Download citation
Download citation
link to html
The use of small-angle X-ray scattering (SAXS) in combination with molecular dynamics simulation is hampered by its heavy computational cost. The calculation of SAXS from atomic structures can be speeded up by using a coarse-grain representation of the structure. Following the work of Niebling, Björling & Westenhoff [J. Appl. Cryst. (2014), 47, 1190–1198], the Martini bead form factors for nucleic acids have been derived and then implemented, together with those previously determined for proteins, in the publicly available PLUMED library. A hybrid multi-resolution strategy has also been implemented to perform SAXS restrained simulations at atomic resolution by calculating the virtual positions of the Martini beads on the fly and using them for the calculation of SAXS. The accuracy and efficiency of the method are demonstrated by refining the structure of two protein–nucleic acid complexes. Instrumental for this result is the use of metainference, which allows the consideration and alleviation of the approximations at play in the present SAXS calculations.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576719002450/vg5105sup1.pdf
Additional theory, analysis, tables and figures


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds