.9°
c = 5.2187 (2) ŵ = 18.20 mm1
β = 105.771 (2)°T = 293 K
V = 472.39 (3) Å3Prismatic, pale green
Z = 40.14 × 0.07 × 0.06 mm
Data collection top
SMART APEX
diffractometer
1254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
rotation, ω–scans at 4 different φ positionsθmax = 29.9°, θmin = 2.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1413
Tmin = 0.24, Tmax = 0.34k = 1212
6214 measured reflectionsl = 77
1317 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0125P)2 + 0.9589P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.001
wR(F2) = 0.037Δρmax = 0.43 e Å3
S = 1.16Δρmin = 0.89 e Å3
1317 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
92 parametersExtinction coefficient: 0.0065 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.28221 (5)0.45221 (5)0.80867 (10)0.00911 (10)
Cu10.22775 (3)0.66169 (3)0.25832 (6)0.00794 (8)0.9
Zn10.22775 (3)0.66169 (3)0.25832 (6)0.00794 (8)0.1
GeA0.04824 (2)0.34906 (3)0.21142 (5)0.00582 (7)
GeB0.49064 (2)0.35085 (3)0.39950 (5)0.00639 (7)
O1A0.12776 (17)0.35984 (18)0.1160 (3)0.0087 (3)
O1B0.65719 (17)0.32141 (18)0.3756 (3)0.0079 (3)
O2A0.14356 (18)0.48959 (19)0.3765 (4)0.0116 (3)
O2B0.42990 (19)0.52174 (18)0.2604 (3)0.0107 (3)
O3A0.10286 (17)0.19477 (19)0.4233 (3)0.0092 (3)
O3B0.39960 (17)0.25219 (19)0.5884 (3)0.0083 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0106 (2)0.0082 (2)0.0084 (2)0.00028 (17)0.00247 (17)0.00114 (16)
Cu10.00875 (14)0.00774 (14)0.00624 (14)0.00167 (10)0.00015 (10)0.00003 (10)
Zn10.00875 (14)0.00774 (14)0.00624 (14)0.00167 (10)0.00015 (10)0.00003 (10)
GeA0.00545 (12)0.00619 (12)0.00543 (12)0.00035 (8)0.00077 (9)0.00025 (8)
GeB0.00643 (12)0.00565 (12)0.00783 (12)0.00021 (8)0.00323 (9)0.00103 (8)
O1A0.0069 (7)0.0118 (8)0.0074 (8)0.0007 (6)0.0019 (6)0.0003 (6)
O1B0.0068 (7)0.0091 (8)0.0084 (8)0.0011 (6)0.0031 (6)0.0009 (6)
O2A0.0138 (8)0.0108 (8)0.0083 (8)0.0043 (7)0.0003 (7)0.0014 (6)
O2B0.0169 (9)0.0057 (7)0.0087 (8)0.0008 (7)0.0021 (7)0.0004 (6)
O3A0.0097 (8)0.0103 (8)0.0085 (8)0.0026 (6)0.0042 (6)0.0028 (6)
O3B0.0081 (8)0.0107 (8)0.0067 (7)0.0010 (6)0.0030 (6)0.0012 (6)
Geometric parameters (Å, º) top
Ca1—O2A2.3401 (18)Cu1—O1Avii2.2726 (17)
Ca1—O1Bi2.4441 (18)Cu1—O2B2.4321 (18)
Ca1—O1Aii2.4445 (17)GeA—O2A1.7052 (18)
Ca1—O3Aiii2.4785 (18)GeA—O1A1.7338 (17)
Ca1—O3Biii2.4815 (18)GeA—O3Aviii1.7866 (17)
Ca1—O2Biv2.5121 (18)GeA—O3A1.7930 (17)
Ca1—O3B2.6266 (18)GeB—O1B1.7610 (17)
Ca1—O2Bi3.0690 (19)GeB—O2B1.7725 (17)
Cu1—O1Av1.9531 (17)GeB—O3B1.7779 (17)
Cu1—O1Bi1.9583 (17)GeB—O3Bviii1.8919 (17)
Cu1—O2A1.9794 (18)GeB—O2Bi2.0980 (18)
Cu1—O1Bvi2.1164 (17)
O2A—Ca1—O1Bi69.34 (6)O1Bi—Cu1—O2A87.49 (7)
O2A—Ca1—O1Aii78.62 (6)O1Av—Cu1—O1Bvi85.80 (7)
O1Bi—Ca1—O1Aii72.77 (6)O1Bi—Cu1—O1Bvi91.54 (6)
O2A—Ca1—O3Aiii91.09 (6)O2A—Cu1—O1Bvi170.51 (7)
O1Bi—Ca1—O3Aiii147.49 (6)O1Av—Cu1—O1Avii102.48 (7)
O1Aii—Ca1—O3Aiii78.19 (6)O1Bi—Cu1—O1Avii81.52 (7)
O2A—Ca1—O3Biii138.40 (6)O2A—Cu1—O1Avii106.54 (7)
O1Bi—Ca1—O3Biii138.09 (6)O1Bvi—Cu1—O1Avii82.62 (6)
O1Aii—Ca1—O3Biii132.21 (6)O1Av—Cu1—O2B99.41 (6)
O3Aiii—Ca1—O3Biii73.45 (6)O1Bi—Cu1—O2B75.74 (6)
O2A—Ca1—O2Biv156.78 (6)O2A—Cu1—O2B90.88 (7)
O1Bi—Ca1—O2Biv90.01 (6)O1Bvi—Cu1—O2B79.74 (6)
O1Aii—Ca1—O2Biv85.31 (6)O1Avii—Cu1—O2B150.66 (6)
O3Aiii—Ca1—O2Biv101.99 (6)O2A—GeA—O1A120.48 (8)
O3Biii—Ca1—O2Biv64.53 (6)O2A—GeA—O3Aviii109.28 (8)
O2A—Ca1—O3B84.85 (6)O1A—GeA—O3Aviii107.95 (8)
O1Bi—Ca1—O3B103.33 (6)O2A—GeA—O3A104.48 (9)
O1Aii—Ca1—O3B163.34 (6)O1A—GeA—O3A110.32 (8)
O3Aiii—Ca1—O3B100.29 (6)O3Aviii—GeA—O3A102.95 (6)
O3Biii—Ca1—O3B61.37 (2)O1B—GeB—O2B110.19 (8)
O2Biv—Ca1—O3B111.09 (6)O1B—GeB—O3B128.47 (8)
O2A—Ca1—O2Bi102.94 (6)O2B—GeB—O3B120.17 (8)
O1Bi—Ca1—O2Bi62.21 (5)O1B—GeB—O3Bviii96.98 (7)
O1Aii—Ca1—O2Bi130.17 (5)O2B—GeB—O3Bviii93.30 (8)
O3Aiii—Ca1—O2Bi150.03 (5)O3B—GeB—O3Bviii90.60 (5)
O3Biii—Ca1—O2Bi78.62 (5)O1B—GeB—O2Bi89.23 (7)
O2Biv—Ca1—O2Bi74.91 (6)O2B—GeB—O2Bi82.09 (8)
O3B—Ca1—O2Bi55.73 (5)O3B—GeB—O2Bi87.53 (7)
O1Av—Cu1—O1Bi174.84 (7)O3Bviii—GeB—O2Bi173.28 (7)
O1Av—Cu1—O2A94.41 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2.
(shelx_Cu88_3) top
Crystal data top
CaCu0.88Ge2O6Zn0.12F(000) = 644
Mr = 345.02Dx = 4.778 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.2118 (8) ÅCell parameters from 3163 reflections
b = 9.0969 (7) Åθ = 3.1–30.0°
c = 5.3914 (4) ŵ = 17.94 mm1
β = 106.7232 (9)°T = 293 K
V = 479.66 (6) Å3Isometric, colourless
Z = 40.12 × 0.11 × 0.11 mm
Data collection top
SMART APEX
diffractometer
625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
rotation, ω–scans at 4 different φ positionsθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1414
Tmin = 0.14, Tmax = 0.15k = 1212
3163 measured reflectionsl = 77
669 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0214P)2 + 0.5434P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max < 0.001
wR(F2) = 0.043Δρmax = 0.48 e Å3
S = 1.13Δρmin = 0.64 e Å3
669 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0042 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.30203 (7)0.25000.01211 (15)
Zn0.00000.90681 (4)0.25000.01077 (11)0.12
Cu0.00000.90681 (4)0.25000.01077 (11)0.88
Ge0.28324 (3)0.09780 (3)0.21646 (5)0.01057 (10)
O10.10666 (18)0.09273 (19)0.1225 (3)0.0144 (4)
O20.3591 (2)0.2601 (2)0.3377 (4)0.0184 (4)
O30.35724 (16)0.0279 (2)0.9788 (3)0.0132 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0119 (3)0.0147 (3)0.0090 (3)0.0000.0017 (2)0.000
Zn0.0079 (2)0.0164 (2)0.0068 (2)0.0000.00028 (15)0.000
Cu0.0079 (2)0.0164 (2)0.0068 (2)0.0000.00028 (15)0.000
Ge0.00653 (15)0.01788 (16)0.00667 (14)0.00088 (9)0.00089 (9)0.00163 (9)
O10.0071 (8)0.0248 (10)0.0099 (8)0.0017 (6)0.0001 (7)0.0033 (7)
O20.0199 (10)0.0179 (9)0.0144 (9)0.0000 (7)0.0002 (7)0.0037 (7)
O30.0088 (8)0.0223 (9)0.0086 (8)0.0008 (6)0.0027 (6)0.0028 (7)
Geometric parameters (Å, º) top
Ca—O2i2.3432 (19)Zn—O1vi2.2249 (18)
Ca—O12.3906 (18)Ge—O21.7074 (18)
Ca—O3ii2.6599 (18)Ge—O11.7276 (18)
Ca—O3iii2.6941 (18)Ge—O3vii1.7818 (17)
Zn—O1iv1.9900 (17)Ge—O3viii1.8065 (17)
Zn—O2v2.114 (2)
O2i—Ca—O2ii152.10 (9)O3ii—Ca—O3x65.66 (6)
O2i—Ca—O175.01 (6)O3i—Ca—O3x61.63 (3)
O2ii—Ca—O182.80 (6)O3iii—Ca—O3x80.60 (8)
O2i—Ca—O1ix82.80 (6)O1iv—Zn—O1xi179.76 (10)
O2ii—Ca—O1ix75.01 (6)O1iv—Zn—O2v89.19 (7)
O1—Ca—O1ix74.42 (9)O1xi—Zn—O2v90.97 (7)
O2i—Ca—O3ii88.24 (6)O1iv—Zn—O2xii90.97 (7)
O2ii—Ca—O3ii108.14 (6)O1xi—Zn—O2xii89.19 (7)
O1—Ca—O3ii88.51 (6)O2v—Zn—O2xii101.67 (10)
O1ix—Ca—O3ii162.27 (6)O1iv—Zn—O1vi97.80 (7)
O2i—Ca—O3i108.14 (6)O1xi—Zn—O1vi82.01 (7)
O2ii—Ca—O3i88.24 (6)O2v—Zn—O1vi167.03 (7)
O1—Ca—O3i162.27 (6)O2xii—Zn—O1vi89.18 (7)
O1ix—Ca—O3i88.51 (6)O1iv—Zn—O1xiii82.01 (7)
O3ii—Ca—O3i108.86 (8)O1xi—Zn—O1xiii97.80 (7)
O2i—Ca—O3iii141.95 (6)O2v—Zn—O1xiii89.18 (7)
O2ii—Ca—O3iii65.18 (6)O2xii—Zn—O1xiii167.03 (7)
O1—Ca—O3iii122.91 (5)O1vi—Zn—O1xiii81.05 (9)
O1ix—Ca—O3iii132.18 (6)O2—Ge—O1117.10 (9)
O3ii—Ca—O3iii61.63 (3)O2—Ge—O3vii110.14 (9)
O3i—Ca—O3iii65.66 (6)O1—Ge—O3vii113.73 (8)
O2i—Ca—O3x65.18 (6)O2—Ge—O3viii101.89 (9)
O2ii—Ca—O3x141.95 (6)O1—Ge—O3viii112.27 (8)
O1—Ca—O3x132.18 (6)O3vii—Ge—O3viii99.71 (5)
O1ix—Ca—O3x122.91 (5)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1/2; (v) x1/2, y+1/2, z; (vi) x, y+1, z; (vii) x, y, z1; (viii) x, y, z1/2; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1; (xi) x, y+1, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x, y+1, z+1/2.
(Cu80_1) top
Crystal data top
CaCu0.80Ge2O6Zn0.20F(000) = 645
Mr = 345.17Dx = 4.779 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.2079 (7) ÅCell parameters from 3131 reflections
b = 9.0872 (6) Åθ = 3.1–29.8°
c = 5.3962 (4) ŵ = 17.98 mm1
β = 106.5988 (7)°T = 293 K
V = 479.70 (6) Å3Isometric, colourless
Z = 40.08 × 0.07 × 0.07 mm
Data collection top
SMART APEX
diffractometer
654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
rotation, ω–scans at 4 different φ positionsθmax = 29.8°, θmin = 3.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1413
Tmin = 0.25, Tmax = 0.29k = 1212
3131 measured reflectionsl = 77
665 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0191P)2 + 0.7323P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.040Δρmax = 0.54 e Å3
S = 1.24Δρmin = 0.82 e Å3
665 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0055 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.30209 (6)0.25000.01207 (12)
Zn0.00000.90685 (3)0.25000.01002 (10)0.2
Cu0.00000.90685 (3)0.25000.01002 (10)0.8
Ge0.28344 (2)0.09781 (2)0.21714 (4)0.00976 (9)
O10.10688 (15)0.09263 (15)0.1240 (3)0.0137 (3)
O20.35961 (16)0.26056 (16)0.3378 (3)0.0179 (3)
O30.35749 (13)0.02788 (16)0.9792 (2)0.0126 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0122 (3)0.0136 (2)0.0099 (2)0.0000.00221 (19)0.000
Zn0.00825 (18)0.01351 (18)0.00745 (17)0.0000.00085 (12)0.000
Cu0.00825 (18)0.01351 (18)0.00745 (17)0.0000.00085 (12)0.000
Ge0.00679 (13)0.01410 (13)0.00806 (12)0.00079 (6)0.00156 (8)0.00127 (6)
O10.0075 (6)0.0211 (7)0.0117 (7)0.0027 (5)0.0013 (5)0.0026 (5)
O20.0192 (7)0.0156 (7)0.0168 (7)0.0010 (5)0.0018 (5)0.0033 (5)
O30.0089 (6)0.0190 (7)0.0099 (6)0.0001 (5)0.0029 (5)0.0031 (5)
Geometric parameters (Å, º) top
Ca—O2i2.3461 (15)Zn—O1vi2.2196 (14)
Ca—O12.3874 (14)Ge—O21.7108 (15)
Ca—O3ii2.6572 (14)Ge—O11.7278 (15)
Ca—O3iii2.6921 (14)Ge—O3vii1.7829 (13)
Zn—O1iv2.0014 (14)Ge—O3viii1.8068 (13)
Zn—O2v2.1055 (15)
O2i—Ca—O2ii151.91 (7)O3ii—Ca—O3x65.60 (5)
O2i—Ca—O175.02 (5)O3i—Ca—O3x61.75 (2)
O2ii—Ca—O182.61 (5)O3iii—Ca—O3x80.69 (6)
O2i—Ca—O1ix82.61 (5)O1iv—Zn—O1xi179.73 (8)
O2ii—Ca—O1ix75.02 (5)O1iv—Zn—O2xii89.12 (6)
O1—Ca—O1ix74.26 (7)O1xi—Zn—O2xii91.05 (6)
O2i—Ca—O3ii88.12 (5)O1iv—Zn—O2v91.05 (6)
O2ii—Ca—O3ii108.36 (5)O1xi—Zn—O2v89.12 (5)
O1—Ca—O3ii88.60 (5)O2xii—Zn—O2v101.70 (8)
O1ix—Ca—O3ii162.11 (5)O1iv—Zn—O1vi97.64 (5)
O2i—Ca—O3i108.36 (5)O1xi—Zn—O1vi82.15 (6)
O2ii—Ca—O3i88.12 (5)O2xii—Zn—O1vi167.13 (6)
O1—Ca—O3i162.11 (5)O2v—Zn—O1vi89.17 (5)
O1ix—Ca—O3i88.60 (5)O1iv—Zn—O1xiii82.15 (6)
O3ii—Ca—O3i108.89 (6)O1xi—Zn—O1xiii97.64 (5)
O2i—Ca—O3iii142.06 (5)O2xii—Zn—O1xiii89.17 (5)
O2ii—Ca—O3iii65.24 (5)O2v—Zn—O1xiii167.13 (6)
O1—Ca—O3iii122.84 (4)O1vi—Zn—O1xiii80.97 (7)
O1ix—Ca—O3iii132.31 (4)O2—Ge—O1117.20 (7)
O3ii—Ca—O3iii61.75 (2)O2—Ge—O3vii110.01 (7)
O3i—Ca—O3iii65.60 (5)O1—Ge—O3vii113.73 (6)
O2i—Ca—O3x65.24 (5)O2—Ge—O3viii101.86 (7)
O2ii—Ca—O3x142.06 (5)O1—Ge—O3viii112.26 (6)
O1—Ca—O3x132.31 (4)O3vii—Ge—O3viii99.77 (4)
O1ix—Ca—O3x122.83 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x, y, z1; (viii) x, y, z1/2; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1; (xi) x, y+1, z; (xii) x1/2, y+1/2, z; (xiii) x, y+1, z+1/2.
(Cu60_2) top
Crystal data top
CaCu0.60Ge2O6Zn0.40F(000) = 646
Mr = 345.53Dx = 4.785 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.1962 (8) ÅCell parameters from 3137 reflections
b = 9.0653 (7) Åθ = 3.1–29.9°
c = 5.4050 (4) ŵ = 18.09 mm1
β = 106.2287 (9)°T = 293 K
V = 479.69 (6) Å3Isometric, colourless
Z = 40.11 × 0.09 × 0.08 mm
Data collection top
SMART APEX
diffractometer
643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
rotation, ω–scans at 4 different φ positionsθmax = 29.9°, θmin = 3.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1414
Tmin = 0.19, Tmax = 0.23k = 1212
3137 measured reflectionsl = 77
664 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.022P)2 + 0.6443P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.001
wR(F2) = 0.043Δρmax = 0.68 e Å3
S = 1.19Δρmin = 0.64 e Å3
664 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0009 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.30264 (7)0.25000.01067 (14)
Zn0.00000.90721 (4)0.25000.00901 (11)0.4
Cu0.00000.90721 (4)0.25000.00901 (11)0.6
Ge0.28381 (2)0.09787 (2)0.21943 (4)0.00796 (10)
O10.10763 (16)0.09272 (16)0.1271 (3)0.0119 (3)
O20.36031 (17)0.26067 (17)0.3388 (3)0.0147 (3)
O30.35770 (14)0.02831 (17)0.9804 (3)0.0112 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0115 (3)0.0108 (3)0.0094 (3)0.0000.0023 (2)0.000
Zn0.00849 (19)0.01086 (19)0.00706 (19)0.0000.00115 (14)0.000
Cu0.00849 (19)0.01086 (19)0.00706 (19)0.0000.00115 (14)0.000
Ge0.00681 (14)0.00968 (14)0.00733 (14)0.00045 (6)0.00187 (9)0.00075 (7)
O10.0083 (7)0.0159 (8)0.0112 (8)0.0016 (5)0.0022 (6)0.0020 (5)
O20.0177 (8)0.0115 (7)0.0138 (8)0.0030 (6)0.0026 (6)0.0021 (6)
O30.0089 (7)0.0150 (7)0.0100 (7)0.0007 (5)0.0030 (5)0.0036 (6)
Geometric parameters (Å, º) top
Ca—O2i2.3511 (17)Zn—O1vii2.0269 (16)
Ca—O2ii2.3511 (17)Zn—O2viii2.0990 (16)
Ca—O1iii2.3821 (15)Zn—O2ix2.0990 (16)
Ca—O12.3822 (15)Zn—O1x2.2093 (16)
Ca—O3ii2.6486 (15)Zn—O1xi2.2093 (16)
Ca—O3i2.6486 (15)Ge—O21.7093 (16)
Ca—O3iv2.6892 (16)Ge—O11.7254 (16)
Ca—O3v2.6892 (16)Ge—O3xii1.7827 (15)
Zn—O1vi2.0269 (16)Ge—O3xiii1.8089 (15)
O2i—Ca—O2ii151.74 (8)O3ii—Ca—O3v65.71 (5)
O2i—Ca—O1iii82.18 (6)O3i—Ca—O3v62.04 (2)
O2ii—Ca—O1iii75.28 (6)O3iv—Ca—O3v80.94 (7)
O2i—Ca—O175.28 (6)O1vi—Zn—O1vii179.96 (8)
O2ii—Ca—O182.18 (6)O1vi—Zn—O2viii88.94 (6)
O1iii—Ca—O173.96 (8)O1vii—Zn—O2viii91.08 (7)
O2i—Ca—O3ii87.91 (5)O1vi—Zn—O2ix91.08 (7)
O2ii—Ca—O3ii108.60 (5)O1vii—Zn—O2ix88.94 (6)
O1iii—Ca—O3ii161.62 (5)O2viii—Zn—O2ix101.48 (9)
O1—Ca—O3ii88.59 (5)O1vi—Zn—O1x97.31 (6)
O2i—Ca—O3i108.60 (5)O1vii—Zn—O1x82.66 (6)
O2ii—Ca—O3i87.91 (5)O2viii—Zn—O1x167.50 (6)
O1iii—Ca—O3i88.59 (5)O2ix—Zn—O1x89.26 (6)
O1—Ca—O3i161.62 (5)O1vi—Zn—O1xi82.66 (6)
O3ii—Ca—O3i109.29 (7)O1vii—Zn—O1xi97.31 (6)
O2i—Ca—O3iv142.23 (5)O2viii—Zn—O1xi89.26 (6)
O2ii—Ca—O3iv65.23 (5)O2ix—Zn—O1xi167.50 (6)
O1iii—Ca—O3iv132.65 (5)O1x—Zn—O1xi80.87 (8)
O1—Ca—O3iv122.55 (5)O2—Ge—O1117.45 (8)
O3ii—Ca—O3iv62.04 (2)O2—Ge—O3xii109.77 (7)
O3i—Ca—O3iv65.71 (5)O1—Ge—O3xii113.42 (7)
O2i—Ca—O3v65.23 (5)O2—Ge—O3xiii101.82 (7)
O2ii—Ca—O3v142.23 (5)O1—Ge—O3xiii112.43 (7)
O1iii—Ca—O3v122.55 (5)O3xii—Ge—O3xiii99.98 (5)
O1—Ca—O3v132.65 (5)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x1/2, y+1/2, z1; (vi) x, y+1, z+1/2; (vii) x, y+1, z; (viii) x1/2, y+1/2, z; (ix) x+1/2, y+1/2, z+1/2; (x) x, y+1, z; (xi) x, y+1, z+1/2; (xii) x, y, z1; (xiii) x, y, z1/2.
(Cu40_3) top
Crystal data top
CaCu0.31Ge2O6Zn0.69F(000) = 647
Mr = 346.06Dx = 4.789 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.1811 (7) ÅCell parameters from 3178 reflections
b = 9.0368 (6) Åθ = 3.1–29.9°
c = 5.4196 (4) ŵ = 18.25 mm1
β = 105.7255 (8)°T = 293 K
V = 479.96 (6) Å3Isometric, colourless
Z = 40.10 × 0.08 × 0.08 mm
Data collection top
SMART APEX
diffractometer
656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
rotation, ω–scans at 4 different φ positionsθmax = 29.9°, θmin = 3.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1413
Tmin = 0.20, Tmax = 0.27k = 1212
3178 measured reflectionsl = 77
671 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.020P)2 + 0.5591P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.040Δρmax = 0.34 e Å3
S = 1.20Δρmin = 0.69 e Å3
671 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0051 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.30353 (6)0.25000.00890 (13)
Zn0.00000.90793 (4)0.25000.00814 (10)0.69
Cu0.00000.90793 (4)0.25000.00814 (10)0.31
Ge0.28445 (2)0.09786 (2)0.22406 (4)0.00611 (9)
O10.10887 (15)0.09274 (14)0.1329 (3)0.0089 (3)
O20.36182 (15)0.26093 (16)0.3414 (3)0.0116 (3)
O30.35804 (14)0.02871 (16)0.9828 (3)0.0092 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0099 (3)0.0080 (3)0.0084 (2)0.0000.0017 (2)0.000
Zn0.00808 (18)0.00897 (18)0.00693 (17)0.0000.00129 (13)0.000
Cu0.00808 (18)0.00897 (18)0.00693 (17)0.0000.00129 (13)0.000
Ge0.00534 (13)0.00669 (13)0.00609 (13)0.00014 (6)0.00118 (8)0.00049 (6)
O10.0063 (7)0.0104 (7)0.0095 (7)0.0010 (5)0.0014 (5)0.0007 (5)
O20.0142 (7)0.0085 (7)0.0116 (7)0.0031 (5)0.0027 (5)0.0021 (5)
O30.0082 (7)0.0113 (7)0.0087 (6)0.0011 (5)0.0031 (5)0.0031 (5)
Geometric parameters (Å, º) top
Ca—O2i2.3525 (15)Zn—O1v2.1913 (14)
Ca—O12.3750 (14)Ge—O21.7102 (14)
Ca—O3i2.6396 (14)Ge—O11.7213 (15)
Ca—O3ii2.6818 (15)Ge—O3vi1.7868 (14)
Zn—O1iii2.0710 (15)Ge—O3vii1.8073 (14)
Zn—O2iv2.0896 (15)
O2viii—Ca—O2i151.33 (7)O3i—Ca—O3x65.85 (5)
O2viii—Ca—O1ix81.35 (5)O3viii—Ca—O3x62.45 (2)
O2i—Ca—O1ix75.72 (5)O3ii—Ca—O3x81.29 (6)
O2viii—Ca—O175.72 (5)O1iii—Zn—O1xi179.66 (8)
O2i—Ca—O181.35 (5)O1iii—Zn—O2iv88.43 (5)
O1ix—Ca—O173.35 (7)O1xi—Zn—O2iv91.36 (6)
O2viii—Ca—O3i87.56 (5)O1iii—Zn—O2xii91.36 (6)
O2i—Ca—O3i109.08 (5)O1xi—Zn—O2xii88.43 (5)
O1ix—Ca—O3i160.73 (5)O2iv—Zn—O2xii101.06 (8)
O1—Ca—O3i88.70 (5)O1iii—Zn—O1v96.72 (5)
O2viii—Ca—O3viii109.08 (5)O1xi—Zn—O1v83.54 (6)
O2i—Ca—O3viii87.56 (5)O2iv—Zn—O1v168.23 (6)
O1ix—Ca—O3viii88.70 (5)O2xii—Zn—O1v89.43 (5)
O1—Ca—O3viii160.73 (5)O1iii—Zn—O1xiii83.54 (6)
O3i—Ca—O3viii109.89 (6)O1xi—Zn—O1xiii96.72 (5)
O2viii—Ca—O3ii142.51 (5)O2iv—Zn—O1xiii89.43 (5)
O2i—Ca—O3ii65.31 (5)O2xii—Zn—O1xiii168.23 (6)
O1ix—Ca—O3ii133.36 (5)O1v—Zn—O1xiii80.68 (7)
O1—Ca—O3ii122.04 (4)O2—Ge—O1117.88 (7)
O3i—Ca—O3ii62.45 (2)O2—Ge—O3vi109.34 (7)
O3viii—Ca—O3ii65.85 (5)O1—Ge—O3vi112.92 (7)
O2viii—Ca—O3x65.31 (5)O2—Ge—O3vii101.81 (7)
O2i—Ca—O3x142.51 (5)O1—Ge—O3vii112.67 (6)
O1ix—Ca—O3x122.04 (5)O3vi—Ge—O3vii100.29 (5)
O1—Ca—O3x133.36 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y, z1/2; (viii) x1/2, y+1/2, z1/2; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1; (xi) x, y+1, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x, y+1, z+1/2.
(Cu10_9) top
Crystal data top
CaCu0.10Ge2O6Zn0.90F(000) = 648
Mr = 346.45Dx = 4.785 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.1706 (7) ÅCell parameters from 3154 reflections
b = 9.0196 (6) Åθ = 3.1–29.7°
c = 5.4346 (3) ŵ = 18.33 mm1
β = 105.2776 (7)°T = 293 K
V = 480.92 (5) Å3Isometric, colourless
Z = 40.13 × 0.12 × 0.10 mm
Data collection top
SMART APEX
diffractometer
649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
rotation, ω–scans at 4 different φ positionsθmax = 29.7°, θmin = 3.1°
Absorption correction: multi-scan
multiscan correction with APEX2 software (Bruker 2012)
h = 1313
Tmin = 0.10, Tmax = 0.16k = 1212
3154 measured reflectionsl = 77
660 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.021P)2 + 0.5946P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.039Δρmax = 0.49 e Å3
S = 1.24Δρmin = 0.90 e Å3
660 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0047 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.30373 (6)0.25000.00894 (12)
Zn0.00000.90820 (3)0.25000.00820 (10)0.9
Cu0.00000.90820 (3)0.25000.00820 (10)0.1
Ge0.28472 (2)0.09788 (2)0.22574 (4)0.00594 (9)
O10.10914 (14)0.09220 (13)0.1348 (3)0.0085 (3)
O20.36238 (13)0.26132 (14)0.3412 (3)0.0111 (3)
O30.35818 (12)0.02864 (15)0.9839 (2)0.0093 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0098 (2)0.0083 (2)0.0082 (2)0.0000.00141 (18)0.000
Zn0.00833 (17)0.00888 (17)0.00707 (17)0.0000.00146 (12)0.000
Cu0.00833 (17)0.00888 (17)0.00707 (17)0.0000.00146 (12)0.000
Ge0.00526 (13)0.00668 (12)0.00575 (12)0.00007 (5)0.00120 (8)0.00041 (6)
O10.0068 (6)0.0100 (6)0.0083 (6)0.0001 (4)0.0012 (5)0.0001 (4)
O20.0129 (6)0.0089 (6)0.0112 (6)0.0032 (5)0.0027 (5)0.0014 (5)
O30.0082 (6)0.0120 (6)0.0080 (6)0.0009 (4)0.0028 (5)0.0031 (4)
Geometric parameters (Å, º) top
Ca—O2i2.3663 (13)Zn—O2vii2.0798 (13)
Ca—O2ii2.3663 (13)Zn—O1viii2.0936 (14)
Ca—O1iii2.3728 (13)Zn—O1ix2.0936 (14)
Ca—O12.3728 (13)Zn—O1x2.1781 (13)
Ca—O3i2.6362 (13)Zn—O1xi2.1781 (13)
Ca—O3ii2.6362 (13)Ge—O21.7117 (13)
Ca—O3iv2.6809 (14)Ge—O11.7236 (14)
Ca—O3v2.6809 (14)Ge—O3xii1.7868 (12)
Zn—O2vi2.0798 (13)Ge—O3xiii1.8101 (13)
O2i—Ca—O2ii151.29 (7)O3i—Ca—O3v62.68 (2)
O2i—Ca—O1iii81.15 (5)O3ii—Ca—O3v65.85 (4)
O2ii—Ca—O1iii75.83 (5)O3iv—Ca—O3v81.66 (6)
O2i—Ca—O175.83 (5)O2vi—Zn—O2vii100.87 (8)
O2ii—Ca—O181.15 (5)O2vi—Zn—O1viii88.49 (5)
O1iii—Ca—O172.95 (6)O2vii—Zn—O1viii91.38 (5)
O2i—Ca—O3i109.36 (4)O2vi—Zn—O1ix91.38 (5)
O2ii—Ca—O3i87.30 (4)O2vii—Zn—O1ix88.49 (5)
O1iii—Ca—O3i88.89 (4)O1viii—Zn—O1ix179.81 (7)
O1—Ca—O3i160.36 (4)O2vi—Zn—O1x168.45 (5)
O2i—Ca—O3ii87.30 (4)O2vii—Zn—O1x89.48 (5)
O2ii—Ca—O3ii109.36 (4)O1viii—Zn—O1x96.44 (5)
O1iii—Ca—O3ii160.36 (4)O1ix—Zn—O1x83.71 (5)
O1—Ca—O3ii88.89 (4)O2vi—Zn—O1xi89.48 (5)
O3i—Ca—O3ii110.00 (6)O2vii—Zn—O1xi168.45 (5)
O2i—Ca—O3iv142.66 (5)O1viii—Zn—O1xi83.71 (5)
O2ii—Ca—O3iv65.18 (4)O1ix—Zn—O1xi96.44 (5)
O1iii—Ca—O3iv133.53 (4)O1x—Zn—O1xi80.73 (7)
O1—Ca—O3iv121.88 (4)O2—Ge—O1118.28 (6)
O3i—Ca—O3iv65.85 (4)O2—Ge—O3xii109.20 (6)
O3ii—Ca—O3iv62.68 (2)O1—Ge—O3xii112.41 (6)
O2i—Ca—O3v65.18 (4)O2—Ge—O3xiii101.68 (6)
O2ii—Ca—O3v142.66 (5)O1—Ge—O3xiii112.84 (6)
O1iii—Ca—O3v121.88 (4)O3xii—Ge—O3xiii100.52 (4)
O1—Ca—O3v133.53 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x1/2, y+1/2, z1; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z+1/2; (ix) x, y+1, z; (x) x, y+1, z; (xi) x, y+1, z+1/2; (xii) x, y, z1; (xiii) x, y, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds