research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-1-(ferrocenylethyn­yl)-10-(phenyl­imino)­anthracen-9(10H)-one from synchrotron X-ray powder diffraction

aDivision of Physics, Faculty of Pure and Applied Sciences, Center for Integrated Research in Fundamental Science and Engineering, Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, bDepartment of Information and Biological Sciences, Nagoya City University, Nagoya 467-8501, Japan, cJapan Synchrotron Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and dDepartment of Chemistry, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
*Correspondence e-mail: nishibori.eiji.ga@u.tsukuba.ac.jp

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 24 October 2014; accepted 17 November 2014; online 26 November 2014)

In the title compound, [Fe(C5H5)(C27H16NO)], designed and synthesized to explore a new electron-donor (D) and -acceptor (A) conjugated complex, the two cyclo­penta­dienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°. In the crystal, mol­ecules are paired into inversion dimers via ππ inter­actions. Weak inter­molecular C—H⋯π inter­actions link further these dimers into one-dimensional columns along the b axis, with the ferrocenylethynyl arms arranged between the stacks to fill the voids.

1. Chemical context

Compounds containing a mixture of electron-donor (D) and -acceptor (A) mol­ecules have attracted much attention owing to their unique structures and various characteristic properties (Alberola et al., 2003[Alberola, A., Coronado, E., Galán-Mascarós, J. R., Giménez-Saiz, C. & Gómez-García, C. J. (2003). J. Am. Chem. Soc. 125, 10774-10775.]; Ferraris et al., 1973[Ferraris, J., Cowan, D. O., Walatka, V. Jr & Perlstein, J. H. (1973). J. Am. Chem. Soc. 95, 948-949.]). D–A-conjugated complexes of ferrocenylethynylanthra­quinones (FcAq) demonstrate guest-mol­ecule absorption and valence tautomerization etc. We have synthesized the title compound 1-(ferrocenylethyn­yl)-10-(phenyl­imino)­anthracen-9(10H)-one [1-(Fc)AqPHI] and herein we report its crystal structure, determined by synchrotron radiation (SR) X-ray powder diffraction.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of 1-(Fc)AqPHI, which contains two five-membered and four six-membered carbon rings. The two cyclo­penta­dienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation, and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of 1-FcAqPHI, showing the atomic numbering and 50% probability displacement spheres.

3. Supra­molecular features

In the crystal (Fig. 2[link]), ππ inter­actions (Table 1[link]) between the Aq parts of the mol­ecules pair them into inversion dimers, and weak inter­molecular C—H⋯π inter­actions (Table 2[link]) link further these dimers into one-dimensional columns along the b axis, with the ferrocenylethynyl arms arranged between the stacks to fill the voids.

Table 1
ππ inter­actions (Å)

Cg1 is the centroid of the C9–C14 ring and Cg1_Perp is the perpendicular distance from Cg1i to the C9–C14 ring.

Cg1⋯Cg1i Cg1_Perpi
3.802 (3) 3.486 (2)
Symmetry code: (i) −x, −y + 1, −z + 2.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H56⋯Cg1i 0.87 (1) 2.86 (1) 3.588 (4) 143 (1)
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing of 1-FcAqPHI. The ππ and C—H⋯π contacts are shown as dotted and dashed lines, respectively.

4. Database survey

In the reported examples compiled in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) of Fc-Aq compounds, 1,4-Fc2Aq (Kondo et al., 2006[Kondo, M., Murata, M., Nishihara, H., Nishibori, E., Aoyagi, S., Yoshida, M., Kinoshita, Y. & Sakata, M. (2006). Angew. Chem. Int. Ed. 45, 5461-5464.]), 1,5-Fc2Aq (Murata et al., 2001[Murata, M., Yamada, M., Fujita, T., Kojima, K., Kurihara, M., Kubo, K., Kobayashi, Y. & Nishihara, H. (2001). J. Am. Chem. Soc. 123, 12903-12904.]) and 1,4-(FcPh)2Aq (Sachiko et al., 2013[Sachiko, M., Nishibori, E., Aoyagi, S., Sakata, M., Takata, M., Kondo, M., Murata, M., Sakamoto, R. & Nishihara, H. (2013). Acta Cryst. C69, 696-703.]), the cyclo­penta­dienyl (CP) rings have an eclipsed conformation except for only in one low-temperature phase of 1,4-(FcPh)2Aq. Similar ππ stacking interactions were observed in the other FcAq compounds, viz. 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq. Distances between the ring centroids cover the range from 4.09 Å in 1,4 Fc2Aq down to 3.68 Å in 1,2-(FcPh)2Aq. The smallest perpendicular distance for all the materials was close to 3.45 Å [3.45, 3.43 and 3.42 Å for 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq, respectively]. C—H⋯π inter­actions are also found in 1,4-Fc2Aq, 1,5-Fc2Aq and 1,2-(FcPh)2Aq. Two kinds of C—H⋯π inter­actions in 1,4-Fc2Aq connect the CP rings and the rings of the Aq groups of neighbouring mol­ecules. A C—H⋯π inter­action in 1,5-Fc2Aq links a CH– group from the Aq unit and a CP ring of Fc fragment. There are three C—H⋯π inter­actions in 1,2-(FcPh)2Aq.

5. Synthesis and crystallization

Under a nitro­gen atmosphere, 1-bromo-10-(phenyl­imino)­anthracen-9(10H)-one (89 mg, 0.24 mmol), ethynylferrocene (47 mg, 0.22 mmol), Pd(PPh3)2Cl2 (3.1 mg), and CuI (5 mg) were suspended in Et3N (15 ml). After refluxing for 5 h, Et3N was removed in vacuo, and the resultant residue was dissolved in CH2Cl2. The solution was washed with water (150 ml), and dried over Na2SO4. After evaporation of the solvent, the crude product was purified with alumina column chromatography (activity II–III) with a mixture of di­chloro­methane and hexane (1:2 v/v) as eluent. The third fraction was collected, and produced a red–brown solid of the title compound (yield: 30 mg, 33%). Very small single crystals unsuitable for conventional X-ray structure analysis were obtained by recrystallization from di­chloro­methane–hexane. 1H NMR (400 MHz, CDCl3): δ 8.1–8.5 (m, 2H), 7.0–7.9 (m, 8H), 6.80 (d, 2H), 4.1–4.8 (m, 9H). IR (KBr pellet): 2208 (ν C=C/ cm−1), 1668 (ν C=O/ cm−1), 1483 (ν C=N/ cm−1). MALDI–TOF–MS: m/z = 490.1.

6. Refinement details

The size of 1-(Fc)AqPHI crystals was small, less than 1 µm. SR powder-diffraction techniques were employed for the structure determination. The powder crystallites were installed in a 0.4 mm glass capillary. The X-ray powder diffraction data were measured using a large Debye–Scherrer camera with an imaging-plate (IP) as a detector installed at SPring-8 BL02B2 (Nishibori et al., 2001[Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. & Ikeda, N. (2001). Nucl. Instrum. Methods Phys. Res. A, 467, 1045-1048.]). The CeO2 (NIST SRM674a) standard powder sample was used for wavelength calibration. The calibrated wavelength was 0.80200 (1) Å. The powder profile was measured at 100 K with 120 min X-ray exposure time.

Indexing was carried out using the program DICVOL04 (Boultif & Louer, 2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]). The first 21 peaks of the powder pattern were completely indexed on the basis of a monoclinic cell. The figure of merit F(21) was 63.2. The space group P21/n was assigned on the basis of systematic extinctions.

The lattice constants were refined by the Le Bail method using the program SP (Nishibori et al., 2007[Nishibori, E., Sunaoshi, E., Yoshida, A., Aoyagi, S., Kato, K., Takata, M. & Sakata, M. (2007). Acta Cryst. A63, 43-52.]). The crystal structure was determined from powder diffraction data using a direct-space method with a genetic algorithm (Harris et al., 1998[Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. (1998). Acta Cryst. A54, 632-645.]; Nishibori et al., 2008[Nishibori, E., Ogura, T., Aoyagi, S. & Sakata, M. (2008). J. Appl. Cryst. 41, 292-301.]). The mol­ecular structure model for GA was constructed using similar structures, 1,4-Fc2Aq, 1,5-Fc2Aq, and 1,8-Fc2Aq (Kondo et al., 2006[Kondo, M., Murata, M., Nishihara, H., Nishibori, E., Aoyagi, S., Yoshida, M., Kinoshita, Y. & Sakata, M. (2006). Angew. Chem. Int. Ed. 45, 5461-5464.], Murata et al., 2001[Murata, M., Yamada, M., Fujita, T., Kojima, K., Kurihara, M., Kubo, K., Kobayashi, Y. & Nishihara, H. (2001). J. Am. Chem. Soc. 123, 12903-12904.]). The chemically equivalent distances were equal in the model. GA analysis using the P21/n space group was performed. A solution was obtained. The rigid-body Rietveld refinement was initially carried out using the program SP. Restraint Rietveld analysis was employed for the final refinement, with chemically equivalent distances being equal. Displacement parameters were refined as isotropic. Four common Uiso parameters were refined for several groups of C atoms in the Aq fragment: C1–C14, phenyl ring C19–C24, and CP rings C25–C29 and C30–C34. One common Uiso parameter was also refined for carbon atoms at the DA junction (C17 and C18). Uiso for H atoms connected to the Aq and Ph parts were fixed at 0.05 Å2. Uiso for H atoms connected to the C25–C29 and C30–C34 CP rings were fixed at 0.09 Å2 and 0.04 Å2, respectively. A split-type pseudo-Voigt profile function (Toraya, 1990[Toraya, H. (1990). J. Appl. Cryst. 23, 485-491.]) was used with strain broadening (Stephens, 1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). Results of the Rietveld refinements are shown in Fig. 3[link]. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C27H16NO)]
Mr 491.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 15.9542 (3), 8.5087 (2), 16.7212 (4)
β (°) 99.070 (2)
V3) 2241.51 (9)
Z 4
Radiation type Synchrotron, λ = 0.80200 Å
μ (mm−1) 0.96
Specimen shape, size (mm) Cylinder, 3.0 × 0.4
 
Data collection
Diffractometer Large Debye–Scherrer camera
Specimen mounting Capillary
Data collection mode Transmission
Scan method Stationary detector
2θ values (°) 2θfixed = 0.01–78.68
 
Refinement
R factors and goodness of fit Rp = 0.010, Rwp = 0.020, Rexp = 0.01, RBragg = 0.061, R(F) = 0.040, R(F2) = 0.061, χ2 = 6.554
No. of data points 7868
No. of parameters 180
No. of restraints 241
H-atom treatment All H-atom parameters refined
Computer programs: local software (Nishibori et al., 2001[Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. & Ikeda, N. (2001). Nucl. Instrum. Methods Phys. Res. A, 467, 1045-1048.]), SP (Nishibori et al., 2007[Nishibori, E., Sunaoshi, E., Yoshida, A., Aoyagi, S., Kato, K., Takata, M. & Sakata, M. (2007). Acta Cryst. A63, 43-52.]), GAIA (Nishibori et al., 2008[Nishibori, E., Ogura, T., Aoyagi, S. & Sakata, M. (2008). J. Appl. Cryst. 41, 292-301.]), pyMOL (DeLano, 2002[DeLano, W. L. (2002). The pyMOL Molecular Graphics System. http://www.pyMOL.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
The fitting results of the final Rietveld refinement. The experimental profile is indicated by red crosses. The calculated profile is shown as a solid blue line, and the cyan line indicates the calculated background. The difference profile is shown as the bottom solid green line. The vertical black bars correspond to the calculated positions of the Bragg peaks.

Supporting information


Chemical context top

Compounds containing a mixture of electron-donor (D) and -acceptor (A) molecules have attracted much attention owing to their unique structures and various characteristic properties (Alberola et al., 2003; Ferraris et al., 1973). D–A-conjugated complexes of ferrocenylethynylanthra­quinones (FcAq) demonstrate guest-molecule absorption and valence tautomerization etc. We synthesized the title compound 1-(ferrocenylethynyl)-10-(phenyl­imino)­anthracen-9(10H)-one [1-(Fc)AqPHI] and herein we report its crystal structure determined by synchrotron radiation (SR) X-ray powder diffraction.

Structural commentary top

Fig. 1 shows the molecular structure of 1-(Fc)AqPHI, which contains two five-membered and four six-membered carbon rings. The two cyclo­penta­dienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation, and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°.

Supra­molecular features top

In the crystal (Fig. 2), ππ inter­actions (Table 1) between Aq parts of the molecules pair them into inversion dimers, and weak inter­molecular C—H···π inter­actions (Table 2) link further these dimers into one-dimensional columns along the b axis with the ferrocenylethynyl arms arranged between the stacks to fill the voids.

Database survey top

In the reported examples (Groom & Allen, 2014) of Fc—Aq compounds, 1,4-Fc2Aq (Kondo et al., 2006), 1,5-Fc2Aq (Murata et al., 2001) and 1,4-(FcPh)2Aq (Maki et al., 2013), the cyclo­penta­dienyl (CP) rings have an eclipsed conformation except for only one low-temperature phase of 1,4-(FcPh)2Aq. Similar π stacking was observed in the other FcAq compounds, viz. 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq. Distances between the ring centroids cover the range from 4.09 Å in 1,4 Fc2Aq down to 3.68 Å in 1,2-(FcPh)2Aq. The smallest perpendicular distance for all the materials was close to 3.45 Å [3.45, 3.43 and 3.42 Å for 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq, respectively]. C—H···π inter­actions were also found in 1,4-Fc2Aq, 1,5-Fc2Aq and 1,2-(FcPh)2Aq. Two kinds of C—H···π inter­actions in 1,4-Fc2Aq connect the CP rings and the rings of the Aq groups of neighbouring molecules. A C—H···π inter­action in 1,5-Fc2Aq links a CH– group from the Aq unit and a CP ring of Fc fragment. There are three C—H···π inter­actions in 1,2-(FcPh)2Aq.

Synthesis and crystallization top

Under a nitro­gen atmosphere, 1-bromo-10-(phenyl­imino)­anthracen-9(10H)-one (89 mg, 0.24 mmol), ethynylferrocene (47 mg, 0.22 mmol), Pd(PPh3)2Cl2 (3.1 mg), and CuI (5 mg) were suspended in Et3N (15 ml). After refluxing for 5 h, Et3N was removed in vacuo, and the resultant residue was dissolved in CH2Cl2. The solution was washed with water (150 ml), and dried over Na2SO4. After evaporation of the solvent, the crude product was purified with aluminum column chromatography (activity II–III) with a mixture of di­chloro­methane and hexane (1:2 v/v) as eluent. The third fraction was collected, and produced a red–brown solid of the title compound (yield: 30 mg, 33%). Single crystals suitable for X-ray structure analysis were obtained by recrystallization from di­chloro­methane–hexane. 1H NMR (400 MHz, CDCl3): δ 8.1–8.5 (m, 2H), 7.0–7.9 (m, 8H), 6.80 (d, 2H), 4.1–4.8 (m, 9H). IR (KBr pellet): 2208 (ν CC/ cm-1), 1668 (ν CO/ cm-1), 1483 (ν CN/ cm-1). MALDI–TOF–MS: m/z = 490.1.

Refinement details top

The size of 1-(Fc)AqPHI crystals was small, less than 1 µm. SR powder-diffraction technique was employed for the structure determination. The powder crystallites were installed in a 0.4 mm glass capillary. The X-ray powder diffraction data were measured using a large Debye–Scherrer camera with an imaging-plate (IP) as a detector installed at SPring-8 BL02B2 (Nishibori et al., 2001). The CeO2 (NIST SRM674a) standard powder sample was used for wavelength calibration. The calibrated wavelength was 0.80200 (1) Å. We measured the powder profile at 100K with 120 minutes X-ray exposure time.

Indexing was carried out using the program DICVOL04 (Boultif & Louer, 2004). The first 21 peaks of the powder pattern were completely indexed on the basis of a monoclinic cell. The figure of merit F(21) was 63.2. The space group P21/n was assigned on the basis of systematic extinctions.

The lattice constants were refined by the Le Bail method using the program SP (Nishibori et al., 2007). The crystal structure was determined from powder diffraction data using a direct-space method with a genetic algorithm (Harris et al., 1998; Nishibori et al., 2008). The molecular structure model for GA was constructed using similar structures, 1,4-Fc2Aq, 1,5-Fc2Aq, and 1,8-Fc2Aq (Kondo et al., 2006, Murata et al., 2001). The chemically equivalent distances were equal in the model. GA analysis using the P21/n space group was performed. A solution was obtained. The rigid-body Rietveld refinement was initially carried out using the program SP. Restraint Rietveld analysis was employed for the final refinement. In the analysis, chemically equivalent distances restrained to be equal. Thermal displacement parameters were refined as isotoric. Four common Uiso parameters were refined for several groups of carbon atoms in the Aq fragment: (C1–C14), phenyl ring (C19–C24), and CP rings (C25–C29 and C30–C34). One common Uiso parameter was also refined for carbon atoms at the DA junction (C17 and C18). Uiso for H atoms connected to the Aq and Ph parts were fixed at 0.05 Å2. Uiso for H atoms connected to the C25–C29 and C30–C34 CP rings were fixed at 0.09 Å2 and 0.04 Å2, respectively. The split-type pseudo-Voigt profile function (Toraya, 1990) was used with strain broadening (Stephens, 1999). Results of the Rietveld refinements are shown in Fig. 3. Crystal data, data collection and structure refinement details are summarized in Table 3.

Related literature top

For related literature, see: Alberola et al. (2003); Boultif & Louer (2004); Ferraris et al. (1973); Kondo et al. (2006); Murata et al. (2001); Maki et al. (2013); Harris et al. (1998); Nishibori et al. (2007); Nishibori et al. (2001); Nishibori et al. (2008); Stephens (1999); Toraya (1990); Groom & Allen (2014).

Computing details top

Data collection: local software (Nishibori et al., 2001); cell refinement: SP (Nishibori et al., 2007); program(s) used to solve structure: GAIA (Nishibori et al., 2008); program(s) used to refine structure: SP (Nishibori et al., 2007); molecular graphics: pyMOL (DeLano, 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of 1-FcAqPHI, showing the atomic numbering and 50% probability displacement spheres.

The crystal packing of 1-FcAqPHI. The ππ and C—H···π contacts are shown as dotted and dashed lines, respectively.

The fitting results of the final Rietveld refinement. The experimental profile is indicated by red crosses. The calculated profile is shown as a solid blue line, and the cyan line indicates the calculated background. The difference profile is shown as the bottom solid green line. The vertical black bars correspond to the calculated positions of the Bragg peaks.
(Z)-1-(Ferrocenylethynyl)-10-(phenylimino)anthracen-9(10H)-one top
Crystal data top
[Fe(C5H5)(C27H16NO)]Z = 4
Mr = 491.35F(000) = 1016.0
Monoclinic, P21/nDx = 1.456 Mg m3
Hall symbol: -P 2ynSynchrotron radiation, λ = 0.80200 Å
a = 15.9542 (3) ŵ = 0.96 mm1
b = 8.5087 (2) ÅT = 100 K
c = 16.7212 (4) Åorange
β = 99.070 (2)°cylinder, 3 × 0.4 mm
V = 2241.51 (9) Å3
Data collection top
Large Debye-Scherrer camera
diffractometer
Data collection mode: transmission
Radiation source: synchrotron, SPring-8 BL02B2Scan method: Stationary detector
Si(111) monochromator2θfixed = 0.01-78.68
Specimen mounting: capillary
Refinement top
Refinement on InetExcluded region(s): none
Least-squares matrix: fullProfile function: split-Pseudo-Voigt
Rp = 0.010180 parameters
Rwp = 0.020241 restraints
Rexp = 0.010 constraints
RBragg = 0.061All H-atom parameters refined
R(F) = 0.040Weighting scheme based on measured s.u.'s
R(F2) = 0.061(Δ/σ)max = 0.02
χ2 = 6.554Background function: split-Pearson7 and polynomial function
7868 data pointsPreferred orientation correction: none
Crystal data top
[Fe(C5H5)(C27H16NO)]V = 2241.51 (9) Å3
Mr = 491.35Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.80200 Å
a = 15.9542 (3) ŵ = 0.96 mm1
b = 8.5087 (2) ÅT = 100 K
c = 16.7212 (4) Åcylinder, 3 × 0.4 mm
β = 99.070 (2)°
Data collection top
Large Debye-Scherrer camera
diffractometer
Scan method: Stationary detector
Specimen mounting: capillary2θfixed = 0.01-78.68
Data collection mode: transmission
Refinement top
Rp = 0.010χ2 = 6.554
Rwp = 0.0207868 data points
Rexp = 0.01180 parameters
RBragg = 0.061241 restraints
R(F) = 0.040All H-atom parameters refined
R(F2) = 0.061
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1031 (3)0.0140 (6)0.7090 (2)0.062 (6)*
C20.0713 (4)0.1155 (7)0.7483 (2)0.062 (6)*
C30.0924 (2)0.1347 (4)0.8333 (2)0.062 (6)*
C40.1447 (2)0.0262 (4)0.8777 (2)0.062 (6)*
C50.1856 (2)0.0903 (4)0.8380 (2)0.062 (6)*
C60.1675 (4)0.1075 (6)0.7529 (3)0.062 (6)*
C70.1611 (2)0.0357 (5)0.9640 (2)0.062 (6)*
C80.0473 (2)0.2547 (3)0.8772 (2)0.062 (6)*
C90.0113 (4)0.2770 (7)1.0844 (2)0.062 (6)*
C100.0154 (3)0.2981 (7)1.0026 (3)0.062 (6)*
C110.0441 (3)0.2287 (4)0.9646 (2)0.062 (6)*
C120.0980 (2)0.1093 (5)1.0053 (2)0.062 (6)*
C130.1014 (4)0.0866 (7)1.0862 (2)0.062 (6)*
C140.0459 (5)0.165 (1)1.1260 (2)0.062 (6)*
O150.2135 (3)0.0534 (6)1.0027 (2)0.125 (6)*
N160.0023 (3)0.3603 (5)0.8385 (3)0.009 (5)*
C170.2217 (3)0.2172 (6)0.8904 (3)0.20 (1)*
C180.2734 (2)0.3221 (5)0.9182 (2)0.23 (1)*
C190.0064 (2)0.4110 (3)0.7568 (2)0.025 (6)*
C200.0868 (2)0.4571 (8)0.7408 (3)0.025 (6)*
C210.0943 (3)0.5259 (9)0.6656 (4)0.025 (6)*
C220.0209 (4)0.562 (1)0.6101 (3)0.025 (6)*
C230.0599 (3)0.530 (1)0.6298 (3)0.025 (6)*
C240.0669 (2)0.4640 (8)0.7053 (3)0.025 (6)*
C250.3354 (2)0.7069 (3)1.0118 (2)0.062 (8)*
C260.4075 (1)0.6142 (3)1.0390 (2)0.062 (8)*
C270.3895 (1)0.4585 (4)1.0129 (2)0.062 (8)*
C280.3061 (1)0.4548 (4)0.9695 (2)0.062 (8)*
C290.2727 (2)0.6084 (4)0.9689 (1)0.062 (8)*
C300.2582 (2)0.6324 (4)1.1771 (2)0.060 (9)*
C310.3326 (2)0.5478 (5)1.2063 (1)0.060 (9)*
C320.3193 (2)0.3895 (4)1.1825 (2)0.060 (9)*
C330.2366 (2)0.3765 (4)1.1386 (2)0.060 (9)*
C340.1988 (1)0.5266 (4)1.1354 (2)0.060 (9)*
FE350.3053 (1)0.5312 (2)1.0845 (1)0.0324 (5)*
H360.0822 (5)0.0379 (8)0.6558 (2)0.05*
H370.0391 (6)0.1912 (9)0.7173 (2)0.05*
H380.1931 (8)0.186 (1)0.7267 (3)0.05*
H390.045 (1)0.339 (2)1.1130 (5)0.05*
H400.0511 (6)0.375 (1)0.9759 (4)0.05*
H410.1469 (7)0.032 (2)1.1154 (3)0.05*
H420.045 (3)0.144 (5)1.180 (1)0.05*
H430.1333 (3)0.456 (2)0.7821 (4)0.05*
H440.1475 (3)0.554 (2)0.6542 (7)0.05*
H450.0260 (5)0.596 (3)0.5582 (5)0.05*
H460.1083 (4)0.563 (3)0.5956 (6)0.05*
H470.1190 (2)0.463 (2)0.7233 (5)0.05*
H480.3304 (3)0.8071 (3)1.0202 (3)0.09*
H490.4548 (2)0.6471 (4)1.0672 (2)0.09*
H500.4237 (1)0.3786 (4)1.0220 (3)0.09*
H510.2223 (2)0.6373 (5)0.9461 (2)0.09*
H520.2505 (2)0.7326 (4)1.1834 (2)0.04*
H530.3788 (2)0.5865 (6)1.2337 (1)0.04*
H540.3555 (3)0.3131 (4)1.1935 (2)0.04*
H550.2131 (2)0.2910 (4)1.1170 (2)0.04*
H560.1479 (1)0.5501 (5)1.1113 (2)0.04*
Geometric parameters (Å, º) top
Fe35—C252.032 (3)C21—C221.409 (8)
Fe35—C262.032 (3)C22—C231.407 (8)
Fe35—C272.032 (3)C23—C241.402 (8)
Fe35—C282.032 (4)C25—C261.410 (4)
Fe35—C292.030 (3)C25—C291.411 (4)
Fe35—C302.018 (4)C26—C271.410 (4)
Fe35—C312.019 (2)C27—C281.412 (3)
Fe35—C322.018 (4)C28—C291.411 (5)
Fe35—C332.016 (4)C30—C311.408 (5)
Fe35—C342.017 (3)C30—C341.409 (4)
O15—C71.234 (6)C31—C321.411 (5)
N16—C81.300 (5)C32—C331.410 (5)
N16—C191.460 (6)C33—C341.410 (5)
C1—C21.417 (7)C1—H360.922 (5)
C1—C61.411 (7)C2—H370.929 (9)
C2—C31.418 (5)C6—H380.928 (11)
C3—C41.380 (5)C9—H390.937 (16)
C3—C81.505 (4)C10—H400.934 (10)
C4—C51.409 (5)C13—H410.932 (13)
C4—C71.428 (5)C14—H420.923 (19)
C5—C61.414 (6)C20—H430.931 (7)
C5—C171.451 (6)C21—H440.930 (9)
C7—C121.450 (5)C22—H450.930 (13)
C8—C111.487 (5)C23—H460.929 (12)
C9—C101.371 (6)C24—H470.928 (5)
C9—C141.423 (9)C25—H480.870 (4)
C10—C111.358 (7)C26—H490.871 (4)
C11—C121.432 (5)C27—H500.870 (4)
C12—C131.359 (5)C29—H510.869 (4)
C13—C141.363 (9)C30—H520.870 (5)
C17—C181.254 (6)C31—H530.869 (4)
C18—C281.464 (5)C32—H540.870 (5)
C19—C201.407 (5)C33—H550.870 (5)
C19—C241.413 (5)C34—H560.871 (3)
C20—C211.409 (9)
C25—Fe35—C2640.60 (12)Fe35—C25—C2669.70 (16)
C25—Fe35—C2768.34 (14)Fe35—C25—C2969.61 (16)
C25—Fe35—C2868.40 (14)C26—C25—C29108.0 (2)
C25—Fe35—C2940.66 (13)Fe35—C26—C2569.70 (15)
C25—Fe35—C30107.27 (15)Fe35—C26—C2769.70 (13)
C25—Fe35—C31121.22 (17)C25—C26—C27108.1 (2)
C25—Fe35—C32156.79 (16)Fe35—C27—C2669.69 (16)
C25—Fe35—C33160.98 (16)Fe35—C27—C2869.67 (15)
C25—Fe35—C34124.13 (15)C26—C27—C28108.0 (3)
C26—Fe35—C2740.61 (12)Fe35—C28—C18138.3 (2)
C26—Fe35—C2868.39 (12)Fe35—C28—C2769.66 (19)
C26—Fe35—C2968.36 (13)Fe35—C28—C2969.61 (16)
C26—Fe35—C30123.85 (15)C18—C28—C27122.6 (3)
C26—Fe35—C31107.17 (15)C18—C28—C29127.7 (3)
C26—Fe35—C32121.27 (15)C27—C28—C29107.9 (3)
C26—Fe35—C33156.95 (15)Fe35—C29—C2569.73 (15)
C26—Fe35—C34160.72 (15)Fe35—C29—C2869.74 (18)
C27—Fe35—C2840.67 (10)C25—C29—C28108.1 (2)
C27—Fe35—C2968.37 (14)Fe35—C30—C3169.66 (17)
C27—Fe35—C30160.57 (15)Fe35—C30—C3469.54 (18)
C27—Fe35—C31123.92 (15)C31—C30—C34108.0 (3)
C27—Fe35—C32107.32 (15)Fe35—C31—C3069.52 (16)
C27—Fe35—C33121.49 (16)Fe35—C31—C3269.50 (17)
C27—Fe35—C34157.21 (16)C30—C31—C32108.0 (3)
C28—Fe35—C2940.65 (13)Fe35—C32—C3169.59 (17)
C28—Fe35—C30157.16 (14)Fe35—C32—C3369.5 (2)
C28—Fe35—C31160.80 (16)C31—C32—C33108.0 (3)
C28—Fe35—C32124.12 (16)Fe35—C33—C3269.6 (2)
C28—Fe35—C33107.50 (15)Fe35—C33—C3469.58 (17)
C28—Fe35—C34121.64 (13)C32—C33—C34108.0 (3)
C29—Fe35—C30121.48 (15)Fe35—C34—C3069.57 (16)
C29—Fe35—C31156.90 (18)Fe35—C34—C3369.50 (17)
C29—Fe35—C32160.96 (16)C30—C34—C33108.0 (2)
C29—Fe35—C33124.24 (15)C2—C1—H36121.2 (6)
C29—Fe35—C34107.56 (15)C6—C1—H36120.0 (7)
C30—Fe35—C3140.83 (14)C1—C2—H37119.2 (5)
C30—Fe35—C3268.83 (14)C3—C2—H37120.2 (6)
C30—Fe35—C3368.88 (14)C1—C6—H38119.9 (7)
C30—Fe35—C3440.89 (14)C5—C6—H38120.9 (7)
C31—Fe35—C3240.91 (16)C10—C9—H39119.7 (9)
C31—Fe35—C3368.85 (15)C14—C9—H39120.2 (8)
C31—Fe35—C3468.77 (14)C9—C10—H40119.9 (7)
C32—Fe35—C3340.90 (14)C11—C10—H40120.0 (7)
C32—Fe35—C3468.81 (14)C12—C13—H41119.8 (7)
C33—Fe35—C3440.92 (14)C14—C13—H41120.0 (6)
C8—N16—C19122.0 (4)C9—C14—H42120 (3)
C2—C1—C6118.8 (4)C13—C14—H42120 (3)
C1—C2—C3120.6 (4)C19—C20—H43120.0 (7)
C2—C3—C4119.4 (4)C21—C20—H43119.8 (7)
C2—C3—C8120.7 (4)C20—C21—H44119.9 (9)
C4—C3—C8119.1 (3)C22—C21—H44120.0 (10)
C3—C4—C5120.2 (3)C21—C22—H45119.8 (8)
C3—C4—C7120.3 (3)C23—C22—H45119.8 (8)
C5—C4—C7119.4 (3)C22—C23—H46120.1 (10)
C4—C5—C6120.7 (4)C24—C23—H46119.9 (8)
C4—C5—C17114.1 (3)C19—C24—H47119.8 (8)
C6—C5—C17122.0 (4)C23—C24—H47119.9 (8)
C1—C6—C5118.8 (4)Fe35—C25—H48126.0 (4)
O15—C7—C4119.8 (4)C26—C25—H48126.0 (5)
O15—C7—C12118.7 (3)C29—C25—H48126.1 (5)
C4—C7—C12118.4 (3)Fe35—C26—H49126.0 (4)
N16—C8—C3121.8 (3)C25—C26—H49126.0 (4)
N16—C8—C11118.7 (3)C27—C26—H49125.9 (3)
C3—C8—C11118.1 (3)Fe35—C27—H50126.1 (4)
C10—C9—C14120.1 (5)C26—C27—H50126.1 (3)
C9—C10—C11118.9 (5)C28—C27—H50125.9 (4)
C8—C11—C10122.0 (4)Fe35—C29—H51126.1 (3)
C8—C11—C12117.5 (3)C25—C29—H51126.0 (4)
C10—C11—C12119.9 (4)C28—C29—H51126.0 (4)
C7—C12—C11119.4 (3)Fe35—C30—H52126.0 (4)
C7—C12—C13119.4 (4)C31—C30—H52125.9 (4)
C11—C12—C13120.0 (4)C34—C30—H52126.1 (4)
C12—C13—C14119.3 (5)Fe35—C31—H53126.0 (3)
C9—C14—C13120.3 (4)C30—C31—H53126.0 (5)
C5—C17—C18158.2 (5)C32—C31—H53126.0 (5)
C17—C18—C28156.8 (4)Fe35—C32—H54127.1 (4)
N16—C19—C20119.0 (4)C31—C32—H54126.1 (4)
N16—C19—C24118.2 (3)C33—C32—H54126.0 (4)
C20—C19—C24119.2 (4)Fe35—C33—H55126.1 (4)
C19—C20—C21119.6 (4)C32—C33—H55126.0 (4)
C20—C21—C22120.0 (5)C34—C33—H55126.0 (4)
C21—C22—C23120.1 (5)Fe35—C34—H56125.9 (3)
C22—C23—C24119.6 (4)C30—C34—H56126.0 (4)
C19—C24—C23120.1 (3)C33—C34—H56126.0 (4)
C32—Fe35—C28—C2776.3 (2)C33—Fe35—C28—C181.7 (4)
C33—Fe35—C28—C27118.3 (2)C31—Fe35—C33—C3237.7 (2)
C34—Fe35—C28—C27160.8 (2)C34—Fe35—C33—C32119.3 (3)
C25—Fe35—C28—C2937.70 (18)C26—Fe35—C28—C2737.65 (18)
C26—Fe35—C28—C2981.52 (18)C29—Fe35—C28—C27119.2 (3)
C27—Fe35—C28—C29119.2 (3)C28—Fe35—C33—C34118.4 (2)
C30—Fe35—C28—C2945.6 (4)C34—Fe35—C31—C3281.7 (2)
C32—Fe35—C28—C29164.5 (2)C34—Fe35—C32—C3337.8 (2)
C33—Fe35—C28—C29122.6 (2)C30—Fe35—C33—C3281.6 (2)
C34—Fe35—C28—C2980.0 (2)C25—Fe35—C32—C3146.9 (5)
C25—Fe35—C32—C33166.3 (4)C26—Fe35—C32—C3180.0 (2)
C26—Fe35—C32—C33160.6 (2)C27—Fe35—C32—C31122.2 (2)
C27—Fe35—C32—C33118.4 (2)C28—Fe35—C32—C31163.74 (19)
C28—Fe35—C32—C3376.9 (2)C30—Fe35—C32—C3137.62 (19)
C30—Fe35—C32—C3381.8 (2)C33—Fe35—C32—C31119.4 (3)
C26—Fe35—C29—C2537.65 (17)C29—Fe35—C33—C32163.9 (2)
C27—Fe35—C29—C2581.50 (19)C28—Fe35—C34—C30160.4 (2)
C28—Fe35—C29—C25119.2 (2)C29—Fe35—C31—C32166.8 (4)
C30—Fe35—C29—C2579.7 (2)C26—Fe35—C33—C34165.8 (4)
C31—Fe35—C29—C2545.4 (5)C27—Fe35—C33—C34160.7 (2)
C33—Fe35—C29—C25164.3 (2)C27—Fe35—C34—C30166.1 (4)
C34—Fe35—C29—C25122.3 (2)C33—Fe35—C31—C3237.70 (19)
C25—Fe35—C29—C28119.2 (2)C30—Fe35—C31—C32119.5 (3)
C26—Fe35—C29—C2881.59 (16)C26—Fe35—C33—C3246.5 (5)
C27—Fe35—C29—C2837.74 (15)C27—Fe35—C33—C3280.0 (2)
C30—Fe35—C29—C28161.04 (18)C28—Fe35—C33—C32122.3 (2)
C31—Fe35—C29—C28164.7 (4)C25—Fe35—C34—C3076.4 (2)
C33—Fe35—C29—C2876.5 (2)C19—N16—C8—C324.2 (6)
C34—Fe35—C29—C28118.43 (18)C19—N16—C8—C11169.9 (3)
C25—Fe35—C30—C31118.1 (2)C8—N16—C19—C2050.6 (6)
C26—Fe35—C30—C3176.5 (3)C8—N16—C19—C24151.0 (5)
C28—Fe35—C30—C31166.7 (4)C6—C1—C2—C311.1 (8)
C29—Fe35—C30—C31160.2 (2)C2—C1—C6—C513.1 (8)
C32—Fe35—C30—C3137.7 (2)C1—C2—C3—C40.3 (7)
C33—Fe35—C30—C3181.7 (2)C1—C2—C3—C8169.3 (4)
C34—Fe35—C30—C31119.4 (3)C2—C3—C4—C58.3 (5)
C25—Fe35—C30—C34122.6 (2)C8—C3—C4—C75.0 (5)
C26—Fe35—C30—C34164.1 (2)C2—C3—C8—N1610.8 (6)
C28—Fe35—C30—C3447.4 (5)C4—C3—C8—N16179.6 (4)
C29—Fe35—C30—C3480.4 (2)C4—C3—C8—C1114.5 (5)
C31—Fe35—C30—C34119.4 (3)C2—C3—C8—C11155.2 (4)
C32—Fe35—C30—C3481.7 (2)C8—C3—C4—C5178.1 (3)
C33—Fe35—C30—C3437.68 (19)C2—C3—C4—C7174.8 (4)
C31—Fe35—C27—C28164.5 (2)C3—C4—C7—C1226.6 (5)
C32—Fe35—C27—C28122.6 (2)C5—C4—C7—O153.1 (6)
C33—Fe35—C27—C2880.1 (2)C3—C4—C7—O15173.8 (4)
C34—Fe35—C27—C2846.2 (5)C7—C4—C5—C1716.9 (5)
C29—Fe35—C34—C33122.4 (2)C5—C4—C7—C12156.5 (3)
C30—Fe35—C34—C33119.5 (3)C3—C4—C5—C17166.1 (3)
C25—Fe35—C31—C3080.2 (2)C3—C4—C5—C66.2 (5)
C26—Fe35—C31—C30122.3 (2)C7—C4—C5—C6176.9 (4)
C27—Fe35—C31—C30163.7 (2)C6—C5—C17—C1856.4 (14)
C29—Fe35—C31—C3047.3 (5)C4—C5—C17—C18143.9 (12)
C32—Fe35—C31—C30119.5 (3)C4—C5—C6—C14.8 (7)
C33—Fe35—C31—C3081.8 (2)C17—C5—C6—C1153.6 (4)
C34—Fe35—C31—C3037.7 (2)O15—C7—C12—C134.2 (7)
C25—Fe35—C31—C32160.3 (2)C4—C7—C12—C1128.5 (5)
C26—Fe35—C31—C32118.2 (2)O15—C7—C12—C11171.7 (4)
C27—Fe35—C31—C3276.8 (2)C4—C7—C12—C13164.0 (4)
C27—Fe35—C25—C2637.66 (17)C3—C8—C11—C10158.7 (4)
C28—Fe35—C25—C2681.56 (18)C3—C8—C11—C1212.2 (5)
C29—Fe35—C25—C26119.3 (3)N16—C8—C11—C107.8 (6)
C30—Fe35—C25—C26122.3 (2)N16—C8—C11—C12178.6 (4)
C31—Fe35—C25—C2679.8 (2)C14—C9—C10—C119.8 (9)
C32—Fe35—C25—C2645.8 (4)C10—C9—C14—C135.0 (10)
C34—Fe35—C25—C26164.0 (2)C9—C10—C11—C8175.8 (4)
C26—Fe35—C25—C29119.3 (3)C9—C10—C11—C1213.5 (7)
C27—Fe35—C25—C2981.59 (19)C8—C11—C12—C78.7 (5)
C28—Fe35—C25—C2937.69 (17)C10—C11—C12—C1312.8 (7)
C30—Fe35—C25—C29118.5 (2)C8—C11—C12—C13176.2 (4)
C31—Fe35—C25—C29160.9 (2)C10—C11—C12—C7179.8 (4)
C32—Fe35—C25—C29165.1 (4)C7—C12—C13—C14175.2 (6)
C34—Fe35—C25—C2976.7 (2)C11—C12—C13—C147.8 (8)
C34—Fe35—C32—C3181.6 (2)C12—C13—C14—C94.0 (10)
C29—Fe35—C27—C2837.7 (2)C5—C17—C18—C28173.5 (8)
C32—Fe35—C34—C3081.7 (2)C17—C18—C28—C2965.2 (11)
C33—Fe35—C34—C30119.5 (3)C17—C18—C28—Fe3536.7 (12)
C25—Fe35—C34—C33164.1 (2)C17—C18—C28—C27132.3 (9)
C31—Fe35—C32—C33119.4 (3)N16—C19—C20—C21171.6 (5)
C27—Fe35—C26—C25119.3 (3)N16—C19—C24—C23172.9 (5)
C28—Fe35—C26—C2581.6 (2)C24—C19—C20—C2113.4 (8)
C29—Fe35—C26—C2537.71 (18)C20—C19—C24—C2314.6 (8)
C30—Fe35—C26—C2576.5 (2)C19—C20—C21—C226.1 (10)
C31—Fe35—C26—C25118.2 (2)C20—C21—C22—C230.3 (11)
C32—Fe35—C26—C25160.7 (2)C21—C22—C23—C240.8 (12)
C33—Fe35—C26—C25165.6 (4)C22—C23—C24—C198.3 (10)
C25—Fe35—C26—C27119.3 (3)C26—C25—C29—Fe3559.4 (2)
C28—Fe35—C26—C2737.69 (18)Fe35—C25—C29—C2859.43 (19)
C29—Fe35—C26—C2781.6 (2)C29—C25—C26—C270.1 (3)
C30—Fe35—C26—C27164.2 (2)C26—C25—C29—C280.1 (3)
C31—Fe35—C26—C27122.5 (2)C29—C25—C26—Fe3559.3 (2)
C32—Fe35—C26—C2780.0 (2)Fe35—C25—C26—C2759.4 (2)
C33—Fe35—C26—C2746.3 (5)C25—C26—C27—C280.0 (3)
C29—Fe35—C33—C3476.8 (2)C25—C26—C27—Fe3559.4 (2)
C30—Fe35—C33—C3437.66 (19)Fe35—C26—C27—C2859.3 (2)
C31—Fe35—C33—C3481.6 (2)C26—C27—C28—C290.0 (3)
C25—Fe35—C27—C2637.65 (18)Fe35—C27—C28—C2959.3 (2)
C28—Fe35—C27—C26119.3 (3)Fe35—C27—C28—C18135.1 (3)
C29—Fe35—C27—C2681.6 (2)C26—C27—C28—Fe3559.4 (2)
C31—Fe35—C27—C2676.2 (2)C26—C27—C28—C18165.6 (3)
C32—Fe35—C27—C26118.1 (2)C27—C28—C29—Fe3559.4 (2)
C33—Fe35—C27—C26160.6 (2)C27—C28—C29—C250.1 (3)
C34—Fe35—C27—C26165.5 (4)C18—C28—C29—C25164.6 (3)
C25—Fe35—C27—C2881.6 (2)Fe35—C28—C29—C2559.42 (18)
C26—Fe35—C27—C28119.3 (3)C18—C28—C29—Fe35136.0 (3)
C29—Fe35—C34—C30118.1 (2)Fe35—C30—C31—C3259.0 (2)
C31—Fe35—C34—C3037.7 (2)C31—C30—C34—C330.2 (3)
C34—Fe35—C28—C1844.3 (4)Fe35—C30—C34—C3359.1 (2)
C25—Fe35—C28—C2781.5 (2)C31—C30—C34—Fe3559.2 (2)
C27—Fe35—C34—C3346.6 (5)C34—C30—C31—Fe3559.2 (2)
C28—Fe35—C34—C3380.1 (2)C34—C30—C31—C320.1 (3)
C30—Fe35—C28—C27164.7 (4)C30—C31—C32—C330.0 (3)
C31—Fe35—C34—C3381.8 (2)Fe35—C31—C32—C3359.1 (2)
C32—Fe35—C34—C3337.76 (19)C30—C31—C32—Fe3559.1 (2)
C32—Fe35—C33—C34119.3 (3)C31—C32—C33—C340.1 (4)
C25—Fe35—C28—C18162.0 (3)C31—C32—C33—Fe3559.1 (2)
C26—Fe35—C28—C18154.2 (3)Fe35—C32—C33—C3459.2 (2)
C27—Fe35—C28—C18116.6 (4)C32—C33—C34—C300.2 (4)
C29—Fe35—C28—C18124.3 (3)Fe35—C33—C34—C3059.1 (2)
C30—Fe35—C28—C1878.7 (6)C32—C33—C34—Fe3559.3 (2)
C32—Fe35—C28—C1840.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C34—H56···Cg1i0.87 (1)2.86 (1)3.588 (4)143 (1)
Symmetry code: (i) x, y1, z.
ππ interactions (Å) top
Cg1 is the centroid of the C9–C14 ring and Cg1_Perp is the perpendicular distance from Cg1i to the C9–C14 ring.
Cg1···Cg1iCg1_Perpi
3.802 (3)3.486 (2)
Symmetry code: (i) -x, -y + 1, -z + 2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C34—H56···Cg1i0.871 (3)2.855 (4)3.588 (4)142.9 (5)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C27H16NO)]
Mr491.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.9542 (3), 8.5087 (2), 16.7212 (4)
β (°) 99.070 (2)
V3)2241.51 (9)
Z4
Radiation typeSynchrotron, λ = 0.80200 Å
µ (mm1)0.96
Specimen shape, size (mm)Cylinder, 3 × 0.4
Data collection
DiffractometerLarge Debye-Scherrer camera
diffractometer
Specimen mountingCapillary
Data collection modeTransmission
Scan methodStationary detector
2θ values (°)2θfixed = 0.01-78.68
Refinement
R factors and goodness of fitRp = 0.010, Rwp = 0.020, Rexp = 0.01, RBragg = 0.061, R(F) = 0.040, R(F2) = 0.061, χ2 = 6.554
No. of data points7868
No. of parameters180
No. of restraints241
H-atom treatmentAll H-atom parameters refined

Computer programs: local software (Nishibori et al., 2001), SP (Nishibori et al., 2007), GAIA (Nishibori et al., 2008), pyMOL (DeLano, 2002), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Young Scientists (A) (No. 17686003), Scientific Research (B) (No. 20360006) and Challenging Exploratory Research (No. 25600148) of MEXT, Japan, for the partial support of the present study. We thank Mr Ryota Sato for experimental and analytical help. We also thank Dr J. E. Kim for experimental help. The synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI).

References

First citationAlberola, A., Coronado, E., Galán-Mascarós, J. R., Giménez-Saiz, C. & Gómez-García, C. J. (2003). J. Am. Chem. Soc. 125, 10774–10775.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeLano, W. L. (2002). The pyMOL Molecular Graphics System. http://www.pyMOL.org.  Google Scholar
First citationFerraris, J., Cowan, D. O., Walatka, V. Jr & Perlstein, J. H. (1973). J. Am. Chem. Soc. 95, 948–949.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHarris, K. D. M., Johnston, R. L. & Kariuki, B. M. (1998). Acta Cryst. A54, 632–645.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKondo, M., Murata, M., Nishihara, H., Nishibori, E., Aoyagi, S., Yoshida, M., Kinoshita, Y. & Sakata, M. (2006). Angew. Chem. Int. Ed. 45, 5461–5464.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurata, M., Yamada, M., Fujita, T., Kojima, K., Kurihara, M., Kubo, K., Kobayashi, Y. & Nishihara, H. (2001). J. Am. Chem. Soc. 123, 12903–12904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishibori, E., Ogura, T., Aoyagi, S. & Sakata, M. (2008). J. Appl. Cryst. 41, 292–301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishibori, E., Sunaoshi, E., Yoshida, A., Aoyagi, S., Kato, K., Takata, M. & Sakata, M. (2007). Acta Cryst. A63, 43–52.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. & Ikeda, N. (2001). Nucl. Instrum. Methods Phys. Res. A, 467, 1045–1048.  Web of Science CrossRef Google Scholar
First citationSachiko, M., Nishibori, E., Aoyagi, S., Sakata, M., Takata, M., Kondo, M., Murata, M., Sakamoto, R. & Nishihara, H. (2013). Acta Cryst. C69, 696–703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1990). J. Appl. Cryst. 23, 485–491.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds