metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m374-m375

Crystal structure of poly[[μ3-4,4′-(4,4′-bi­pyridine-2,6-diyl)dibenzoato]{μ2-4-[6-(4-carboxyphenyl)-4,4′-bipyridin-4′-ium-2-yl]benzoato}manganese(II)] hemi­hydrate]

aDepartment of Ophthalmology, Yhe Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin Province, People's Republic of China, bDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China, cSt Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112-82, Stockholm, Sweden, and dDepartment of Gynaecology, Yhe Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin Province, People's Republic of China
*Correspondence e-mail: sundajun2014@163.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 5 August 2014; accepted 17 October 2014; online 24 October 2014)

The title compound, {[Mn(C24H14N2O4)(C24H16N2O4)]·0.5H2O}n, was obtained by the reaction of manganese nitrate with the ligand 4,4′-(4,4′-bi­pyridine-2,6-di­yl) di­benzoic acid under hydro­thermal conditions. The water O atom is located on a twofold rotation axis. The Mn2+ ion is hepta­coordinated by six O atoms and one N atom from the ligands. In this structure, the ligands adopts two different forms, one completely deprotonated and one with a protonated N atom (pyridinium) and a carboxylic acid function. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds consolidate the packing, forming a three-dimensional framework.

1. Related literature

For the preparation of the ligand 4,4′-(4,4′-bi­pyridine-2,6-di­yl) di­benzoic acid, see: Hou et al. (2010[Hou, L., Zhang, W.-X., Zhang, J.-P., Xue, W., Zhang, Y.-B. & Chen, X.-M. (2010). Chem. Commun. 46, 6311-6313.]); Sharma et al. (2011[Sharma, M. K., Senkovska, I., Kaskel, S. & Bharadwaj, P. K. (2011). Inorg. Chem. 50, 539-544.]); Song et al. (2012[Song, S.-Y., Song, X.-Z., Zhao, S.-N., Qin, C., Su, S.-Q., Zhu, M., Hao, Z.-M. & Zhang, H.-J. (2012). Dalton Trans. 41, 10412-10421.]); Wei et al. (2013[Wei, Y.-S., Chen, K.-J., Liao, P.-Q., Zhu, B.-Y., Lin, R.-B., Zhou, H.-L., Wang, B.-Y., Xue, W., Zhang, J.-P. & Chen, X.-M. (2013). Chem. Sci. 4, 1539-1546.]). For the structures and potential applications of metal-organic coordination polymers involving the 4,4′-(4,4′-bi­pyridine-2,6-di­yl) di­benzoic acid ligand, see: Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]); Hu et al. (2014[Hu, Z., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815-5840.]); Iremonger et al. (2013[Iremonger, S. S., Vaidhyanathan, R., Mah, R. K. & Shimizu, G. K. H. (2013). Inorg. Chem. 52, 4124-4126.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(C24H14N2O4)(C24H16N2O4)]·0.5H2O

  • Mr = 1709.42

  • Monoclinic, C 2/c

  • a = 26.6396 (13) Å

  • b = 12.9853 (6) Å

  • c = 23.2326 (11) Å

  • β = 108.696 (1)°

  • V = 7612.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 K

  • 0.21 × 0.17 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.940

  • 20674 measured reflections

  • 7483 independent reflections

  • 5375 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.184

  • S = 1.08

  • 7483 reflections

  • 563 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 (2) 1.67 (2) 2.548 (4) 169 (5)
O1—H1A⋯O5ii 0.88 (2) 1.77 (3) 2.612 (4) 159 (6)
O1W—H1W⋯O3 0.84 2.12 2.963 (6) 180
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

A mixture of manganese nitrate aqueous solution (50%, 0.05 mL), 4,4'-(4,4'-bi­pyridine-2,6-diyl) di­benzoic acid (H2L 0.0396 g, 0.1 mmol), deionized water (8 mL) and NaOH (aq, 0.1 mol/L, 1 mL) was placed in a 20 mL PTFE-lined stainless steel vessel under autogenous pressure, heated at 160 °C for 72 hours, and allowed to cool down to room temperature in 27 h. The obtained colourless crystals were collected, washed with water and EtOH, and dried under ambient conditions with a yield of 21% based on H2L.

Refinement top

All the hydrogen atoms attached to carbon atoms were placed in calculated positions and refined using a riding model. The hydrogen atoms of the protonated carb­oxy­lic group and protonated nitro­gen atom were located from the Fourier difference map. They were refined isotropically with the O—H and N—H distance restrained to 0.89 (2)Å. The water H atom was refined using a riding model.

Comment top

In recent years, much attention has been paid to coordination polymers that have shown perspective in the field of gas adsorption and separation and molecular recognition. Particularly, 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid was used to form various metal-organic coordination polymers with novel structures (Hou et al., 2010; Sharma et al., 2011; Song et al., 2012, Wei et al. 2013). We report here the synthesis and the crystal structure of the title coordination polymer. In the asymmetric unit, there are one crystallographically independent Mn(II) ion, two ligands with different degrees of deprotonation and half a water molecule. The Mn2+ ion is heptacoordinated by six O atoms and one nitrogen atom from the ligands (Figure 1). The carboxylate groups of the completely deprotonated L2- anion adopt chelating modes, and the nitrogen atom coordinates to the Mn(II) ion; In the other form of the ligand, both the deprotonated carboxylate group and the protonated carboxylic group adopt the monodentate mode, and the nitrogen atom of the terminal pyridyl ring is protonized, not coordinated to the Mn(II) ion. This compound manifests a three-dimensional framework, with versatile hydrogen bonding consolidating the crystal packing (Figure 2).

Related literature top

For the preparation of the ligand 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid, see: Hou et al. (2010); Sharma et al. (2011); Song et al. (2012); Wei et al. (2013). For the structures and potential applications of metal-organic coordination polymers involving the 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid ligand, see: Eddaoudi et al. (2002); Hu et al. (2014); Iremonger et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
Figure 1. Extended asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Lattice water molecule has been omitted for clarity. Symmetry codes: i = -0.5 + x,0.5 - y,-0.5 + z; ii = -0.5 + x,0.5 + y,z; iii = x,-1 - y,0.5 + z.

Figure 2. View of the three-dimensional framework of the titled compound.
Poly[[µ3-4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoato]{µ2-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-4'-ium-2-yl]benzoato}manganese(II)] hemihydrate] top
Crystal data top
[Mn(C24H14N2O4)(C24H16N2O4)]·0.5H2OF(000) = 3520
Mr = 1709.42Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7485 reflections
a = 26.6396 (13) Åθ = 2.2–25.4°
b = 12.9853 (6) ŵ = 0.42 mm1
c = 23.2326 (11) ÅT = 173 K
β = 108.696 (1)°Block, colourless
V = 7612.6 (6) Å30.21 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7483 independent reflections
Radiation source: fine-focus sealed tube5375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3230
Tmin = 0.918, Tmax = 0.940k = 1416
20674 measured reflectionsl = 1528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0915P)2 + 12.2614P]
where P = (Fo2 + 2Fc2)/3
7483 reflections(Δ/σ)max = 0.005
563 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Mn(C24H14N2O4)(C24H16N2O4)]·0.5H2OV = 7612.6 (6) Å3
Mr = 1709.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.6396 (13) ŵ = 0.42 mm1
b = 12.9853 (6) ÅT = 173 K
c = 23.2326 (11) Å0.21 × 0.17 × 0.15 mm
β = 108.696 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7483 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5375 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.940Rint = 0.044
20674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0915P)2 + 12.2614P]
where P = (Fo2 + 2Fc2)/3
7483 reflectionsΔρmax = 0.43 e Å3
563 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15804 (14)0.1097 (3)0.08907 (18)0.0344 (8)
C20.18395 (13)0.1986 (3)0.06874 (16)0.0293 (7)
C30.23710 (14)0.2152 (3)0.09876 (16)0.0326 (8)
H30.25620.16940.13000.039*
C40.26243 (14)0.2981 (3)0.08354 (16)0.0318 (8)
H40.29910.30810.10420.038*
C50.23562 (13)0.3677 (3)0.03863 (15)0.0266 (7)
C60.18188 (14)0.3499 (3)0.00811 (17)0.0338 (8)
H60.16270.39620.02280.041*
C70.15633 (13)0.2654 (3)0.02249 (17)0.0340 (8)
H70.12000.25310.00080.041*
C80.26298 (13)0.4577 (2)0.02238 (15)0.0269 (7)
C90.31506 (13)0.4836 (3)0.05586 (15)0.0287 (7)
H90.33440.44350.09000.034*
C100.33808 (12)0.5687 (3)0.03856 (15)0.0269 (7)
C110.30880 (12)0.6252 (3)0.01208 (15)0.0272 (7)
H110.32380.68350.02510.033*
C120.25691 (12)0.5943 (2)0.04327 (15)0.0258 (7)
C130.22326 (12)0.6493 (3)0.09783 (15)0.0263 (7)
C140.23137 (13)0.7519 (3)0.10911 (16)0.0312 (8)
H140.25990.78860.08150.037*
C150.19837 (13)0.8015 (3)0.16011 (15)0.0299 (8)
H150.20480.87140.16760.036*
C160.15599 (12)0.7494 (3)0.20014 (15)0.0272 (7)
C170.14738 (13)0.6464 (3)0.18881 (15)0.0289 (8)
H170.11820.61020.21570.035*
C180.18100 (13)0.5974 (3)0.13884 (16)0.0305 (8)
H180.17530.52680.13210.037*
C190.11957 (13)0.8022 (3)0.25523 (16)0.0313 (8)
C200.39234 (13)0.6008 (3)0.07505 (15)0.0274 (7)
C210.43358 (14)0.5290 (3)0.09350 (18)0.0362 (9)
H210.42770.45920.08090.043*
C220.48295 (14)0.5609 (3)0.13019 (18)0.0392 (9)
H220.51130.51300.14250.047*
C230.45268 (14)0.7284 (3)0.13116 (16)0.0345 (8)
H230.45980.79740.14500.041*
C240.40293 (13)0.7023 (3)0.09369 (15)0.0296 (8)
H240.37610.75320.08070.036*
C250.60244 (15)0.3586 (3)0.60941 (17)0.0338 (8)
C260.57244 (14)0.2860 (3)0.56016 (16)0.0317 (8)
C270.59484 (14)0.1928 (3)0.55209 (16)0.0318 (8)
H270.62980.17610.57690.038*
C280.56647 (13)0.1237 (3)0.50800 (16)0.0301 (8)
H280.58230.06040.50270.036*
C290.51525 (13)0.1466 (3)0.47165 (15)0.0265 (7)
C300.49341 (14)0.2411 (3)0.47997 (16)0.0319 (8)
H300.45840.25800.45530.038*
C310.52148 (14)0.3096 (3)0.52296 (16)0.0322 (8)
H310.50600.37380.52740.039*
C320.48572 (13)0.0733 (3)0.42392 (15)0.0269 (7)
C330.43125 (13)0.0773 (3)0.39712 (15)0.0285 (7)
H330.41120.12780.40960.034*
C340.40595 (13)0.0070 (3)0.35177 (15)0.0268 (7)
C350.43732 (13)0.0673 (3)0.33699 (15)0.0280 (7)
H350.42160.11760.30690.034*
C360.49143 (13)0.0679 (3)0.36618 (15)0.0274 (7)
C370.52608 (13)0.1435 (3)0.34994 (15)0.0292 (8)
C380.57489 (14)0.1129 (3)0.34588 (17)0.0399 (9)
H380.58760.04530.35780.048*
C390.60491 (14)0.1801 (4)0.32468 (17)0.0444 (10)
H390.63800.15800.32160.053*
C400.58758 (16)0.2789 (3)0.30785 (16)0.0427 (10)
C410.54046 (17)0.3112 (3)0.31473 (17)0.0414 (10)
H410.52910.38030.30520.050*
C420.50987 (15)0.2447 (3)0.33512 (16)0.0361 (8)
H420.47730.26790.33920.043*
C430.6166 (2)0.3465 (5)0.27726 (19)0.0629 (15)
C440.34825 (13)0.0117 (3)0.32027 (15)0.0273 (7)
C450.31961 (13)0.0753 (3)0.29198 (16)0.0316 (8)
H450.33680.14000.29430.038*
C460.26630 (13)0.0657 (3)0.26079 (17)0.0323 (8)
H460.24750.12520.24180.039*
C470.26692 (14)0.1056 (3)0.28296 (17)0.0349 (8)
H470.24860.16910.27990.042*
C480.32012 (13)0.1033 (3)0.31498 (16)0.0314 (8)
H480.33770.16430.33350.038*
N10.23494 (10)0.5126 (2)0.02606 (12)0.0272 (6)
N20.49093 (11)0.6582 (3)0.14826 (14)0.0360 (7)
H2A0.5220 (11)0.683 (4)0.1709 (19)0.072 (15)*
N30.51581 (11)0.0015 (2)0.40859 (13)0.0284 (6)
N40.23962 (11)0.0226 (2)0.25578 (13)0.0309 (7)
O1W0.00000.6159 (6)0.25000.152 (3)
H1W0.02120.65730.25780.228*
O10.10826 (10)0.0956 (2)0.05641 (13)0.0434 (7)
H1A0.093 (2)0.042 (3)0.067 (3)0.10 (2)*
O20.18203 (10)0.0563 (2)0.13208 (12)0.0422 (7)
O30.07424 (10)0.7629 (2)0.27753 (14)0.0529 (8)
O40.13619 (11)0.8777 (2)0.27658 (12)0.0443 (7)
O50.58121 (10)0.44425 (19)0.61444 (13)0.0424 (7)
O60.64591 (12)0.3330 (2)0.64400 (13)0.0508 (8)
O70.5949 (2)0.4275 (3)0.2519 (2)0.1033 (16)
O80.65938 (15)0.3180 (4)0.27336 (17)0.1032 (17)
Mn10.15272 (2)0.03181 (4)0.20581 (2)0.03203 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (19)0.0280 (19)0.044 (2)0.0034 (15)0.0143 (17)0.0026 (17)
C20.0343 (18)0.0250 (17)0.0314 (18)0.0023 (14)0.0145 (16)0.0003 (15)
C30.0362 (19)0.0307 (19)0.0272 (18)0.0016 (15)0.0049 (15)0.0042 (15)
C40.0271 (17)0.0338 (19)0.0310 (18)0.0062 (15)0.0046 (15)0.0047 (16)
C50.0242 (16)0.0286 (18)0.0247 (17)0.0034 (13)0.0046 (14)0.0010 (14)
C60.0294 (18)0.0320 (19)0.035 (2)0.0013 (15)0.0030 (16)0.0069 (16)
C70.0240 (17)0.036 (2)0.040 (2)0.0056 (15)0.0083 (15)0.0005 (17)
C80.0255 (17)0.0280 (18)0.0248 (17)0.0011 (14)0.0046 (14)0.0027 (14)
C90.0264 (17)0.0289 (18)0.0259 (17)0.0013 (14)0.0013 (14)0.0040 (15)
C100.0214 (16)0.0293 (17)0.0274 (18)0.0009 (13)0.0041 (14)0.0010 (15)
C110.0213 (16)0.0293 (18)0.0292 (18)0.0049 (13)0.0057 (14)0.0039 (15)
C120.0226 (16)0.0270 (17)0.0258 (17)0.0006 (13)0.0050 (14)0.0030 (14)
C130.0202 (15)0.0289 (18)0.0263 (17)0.0009 (13)0.0024 (13)0.0047 (14)
C140.0241 (17)0.0330 (19)0.0313 (19)0.0062 (14)0.0014 (15)0.0030 (16)
C150.0292 (18)0.0270 (18)0.0306 (18)0.0001 (14)0.0058 (15)0.0072 (15)
C160.0236 (16)0.0309 (18)0.0243 (17)0.0031 (14)0.0038 (14)0.0030 (14)
C170.0237 (16)0.0302 (18)0.0276 (18)0.0015 (14)0.0010 (14)0.0007 (15)
C180.0259 (17)0.0283 (18)0.0320 (19)0.0012 (14)0.0018 (15)0.0041 (15)
C190.0289 (18)0.0287 (19)0.0330 (19)0.0078 (15)0.0050 (15)0.0027 (16)
C200.0227 (16)0.0336 (19)0.0225 (16)0.0035 (14)0.0026 (13)0.0056 (14)
C210.0274 (18)0.0311 (19)0.044 (2)0.0019 (15)0.0023 (16)0.0023 (17)
C220.0261 (18)0.043 (2)0.042 (2)0.0049 (16)0.0024 (17)0.0054 (18)
C230.0318 (19)0.037 (2)0.0338 (19)0.0085 (16)0.0086 (16)0.0018 (16)
C240.0244 (17)0.0329 (19)0.0284 (18)0.0016 (14)0.0040 (14)0.0038 (15)
C250.044 (2)0.029 (2)0.0313 (19)0.0137 (16)0.0172 (18)0.0035 (16)
C260.041 (2)0.0253 (18)0.0304 (19)0.0086 (15)0.0140 (16)0.0005 (15)
C270.0335 (19)0.0294 (19)0.0308 (19)0.0025 (15)0.0079 (15)0.0021 (15)
C280.0326 (18)0.0244 (17)0.0318 (19)0.0007 (14)0.0080 (15)0.0012 (15)
C290.0273 (17)0.0256 (17)0.0264 (17)0.0030 (13)0.0084 (14)0.0016 (14)
C300.0272 (17)0.0319 (19)0.036 (2)0.0003 (15)0.0100 (15)0.0010 (16)
C310.0366 (19)0.0257 (18)0.037 (2)0.0009 (15)0.0154 (17)0.0017 (15)
C320.0280 (17)0.0246 (17)0.0288 (18)0.0025 (14)0.0099 (14)0.0005 (14)
C330.0271 (17)0.0282 (18)0.0306 (18)0.0019 (14)0.0098 (15)0.0024 (15)
C340.0239 (16)0.0298 (18)0.0280 (17)0.0002 (14)0.0101 (14)0.0007 (14)
C350.0271 (17)0.0312 (18)0.0257 (17)0.0008 (14)0.0084 (14)0.0048 (15)
C360.0276 (17)0.0306 (18)0.0264 (17)0.0001 (14)0.0120 (14)0.0000 (15)
C370.0241 (17)0.037 (2)0.0244 (17)0.0042 (14)0.0054 (14)0.0029 (15)
C380.0272 (19)0.050 (2)0.040 (2)0.0027 (16)0.0085 (17)0.0037 (19)
C390.0243 (18)0.074 (3)0.035 (2)0.0143 (19)0.0096 (16)0.002 (2)
C400.045 (2)0.056 (3)0.0226 (18)0.032 (2)0.0046 (17)0.0037 (18)
C410.059 (3)0.033 (2)0.031 (2)0.0160 (18)0.0136 (19)0.0010 (17)
C420.040 (2)0.039 (2)0.0318 (19)0.0010 (16)0.0154 (17)0.0003 (17)
C430.066 (3)0.089 (4)0.032 (2)0.051 (3)0.012 (2)0.008 (2)
C440.0265 (17)0.0320 (18)0.0245 (17)0.0004 (14)0.0098 (14)0.0038 (15)
C450.0247 (17)0.0300 (18)0.039 (2)0.0043 (14)0.0080 (15)0.0021 (16)
C460.0284 (18)0.0307 (19)0.036 (2)0.0004 (15)0.0079 (16)0.0075 (16)
C470.0307 (19)0.0295 (19)0.043 (2)0.0057 (15)0.0104 (17)0.0052 (17)
C480.0238 (17)0.0345 (19)0.036 (2)0.0018 (14)0.0095 (15)0.0071 (16)
N10.0235 (14)0.0294 (15)0.0254 (15)0.0022 (12)0.0031 (12)0.0025 (12)
N20.0221 (15)0.048 (2)0.0312 (16)0.0080 (14)0.0010 (13)0.0013 (15)
N30.0259 (14)0.0283 (15)0.0315 (15)0.0000 (12)0.0098 (13)0.0038 (13)
N40.0234 (14)0.0346 (17)0.0318 (16)0.0040 (12)0.0047 (12)0.0031 (13)
O1W0.149 (7)0.129 (6)0.172 (8)0.0000.042 (6)0.000
O10.0311 (14)0.0365 (15)0.0582 (18)0.0046 (12)0.0081 (13)0.0120 (14)
O20.0382 (15)0.0433 (15)0.0389 (15)0.0106 (12)0.0038 (12)0.0126 (13)
O30.0278 (14)0.0532 (18)0.0603 (19)0.0012 (12)0.0104 (13)0.0183 (15)
O40.0503 (16)0.0330 (14)0.0421 (16)0.0022 (12)0.0041 (13)0.0109 (13)
O50.0425 (15)0.0308 (14)0.0606 (19)0.0135 (12)0.0258 (14)0.0171 (13)
O60.0585 (19)0.0368 (15)0.0405 (16)0.0039 (14)0.0073 (14)0.0072 (13)
O70.166 (5)0.054 (2)0.130 (4)0.035 (3)0.103 (4)0.001 (3)
O80.051 (2)0.186 (5)0.067 (2)0.044 (3)0.0108 (19)0.044 (3)
Mn10.0287 (3)0.0319 (3)0.0309 (3)0.0070 (2)0.0030 (2)0.0009 (2)
Geometric parameters (Å, º) top
C1—O21.216 (4)C28—H280.9500
C1—O11.312 (4)C29—C301.397 (5)
C1—C21.497 (5)C29—C321.482 (5)
C2—C31.380 (5)C30—C311.368 (5)
C2—C71.394 (5)C30—H300.9500
C3—C41.376 (5)C31—H310.9500
C3—H30.9500C32—N31.349 (4)
C4—C51.392 (5)C32—C331.384 (5)
C4—H40.9500C33—C341.393 (5)
C5—C61.398 (5)C33—H330.9500
C5—C81.489 (5)C34—C351.390 (5)
C6—C71.387 (5)C34—C441.477 (5)
C6—H60.9500C35—C361.383 (5)
C7—H70.9500C35—H350.9500
C8—N11.339 (4)C36—N31.339 (4)
C8—C91.397 (5)C36—C371.477 (5)
C9—C101.384 (5)C37—C381.391 (5)
C9—H90.9500C37—C421.392 (5)
C10—C111.394 (5)C38—C391.376 (5)
C10—C201.482 (4)C38—H380.9500
C11—C121.398 (4)C39—C401.378 (6)
C11—H110.9500C39—H390.9500
C12—N11.334 (4)C40—C411.380 (6)
C12—C131.481 (4)C40—C431.491 (6)
C13—C141.387 (5)C41—C421.372 (5)
C13—C181.394 (5)C41—H410.9500
C14—C151.387 (5)C42—H420.9500
C14—H140.9500C43—O81.230 (7)
C15—C161.387 (5)C43—O71.253 (7)
C15—H150.9500C44—C481.390 (5)
C16—C171.395 (5)C44—C451.403 (5)
C16—C191.502 (5)C45—C461.378 (5)
C17—C181.374 (5)C45—H450.9500
C17—H170.9500C46—N41.334 (4)
C18—H180.9500C46—H460.9500
C19—O41.242 (4)C47—N41.339 (4)
C19—O31.260 (4)C47—C481.374 (5)
C20—C241.387 (5)C47—H470.9500
C20—C211.400 (5)C48—H480.9500
C21—C221.382 (5)N2—H2A0.885 (19)
C21—H210.9500N4—Mn12.236 (3)
C22—N21.326 (5)O1W—H1W0.8398
C22—H220.9500O1—H1A0.88 (2)
C23—N21.330 (5)O2—Mn12.390 (3)
C23—C241.375 (5)O4—Mn1ii2.117 (3)
C23—H230.9500O5—Mn1i2.375 (3)
C24—H240.9500O6—Mn1i2.238 (3)
C25—O61.225 (5)O7—Mn1iii2.202 (4)
C25—O51.270 (4)O8—Mn1iii2.474 (4)
C25—C261.499 (5)Mn1—O4iv2.117 (3)
C25—Mn1i2.629 (4)Mn1—O7v2.202 (4)
C26—C311.390 (5)Mn1—O6vi2.238 (3)
C26—C271.389 (5)Mn1—O5vi2.375 (3)
C27—C281.388 (5)Mn1—O8v2.474 (4)
C27—H270.9500Mn1—C25vi2.629 (4)
C28—C291.387 (5)
O2—C1—O1124.3 (3)C26—C31—H31119.8
O2—C1—C2121.7 (3)N3—C32—C33122.2 (3)
O1—C1—C2114.1 (3)N3—C32—C29115.1 (3)
C3—C2—C7119.7 (3)C33—C32—C29122.7 (3)
C3—C2—C1117.6 (3)C32—C33—C34119.9 (3)
C7—C2—C1122.7 (3)C32—C33—H33120.0
C4—C3—C2120.1 (3)C34—C33—H33120.0
C4—C3—H3120.0C35—C34—C33117.3 (3)
C2—C3—H3120.0C35—C34—C44121.3 (3)
C3—C4—C5121.6 (3)C33—C34—C44121.5 (3)
C3—C4—H4119.2C36—C35—C34119.8 (3)
C5—C4—H4119.2C36—C35—H35120.1
C4—C5—C6118.0 (3)C34—C35—H35120.1
C4—C5—C8121.6 (3)N3—C36—C35122.7 (3)
C6—C5—C8120.4 (3)N3—C36—C37116.1 (3)
C7—C6—C5120.7 (3)C35—C36—C37121.1 (3)
C7—C6—H6119.7C38—C37—C42118.4 (3)
C5—C6—H6119.7C38—C37—C36120.1 (3)
C6—C7—C2120.0 (3)C42—C37—C36121.4 (3)
C6—C7—H7120.0C39—C38—C37120.4 (4)
C2—C7—H7120.0C39—C38—H38119.8
N1—C8—C9121.8 (3)C37—C38—H38119.8
N1—C8—C5116.4 (3)C38—C39—C40120.7 (4)
C9—C8—C5121.9 (3)C38—C39—H39119.6
C10—C9—C8119.0 (3)C40—C39—H39119.6
C10—C9—H9120.5C39—C40—C41119.0 (3)
C8—C9—H9120.5C39—C40—C43120.4 (4)
C9—C10—C11119.0 (3)C41—C40—C43120.4 (4)
C9—C10—C20120.0 (3)C42—C41—C40120.8 (4)
C11—C10—C20120.9 (3)C42—C41—H41119.6
C10—C11—C12118.6 (3)C40—C41—H41119.6
C10—C11—H11120.7C41—C42—C37120.6 (4)
C12—C11—H11120.7C41—C42—H42119.7
N1—C12—C11121.9 (3)C37—C42—H42119.7
N1—C12—C13115.9 (3)O8—C43—O7121.0 (5)
C11—C12—C13122.1 (3)O8—C43—C40119.5 (6)
C14—C13—C18118.4 (3)O7—C43—C40119.2 (5)
C14—C13—C12122.5 (3)C48—C44—C45116.8 (3)
C18—C13—C12119.1 (3)C48—C44—C34121.7 (3)
C13—C14—C15120.9 (3)C45—C44—C34121.5 (3)
C13—C14—H14119.6C46—C45—C44119.2 (3)
C15—C14—H14119.6C46—C45—H45120.4
C16—C15—C14120.2 (3)C44—C45—H45120.4
C16—C15—H15119.9N4—C46—C45123.7 (3)
C14—C15—H15119.9N4—C46—H46118.2
C15—C16—C17119.2 (3)C45—C46—H46118.2
C15—C16—C19120.8 (3)N4—C47—C48123.2 (3)
C17—C16—C19119.9 (3)N4—C47—H47118.4
C18—C17—C16120.1 (3)C48—C47—H47118.4
C18—C17—H17120.0C47—C48—C44120.0 (3)
C16—C17—H17120.0C47—C48—H48120.0
C17—C18—C13121.2 (3)C44—C48—H48120.0
C17—C18—H18119.4C12—N1—C8119.7 (3)
C13—C18—H18119.4C22—N2—C23121.9 (3)
O4—C19—O3124.9 (3)C22—N2—H2A124 (3)
O4—C19—C16119.1 (3)C23—N2—H2A114 (3)
O3—C19—C16116.0 (3)C36—N3—C32118.0 (3)
C24—C20—C21118.4 (3)C46—N4—C47117.2 (3)
C24—C20—C10120.6 (3)C46—N4—Mn1121.7 (2)
C21—C20—C10120.9 (3)C47—N4—Mn1121.2 (2)
C22—C21—C20119.2 (3)C1—O1—H1A114 (4)
C22—C21—H21120.4C1—O2—Mn1131.0 (2)
C20—C21—H21120.4C19—O4—Mn1ii161.0 (3)
N2—C22—C21120.4 (3)C25—O5—Mn1i86.8 (2)
N2—C22—H22119.8C25—O6—Mn1i94.2 (2)
C21—C22—H22119.8C43—O7—Mn1iii98.2 (4)
N2—C23—C24120.7 (3)C43—O8—Mn1iii86.0 (3)
N2—C23—H23119.6O4iv—Mn1—O7v84.95 (14)
C24—C23—H23119.6O4iv—Mn1—N495.40 (11)
C23—C24—C20119.4 (3)O7v—Mn1—N4121.96 (17)
C23—C24—H24120.3O4iv—Mn1—O6vi152.41 (11)
C20—C24—H24120.3O7v—Mn1—O6vi101.41 (13)
O6—C25—O5122.1 (3)N4—Mn1—O6vi103.44 (11)
O6—C25—C26119.4 (3)O4iv—Mn1—O5vi98.02 (10)
O5—C25—C26118.4 (3)O7v—Mn1—O5vi85.26 (16)
O6—C25—Mn1i58.08 (19)N4—Mn1—O5vi150.64 (10)
O5—C25—Mn1i64.38 (19)O6vi—Mn1—O5vi56.42 (9)
C26—C25—Mn1i172.5 (2)O4iv—Mn1—O279.75 (11)
C31—C26—C27119.0 (3)O7v—Mn1—O2154.57 (16)
C31—C26—C25120.8 (3)N4—Mn1—O279.91 (10)
C27—C26—C25120.2 (3)O6vi—Mn1—O283.88 (11)
C28—C27—C26120.4 (3)O5vi—Mn1—O276.98 (9)
C28—C27—H27119.8O4iv—Mn1—O8v126.86 (15)
C26—C27—H27119.8O7v—Mn1—O8v54.68 (16)
C29—C28—C27120.5 (3)N4—Mn1—O8v82.01 (11)
C29—C28—H28119.8O6vi—Mn1—O8v76.30 (14)
C27—C28—H28119.8O5vi—Mn1—O8v109.74 (11)
C28—C29—C30118.4 (3)O2—Mn1—O8v149.17 (13)
C28—C29—C32120.0 (3)O4iv—Mn1—C25vi126.56 (11)
C30—C29—C32121.5 (3)O7v—Mn1—C25vi92.25 (15)
C31—C30—C29121.2 (3)N4—Mn1—C25vi129.14 (12)
C31—C30—H30119.4O6vi—Mn1—C25vi27.68 (11)
C29—C30—H30119.4O5vi—Mn1—C25vi28.84 (10)
C30—C31—C26120.5 (3)O2—Mn1—C25vi80.96 (10)
C30—C31—H31119.8O8v—Mn1—C25vi91.53 (13)
O2—C1—C2—C33.1 (5)C34—C35—C36—N30.5 (5)
O1—C1—C2—C3176.7 (3)C34—C35—C36—C37177.7 (3)
O2—C1—C2—C7175.2 (3)N3—C36—C37—C3838.7 (5)
O1—C1—C2—C75.1 (5)C35—C36—C37—C38138.7 (4)
C7—C2—C3—C40.8 (5)N3—C36—C37—C42144.9 (3)
C1—C2—C3—C4177.5 (3)C35—C36—C37—C4237.7 (5)
C2—C3—C4—C50.8 (5)C42—C37—C38—C393.3 (5)
C3—C4—C5—C61.3 (5)C36—C37—C38—C39173.2 (3)
C3—C4—C5—C8179.7 (3)C37—C38—C39—C400.8 (6)
C4—C5—C6—C70.1 (5)C38—C39—C40—C412.5 (6)
C8—C5—C6—C7179.1 (3)C38—C39—C40—C43171.8 (4)
C5—C6—C7—C21.5 (6)C39—C40—C41—C423.2 (6)
C3—C2—C7—C62.0 (5)C43—C40—C41—C42171.0 (3)
C1—C2—C7—C6176.2 (3)C40—C41—C42—C370.7 (6)
C4—C5—C8—N1172.5 (3)C38—C37—C42—C412.6 (5)
C6—C5—C8—N16.5 (5)C36—C37—C42—C41173.9 (3)
C4—C5—C8—C97.5 (5)C39—C40—C43—O88.3 (6)
C6—C5—C8—C9173.5 (3)C41—C40—C43—O8177.6 (4)
N1—C8—C9—C100.3 (5)C39—C40—C43—O7166.1 (4)
C5—C8—C9—C10179.6 (3)C41—C40—C43—O78.0 (6)
C8—C9—C10—C110.6 (5)C35—C34—C44—C48153.3 (3)
C8—C9—C10—C20177.0 (3)C33—C34—C44—C4826.3 (5)
C9—C10—C11—C120.6 (5)C35—C34—C44—C4523.9 (5)
C20—C10—C11—C12177.1 (3)C33—C34—C44—C45156.5 (3)
C10—C11—C12—N10.2 (5)C48—C44—C45—C460.4 (5)
C10—C11—C12—C13179.4 (3)C34—C44—C45—C46177.0 (3)
N1—C12—C13—C14156.4 (3)C44—C45—C46—N40.2 (6)
C11—C12—C13—C1424.4 (5)N4—C47—C48—C440.1 (6)
N1—C12—C13—C1822.0 (5)C45—C44—C48—C470.3 (5)
C11—C12—C13—C18157.2 (3)C34—C44—C48—C47177.0 (3)
C18—C13—C14—C150.3 (5)C11—C12—N1—C80.1 (5)
C12—C13—C14—C15178.7 (3)C13—C12—N1—C8179.1 (3)
C13—C14—C15—C161.2 (5)C9—C8—N1—C120.1 (5)
C14—C15—C16—C170.7 (5)C5—C8—N1—C12180.0 (3)
C14—C15—C16—C19179.4 (3)C21—C22—N2—C231.3 (6)
C15—C16—C17—C180.7 (5)C24—C23—N2—C220.0 (6)
C19—C16—C17—C18179.2 (3)C35—C36—N3—C321.4 (5)
C16—C17—C18—C131.6 (5)C37—C36—N3—C32178.7 (3)
C14—C13—C18—C171.1 (5)C33—C32—N3—C360.4 (5)
C12—C13—C18—C17177.3 (3)C29—C32—N3—C36179.3 (3)
C15—C16—C19—O424.3 (5)C45—C46—N4—C470.0 (5)
C17—C16—C19—O4155.6 (3)C45—C46—N4—Mn1178.9 (3)
C15—C16—C19—O3158.1 (3)C48—C47—N4—C460.1 (6)
C17—C16—C19—O322.0 (5)C48—C47—N4—Mn1178.9 (3)
C9—C10—C20—C24129.8 (4)O1—C1—O2—Mn133.0 (6)
C11—C10—C20—C2447.8 (5)C2—C1—O2—Mn1147.3 (3)
C9—C10—C20—C2147.7 (5)O3—C19—O4—Mn1ii88.5 (9)
C11—C10—C20—C21134.7 (4)C16—C19—O4—Mn1ii94.1 (8)
C24—C20—C21—C221.0 (5)O6—C25—O5—Mn1i6.6 (4)
C10—C20—C21—C22176.6 (3)C26—C25—O5—Mn1i172.2 (3)
C20—C21—C22—N20.8 (6)O5—C25—O6—Mn1i7.0 (4)
N2—C23—C24—C201.8 (5)C26—C25—O6—Mn1i171.7 (3)
C21—C20—C24—C232.3 (5)O8—C43—O7—Mn1iii3.5 (6)
C10—C20—C24—C23175.3 (3)C40—C43—O7—Mn1iii170.8 (3)
O6—C25—C26—C31175.4 (3)O7—C43—O8—Mn1iii3.1 (5)
O5—C25—C26—C313.4 (5)C40—C43—O8—Mn1iii171.2 (3)
O6—C25—C26—C273.0 (5)C46—N4—Mn1—O4iv29.1 (3)
O5—C25—C26—C27178.3 (3)C47—N4—Mn1—O4iv149.7 (3)
C31—C26—C27—C280.7 (5)C46—N4—Mn1—O7v116.5 (3)
C25—C26—C27—C28177.7 (3)C47—N4—Mn1—O7v62.3 (3)
C26—C27—C28—C290.4 (5)C46—N4—Mn1—O6vi130.6 (3)
C27—C28—C29—C300.9 (5)C47—N4—Mn1—O6vi50.6 (3)
C27—C28—C29—C32178.8 (3)C46—N4—Mn1—O5vi87.9 (3)
C28—C29—C30—C310.2 (5)C47—N4—Mn1—O5vi93.3 (3)
C32—C29—C30—C31178.1 (3)C46—N4—Mn1—O249.5 (3)
C29—C30—C31—C260.9 (5)C47—N4—Mn1—O2131.7 (3)
C27—C26—C31—C301.4 (5)C46—N4—Mn1—O8v155.6 (3)
C25—C26—C31—C30177.0 (3)C47—N4—Mn1—O8v23.2 (3)
C28—C29—C32—N316.8 (5)C46—N4—Mn1—C25vi119.0 (3)
C30—C29—C32—N3161.0 (3)C47—N4—Mn1—C25vi62.3 (3)
C28—C29—C32—C33162.8 (3)C1—O2—Mn1—O4iv61.8 (3)
C30—C29—C32—C3319.3 (5)C1—O2—Mn1—O7v7.9 (5)
N3—C32—C33—C341.4 (5)C1—O2—Mn1—N4159.3 (3)
C29—C32—C33—C34178.9 (3)C1—O2—Mn1—O6vi95.9 (3)
C32—C33—C34—C352.2 (5)C1—O2—Mn1—O5vi39.0 (3)
C32—C33—C34—C44177.3 (3)C1—O2—Mn1—O8v145.8 (3)
C33—C34—C35—C361.3 (5)C1—O2—Mn1—C25vi68.1 (3)
C44—C34—C35—C36178.2 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z1/2; (iii) x+1/2, y1/2, z; (iv) x, y1, z+1/2; (v) x1/2, y+1/2, z; (vi) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3vii0.89 (2)1.67 (2)2.548 (4)169 (5)
O1—H1A···O5vi0.88 (2)1.77 (3)2.612 (4)159 (6)
O1W—H1W···O30.842.122.963 (6)180
Symmetry codes: (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.885 (19)1.67 (2)2.548 (4)169 (5)
O1—H1A···O5ii0.88 (2)1.77 (3)2.612 (4)159 (6)
O1W—H1W···O30.842.122.963 (6)179.5
Symmetry codes: (i) x+1/2, y3/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful for financial aid in support of this project by the Inter­national Scientific and Technological Cooperation Foundation of Jilin Province (20120722).

References

First citationBrandenburg, (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHou, L., Zhang, W.-X., Zhang, J.-P., Xue, W., Zhang, Y.-B. & Chen, X.-M. (2010). Chem. Commun. 46, 6311–6313.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, Z., Deibert, B. J. & Li, J. (2014). Chem. Soc. Rev. 43, 5815–5840.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIremonger, S. S., Vaidhyanathan, R., Mah, R. K. & Shimizu, G. K. H. (2013). Inorg. Chem. 52, 4124–4126.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSharma, M. K., Senkovska, I., Kaskel, S. & Bharadwaj, P. K. (2011). Inorg. Chem. 50, 539–544.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S.-Y., Song, X.-Z., Zhao, S.-N., Qin, C., Su, S.-Q., Zhu, M., Hao, Z.-M. & Zhang, H.-J. (2012). Dalton Trans. 41, 10412–10421.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWei, Y.-S., Chen, K.-J., Liao, P.-Q., Zhu, B.-Y., Lin, R.-B., Zhou, H.-L., Wang, B.-Y., Xue, W., Zhang, J.-P. & Chen, X.-M. (2013). Chem. Sci. 4, 1539–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m374-m375
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds