organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-(ethene-1,2-di­yl)dipyridinium bis­­(3-carb­­oxy­benzene­sulfonate)

aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: chezlg@zju.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 October 2014; accepted 15 October 2014; online 18 October 2014)

In the title mol­ecular salt, C12H12N22+·2C7H5O5S, the complete dication is generated by crystallographic inversion symmetry. In the anion, the sulfonic acid group is deprotonated and the dihedral angle between the planes of the carb­oxy­lic acid group and the benzene ring is 12.41 (11)°. In the crystal, the anions are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds, which generate R22(16) loops. The dications link the anion dimers into [10-2] chains via N—H⋯O hydrogen bonds.

1. Related literature

For general background to salts of 1,2-bis­(pyridin-4-yl)ethyl­ene and sulfobenzoates and their applications, see: Ma & Zhu (2014[Ma, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691-14699.]); Zheng & Zhu (2014[Zheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065-1066, 113-119.]); Lesniewska et al. (2014[Lesniewska, B., Perret, F., Suwinska, K. & Coleman, A. W. (2014). CrystEngComm, 16, 4399-4405.]); Danylyuk et al. (2010[Danylyuk, O., Leśniewska, B., Suwinska, K., Matoussi, N. & Coleman, A. W. (2010). Cryst. Growth Des. 10, 4542-4549.]); Zhang & Zhu (2006[Zhang, L.-P. & Zhu, L.-G. (2006). Acta Cryst. E62, o1529-o1531.], 2007[Zhang, J. & Zhu, L.-G. (2007). Acta Cryst. C63, o484-o486.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H12N22+·2C7H5O5S

  • Mr = 586.58

  • Triclinic, [P \overline 1]

  • a = 7.4573 (5) Å

  • b = 7.8381 (6) Å

  • c = 11.3111 (9) Å

  • α = 85.525 (6)°

  • β = 86.634 (6)°

  • γ = 69.545 (7)°

  • V = 617.22 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 170 K

  • 0.43 × 0.29 × 0.18 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur (Atlas, Gemini Ultra CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.888, Tmax = 0.951

  • 3834 measured reflections

  • 2182 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 0.98

  • 2182 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.86 (1) 1.85 (1) 2.683 (2) 163 (3)
N1—H1A⋯O1ii 0.83 (1) 1.91 (1) 2.727 (2) 172 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y-1, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Sulfobenzoate derivatives and their organic or coordination compounds are very interesting in material science, such as potential applications in fluorescence and catalytic fields (Ma & Zhu, 2014; Zheng & Zhu, 2014). Sulfobenzoates have two functional groups, sulfonate and carboxylate, and can coordinate to metal ions via versatile coordination modes or can form abundant hydrogen bonds due to they have five donors or acceptors. The 1,2-bis(pyridin-4-yl)ethylene derivatives have been widely used as bridge linkers in the coordination chemistry. several organic complexes with the 1,2-bis(pyridin-4-yl)ethylene and sulfobenzoate ligands have been reported, such as, 4,4'-ethylene-1,2-diyldipyridinium bis(4-carboxybenzenesulfonate) dihydrate (Zheng & Zhu, 2014), bis(4-(2-(pyridin-4-yl)vinyl)pyridinium) 4-sulfonatobenzoate trihydrate (Zhang & Zhu, 2006), and 4-(2-(pyridin-4-yl)ethenyl)pyridinium 2-carboxybenzenesulfonate (Zhang & Zhu, 2007). The title complound has 1:2 ratio of cation to anion without any water molecule (Fig. 1). The cation is protonated and the anion is partly deprotonated. Two pyridyl rings of the 4-(2-(pyridin-4-yl)ethenyl)pyridinium anion are coplanar and the whole cation is a big pi-conjugated system. Two anions are linked by O—H···O between sulfonate and carboxylate groups into a dimer and these anionic dimers interact with cations by N—H···O hydrogen bonds, generating a chain (Fig. 2).

Related literature top

For general background to salts of 1,2-bis(pyridin-4-yl)ethylene and sulfobenzoates and their applications, see: Ma & Zhu (2014); Zheng & Zhu (2014); Lesniewska et al. (2014); Danylyuk et al. (2010); Zhang & Zhu (2006, 2007).

Experimental top

A mixed solution of 3-sulfobenzoate sodium (0.224 g,1 mmol) in 10 ml CH3OH and 1,2-bis(pyridin-4-yl)ethylene(0.091 g, 0.5 mmol) in 8 ml of CH3CN was stirred for one hour and set aside for slow evaporation at room tempereture. After two days, yellow plates were obtained and collected by filtration.

Refinement top

The nitrogen and carboxylate H atoms were found in the Fourier map with fixed Uiso=0.08 Å2. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C—H=0.93 Å (for Csp2) with Uiso=1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Fig. 1. View of the asymmetry unit of (I) showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 2–x, –y, 1–z.

Fig. 2 The hydrogen-bonded chain of (I).
4,4'-(Ethene-1,2-diyl)dipyridinium bis(3-carboxybenzenesulfonate) top
Crystal data top
C12H12N22+·2C7H5O5SZ = 1
Mr = 586.58F(000) = 304
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4573 (5) ÅCell parameters from 1621 reflections
b = 7.8381 (6) Åθ = 3.3–29.4°
c = 11.3111 (9) ŵ = 0.28 mm1
α = 85.525 (6)°T = 170 K
β = 86.634 (6)°Plate, yellow
γ = 69.545 (7)°0.43 × 0.29 × 0.18 mm
V = 617.22 (8) Å3
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra CCD)
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 88
Tmin = 0.888, Tmax = 0.951k = 89
3834 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.4291P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
C12H12N22+·2C7H5O5Sγ = 69.545 (7)°
Mr = 586.58V = 617.22 (8) Å3
Triclinic, P1Z = 1
a = 7.4573 (5) ÅMo Kα radiation
b = 7.8381 (6) ŵ = 0.28 mm1
c = 11.3111 (9) ÅT = 170 K
α = 85.525 (6)°0.43 × 0.29 × 0.18 mm
β = 86.634 (6)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra CCD)
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1899 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.951Rint = 0.025
3834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.24 e Å3
2182 reflectionsΔρmin = 0.42 e Å3
187 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.53 (release 17-11-2009 CrysAlis171 .NET) (compiled Nov 17 2009,16:58:22) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19563 (7)1.18509 (7)0.82396 (4)0.02058 (17)
N11.2183 (2)0.1796 (3)0.13817 (15)0.0249 (4)
H1A1.254 (5)0.198 (5)0.0693 (13)0.080*
O10.3295 (2)1.2088 (2)0.90567 (12)0.0262 (3)
O20.0064 (2)1.2254 (2)0.87794 (13)0.0297 (4)
O30.1989 (2)1.2820 (2)0.70976 (13)0.0309 (4)
O40.6933 (2)0.4749 (2)0.56362 (13)0.0313 (4)
O50.5777 (2)0.7626 (2)0.48846 (14)0.0339 (4)
H5A0.656 (4)0.725 (5)0.430 (2)0.080*
C10.2852 (3)0.9481 (3)0.79837 (17)0.0197 (4)
C20.2567 (3)0.8244 (3)0.88595 (18)0.0242 (5)
H20.18400.86600.95430.029*
C30.3371 (3)0.6395 (3)0.87079 (19)0.0271 (5)
H30.31790.55670.92910.032*
C40.4461 (3)0.5766 (3)0.76930 (19)0.0258 (5)
H40.50190.45190.76030.031*
C50.4716 (3)0.7008 (3)0.68091 (17)0.0206 (4)
C60.3908 (3)0.8874 (3)0.69538 (17)0.0196 (4)
H60.40760.97060.63640.024*
C70.5925 (3)0.6311 (3)0.57261 (18)0.0231 (5)
C81.0500 (3)0.2889 (3)0.31413 (18)0.0246 (5)
H80.98120.38660.35920.029*
C91.0830 (3)0.1109 (3)0.36022 (17)0.0204 (4)
C101.1909 (3)0.0318 (3)0.29100 (18)0.0233 (5)
H101.21870.15220.32000.028*
C111.2553 (3)0.0070 (3)0.18050 (18)0.0255 (5)
H111.32600.08790.13380.031*
C121.1187 (3)0.3205 (3)0.20264 (19)0.0269 (5)
H121.09610.43940.17190.032*
C131.0020 (3)0.0799 (3)0.47750 (18)0.0228 (4)
H130.94940.17970.52380.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (3)0.0180 (3)0.0175 (3)0.0069 (2)0.00549 (19)0.0025 (2)
N10.0229 (9)0.0334 (11)0.0187 (9)0.0105 (8)0.0001 (7)0.0006 (8)
O10.0315 (8)0.0256 (8)0.0249 (8)0.0138 (6)0.0056 (6)0.0080 (6)
O20.0277 (8)0.0274 (9)0.0327 (9)0.0085 (7)0.0088 (6)0.0058 (7)
O30.0460 (9)0.0195 (8)0.0206 (8)0.0048 (7)0.0085 (6)0.0004 (6)
O40.0364 (9)0.0205 (8)0.0320 (9)0.0030 (7)0.0022 (6)0.0070 (7)
O50.0473 (10)0.0223 (8)0.0260 (9)0.0066 (7)0.0134 (7)0.0033 (7)
C10.0201 (10)0.0190 (10)0.0202 (10)0.0071 (8)0.0011 (7)0.0009 (8)
C20.0275 (11)0.0283 (12)0.0199 (11)0.0139 (9)0.0025 (8)0.0023 (9)
C30.0338 (12)0.0255 (12)0.0248 (11)0.0153 (9)0.0001 (9)0.0047 (9)
C40.0311 (12)0.0181 (11)0.0291 (12)0.0094 (9)0.0012 (9)0.0030 (9)
C50.0199 (10)0.0221 (11)0.0211 (11)0.0084 (8)0.0025 (8)0.0025 (8)
C60.0224 (10)0.0199 (11)0.0180 (10)0.0091 (8)0.0004 (8)0.0008 (8)
C70.0259 (11)0.0218 (11)0.0232 (11)0.0098 (9)0.0007 (8)0.0042 (9)
C80.0271 (11)0.0228 (11)0.0222 (11)0.0063 (9)0.0012 (8)0.0042 (9)
C90.0177 (10)0.0222 (11)0.0205 (10)0.0056 (8)0.0024 (7)0.0029 (8)
C100.0233 (11)0.0215 (11)0.0235 (11)0.0059 (8)0.0016 (8)0.0027 (9)
C110.0226 (11)0.0289 (12)0.0238 (11)0.0067 (9)0.0013 (8)0.0074 (9)
C120.0269 (11)0.0253 (12)0.0282 (12)0.0089 (9)0.0030 (9)0.0015 (9)
C130.0240 (11)0.0213 (10)0.0212 (11)0.0048 (8)0.0025 (8)0.0060 (8)
Geometric parameters (Å, º) top
S1—O21.4426 (15)C4—C51.392 (3)
S1—O31.4499 (15)C4—H40.9300
S1—O11.4664 (15)C5—C61.393 (3)
S1—C11.781 (2)C5—C71.497 (3)
N1—C111.338 (3)C6—H60.9300
N1—C121.339 (3)C8—C121.370 (3)
N1—H1A0.827 (10)C8—C91.392 (3)
O4—C71.200 (3)C8—H80.9300
O5—C71.327 (3)C9—C101.395 (3)
O5—H5A0.855 (10)C9—C131.464 (3)
C1—C61.386 (3)C10—C111.363 (3)
C1—C21.392 (3)C10—H100.9300
C2—C31.381 (3)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—C41.386 (3)C13—C13i1.324 (4)
C3—H30.9300C13—H130.9300
O2—S1—O3113.77 (9)C1—C6—C5119.45 (18)
O2—S1—O1111.53 (9)C1—C6—H6120.3
O3—S1—O1112.10 (9)C5—C6—H6120.3
O2—S1—C1107.31 (9)O4—C7—O5123.92 (19)
O3—S1—C1106.65 (9)O4—C7—C5123.93 (19)
O1—S1—C1104.84 (9)O5—C7—C5112.14 (17)
C11—N1—C12121.56 (18)C12—C8—C9120.2 (2)
C11—N1—H1A118 (3)C12—C8—H8119.9
C12—N1—H1A120 (3)C9—C8—H8119.9
C7—O5—H5A112 (2)C8—C9—C10118.08 (18)
C6—C1—C2120.52 (19)C8—C9—C13119.46 (18)
C6—C1—S1120.31 (15)C10—C9—C13122.45 (19)
C2—C1—S1119.08 (15)C11—C10—C9119.4 (2)
C3—C2—C1119.64 (19)C11—C10—H10120.3
C3—C2—H2120.2C9—C10—H10120.3
C1—C2—H2120.2N1—C11—C10121.0 (2)
C2—C3—C4120.50 (19)N1—C11—H11119.5
C2—C3—H3119.7C10—C11—H11119.5
C4—C3—H3119.7N1—C12—C8119.7 (2)
C3—C4—C5119.72 (19)N1—C12—H12120.1
C3—C4—H4120.1C8—C12—H12120.1
C5—C4—H4120.1C13i—C13—C9124.8 (2)
C4—C5—C6120.14 (18)C13i—C13—H13117.6
C4—C5—C7119.23 (18)C9—C13—H13117.6
C6—C5—C7120.59 (18)
O2—S1—C1—C6140.83 (16)C7—C5—C6—C1177.69 (17)
O3—S1—C1—C618.56 (18)C4—C5—C7—O411.6 (3)
O1—S1—C1—C6100.47 (16)C6—C5—C7—O4166.22 (19)
O2—S1—C1—C242.65 (18)C4—C5—C7—O5169.47 (18)
O3—S1—C1—C2164.92 (15)C6—C5—C7—O512.7 (3)
O1—S1—C1—C276.05 (17)C12—C8—C9—C101.6 (3)
C6—C1—C2—C31.1 (3)C12—C8—C9—C13177.52 (19)
S1—C1—C2—C3175.44 (15)C8—C9—C10—C111.8 (3)
C1—C2—C3—C40.2 (3)C13—C9—C10—C11177.25 (18)
C2—C3—C4—C51.3 (3)C12—N1—C11—C100.6 (3)
C3—C4—C5—C61.1 (3)C9—C10—C11—N10.8 (3)
C3—C4—C5—C7178.94 (18)C11—N1—C12—C80.9 (3)
C2—C1—C6—C51.2 (3)C9—C8—C12—N10.2 (3)
S1—C1—C6—C5175.28 (14)C8—C9—C13—C13i169.0 (2)
C4—C5—C6—C10.1 (3)C10—C9—C13—C13i10.1 (4)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.86 (1)1.85 (1)2.683 (2)163 (3)
N1—H1A···O1iii0.83 (1)1.91 (1)2.727 (2)172 (4)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.855 (10)1.854 (14)2.683 (2)163 (3)
N1—H1A···O1ii0.827 (10)1.907 (12)2.727 (2)172 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z1.
 

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (grant No. 21073157).

References

First citationDanylyuk, O., Leśniewska, B., Suwinska, K., Matoussi, N. & Coleman, A. W. (2010). Cryst. Growth Des. 10, 4542–4549.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLesniewska, B., Perret, F., Suwinska, K. & Coleman, A. W. (2014). CrystEngComm, 16, 4399–4405.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691–14699.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P. & Zhu, L.-G. (2006). Acta Cryst. E62, o1529–o1531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J. & Zhu, L.-G. (2007). Acta Cryst. C63, o484–o486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065–1066, 113–119.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds