Download citation
Download citation
link to html
The crystal structure of Bacillus amyloliquefaciens α-amylase (BAA) at 1.4 Å resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family. The final model of BAA is composed of two molecules in a back-to-back orientation, which is likely to be a consequence of crystal packing. Despite a high degree of identity, comparison of the structure of BAA with those of other liquefying-type α-amylases indicated moderate discrepancies at the secondary-structural level. Moreover, a domain-displacement survey using anisotropic B-factor and domain-motion analyses implied a significant con­tribution of domain B to the total flexibility of BAA, while visual inspection of the structure superimposed with that of B. licheniformis α-amylase (BLA) indicated higher flexibility of the latter in the central domain A. Therefore, it is suggested that domain B may play an important role in liquefying α-­amylases, as its rigidity offers a substantial improvement in thermostability in BLA compared with BAA.

Supporting information

PDB reference: Bacillus amyloliquefaciens α-amylase, 3bh4


Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds