Download citation
Download citation
link to html
Quantitative nondestructive imaging of structural properties of semiconductor layer stacks at the nanoscale is essential for tailoring the device characteristics of many low-dimensional quantum structures, such as ultrafast transistors, solid state lasers and detectors. Here it is shown that scanning nanodiffraction of synchrotron X-ray radiation can unravel the three-dimensional structure of epitaxial crystals containing a periodic superlattice underneath their faceted surface. By mapping reciprocal space in all three dimensions, the superlattice period is determined across the various crystal facets and the very high crystalline quality of the structures is demonstrated. It is shown that the presence of the superlattice allows the reconstruction of the crystal shape without the need of any structural model.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds