research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 265-268

Crystal structure of (2,11-di­aza­[3.3](2,6)pyridino­phane-κ4N,N′,N′′,N′′′)(1,6,7,12-tetra­aza­perylene-κ2N1,N12)ruthenium(II) bis­­(hexa­fluorido­phosphate) aceto­nitrile 1.422-solvate

aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de

Edited by M. Zeller, Youngstown State University, USA (Received 5 September 2014; accepted 22 September 2014; online 30 September 2014)

In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L–N4H2)tape]2+ are formed {L–N4H2 = 2,11-di­aza­[3.3](2,6)pyridino­phane; tape = 1,6,7,12-tetra­aza­perylene}, held together by ππ stacking inter­actions via the tape ligand moieties with a centroid–centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α′-di­imine unit and the amine proton of a 2,11-di­aza­[3.3](2,6)-pyridino­phane ligand of the opposite complex cation. The combination of these inter­actions leads to an unusual nearly face-to-face ππ stacking mode. Additional weak C—H⋯N, C—H⋯F, N—H⋯F and P—F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925–3.984 Å) inter­actions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octa­hedral geometry, particularly manifested by the Namine—Ru—Namine angle of 153.79 (10)°. The counter-charge is provided by two hexa­fluorido­phosphate anions and the asymmetric unit is completed by aceto­nitrile solvent mol­ecules of crystallization. Disorder was observed for both the hexa­fluorido­phosphate anions as well as the aceto­nitrile solvate mol­ecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied aceto­nitrile mol­ecule. A second CH3CN mol­ecule is fully occupied, but 1:1 disordered across a crystallographic inversion center.

1. Chemical context

Heteroaromatic ligands with more than three fused rings are commonly called large-surface ligands. Such ligands have attracted attention due to their use as connecting building blocks for supra­molecular assemblies. If large-surface ligands feature more than one ligand donor site, connection between neighboring complexes can be realized through normal metal coordination (Ishow et al., 1998[Ishow, E., Gourdon, A., Launay, J.-P., Lecante, P., Verelst, M., Chiorboli, C., Scandola, F. & Bignozzi, C.-A. (1998). Inorg. Chem. 37, 3603-3609.]), but the large π system also allows for strong ππ stacking inter­actions. (Kammer et al., 2006[Kammer, S., Müller, H., Grunwald, N., Bellin, A., Kelling, A., Schilde, U., Mickler, W., Dosche, C. & Holdt, H.-J. (2006). Eur. J. Inorg. Chem. pp. 1547-1551.]; Gut et al., 2002[Gut, D., Rudi, A., Kopilov, J., Goldberg, I. & Kol, M. (2002). J. Am. Chem. Soc. 124, 5449-5456.]). In order to study the properties of ruthenium complexes containing large-surface ligands, we have recently reported an easy entry to such complexes (Brietzke, Mickler, Kelling, Schilde et al., 2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]). Therein, we formulated the advantages of the 2,11-dimethyl-2,11-di­aza­[3.3](2,6)-pyridino­phane (L–N4Me2) macrocycle over bi­pyridine (bpy)-type ligands in saturating the coordination sphere of an octa­hedral ruthenium complex containing the large-surface ligand of inter­est. The microwave-assisted synthesis of the precursor [Ru(L–N4Me2)]2+, starting from [Ru(DMSO)4Cl2] and L–N4Me2, in an ethano­lic solution finished within 30 min. It is not only fast, but also reproducible with only few byproducts, and hence requires no labor-intensive workup. Moreover, using the C2v symmetric macrocycle rather than bi­pyridine-type ligands avoids the formation of mono- and dinuclear complexes with multiple stereoisomeric forms (Brietzke, Mickler, Kelling & Holdt, 2012[Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788-2797.]; Brietzke et al., 2014[Brietzke, T., Kässler, D., Kelling, A., Schilde, U. & Holdt, H.-J. (2014). Acta Cryst. E70, m238-m239.]). To test the applicability of our microwave-assisted synthetic strategy for use with other related macrocyclic ligands, we choose the unmethyl­ated parent compound of L–N4Me2, 2,11-di­aza­[3.3](2,6)-pyridino­phane (L–N4H2) as a new ligand for RuII. Herein, we present the structure of the complex [Ru(L–N4H2)tape](PF6)2, (tape = 1,6,7,12-tetra­aza­perylene), obtained as its aceto­nitrile solvate.

[Scheme 1]

2. Structural commentary

Fig. 1[link] illustrates the mol­ecular structure of the complex [Ru(L–N4H2)tape]2+ in [Ru(C14H16N4)(C16H8N4](PF6)2·1.422CH3CN. The Ru—N bond lengths formed by the tape ligand (Table 1[link]) are very close to those reported earlier for [Ru(L–N4Me2)tape]2+ (Brietzke, Mickler, Kelling, Schilde et al., 2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]). The deviation of the Namine—Ru—Namine angle [153.79 (10)°] from the idealized value of 180° is slightly larger than for analogous ruthenium L–N4Me2 complexes [155.46 (9)–155.93 (17)°; Brietzke, Mickler, Kelling, Schilde et al., 2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]].

Table 1
Selected bond lengths (Å)

Ru1—N6 2.005 (2) Ru1—N2 2.055 (2)
Ru1—N4 2.018 (2) Ru1—N5 2.132 (3)
Ru1—N1 2.045 (2) Ru1—N3 2.135 (3)
[Figure 1]
Figure 1
The mol­ecular structure of [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422CH3CN with the atomic numbering scheme and 30% probability displacement ellipsoids. Anions and solvent mol­ecules are omitted for clarity.

3. Supra­molecular features

In the crystal structure, the cations form discrete centrosymmetric dimers, similar to those seen previously in mononuclear ruthenium–tape complexes. The dimers are held together by ππ stacking inter­actions via the planar tetra­aza­perylene units, with a typical inter­planar distance of 3.39 Å. For the tape ligand, the root-mean-square deviation from planarity was calculated to be 0.0211 Å. However, in the case of [Ru(L–N4H2)tape]2+, the dimers are also connected through bifurcated hydrogen bonds between one of the two L–N4H2 ligand amine protons and both nitro­gen atoms of the non-coordin­ating tape ligand α,α′-di­imine unit of the second complex cation of the dimer. In the crystal structure, these additional hydrogen bonds result in a short Ru⋯Ru distance of 8.8306 (2) Å, a tape ligand centroid–centroid distance of 3.49 (2) Å and an angle of 13.7 (1.4)° between the ring normal and the centroid-to-centroid vector. Therefore, the ππ stacking motif can be described as parallel-displaced, but near to face-to-face (Fig. 2[link]). In metal complexes, a near face-to-face alignment of the polycyclic units is extremely rare (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Furthermore, a large number of weak hydrogen bonds connect cations, anions and solvent mol­ecules, stabilizing the crystal packing (Table 2[link]), supported by P—F⋯π-ring (tape, py) inter­actions with F⋯centroid distances from 2.925 to 3.984 Å. In the packing, the dimers are oriented in a herringbone-like motif, surrounded by hexa­fluorido­phosphate anions. The solvent aceto­nitrile mol­ecules fill the space between complex moieties (Fig. 3[link]). For a description of the disorder of the anions and solvent mol­ecules, see the Refinement section.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯F2A_ai 0.91 2.22 3.037 (4) 150
N3—H3N⋯F4A_ai 0.91 2.55 3.236 (4) 133
N5—H5N⋯N7ii 0.88 2.20 3.006 (3) 153
N5—H5N⋯N8ii 0.88 2.69 3.373 (4) 135
C1—H1⋯F11A_aiii 0.95 2.48 3.376 (5) 157
C1—H1⋯F11B_biii 0.95 2.28 3.019 (11) 134
C3—H3⋯F8A_aiv 0.95 2.51 3.301 (8) 141
C3—H3⋯F12A_aiv 0.95 2.60 3.414 (5) 144
C3—H3⋯F8B_biv 0.95 2.50 3.28 (3) 140
C3—H3⋯F12B_biv 0.95 2.37 3.283 (10) 161
C5—H5⋯F7A_av 0.95 2.50 3.404 (5) 159
C8—H8⋯F1A_a 0.95 2.53 3.211 (4) 128
C8—H8⋯F4A_a 0.95 2.40 3.085 (4) 129
C8—H8⋯F1B_b 0.95 2.50 3.42 (2) 163
C17—H17A⋯N9_avi 0.99 2.65 3.500 (8) 145
C17—H17B⋯F4B_b 0.99 2.34 3.15 (2) 138
C19—H19⋯F9B_bvi 0.95 2.61 3.287 (12) 128
C21—H21⋯F11A_avii 0.95 2.48 3.166 (4) 129
C23—H23B⋯F6A_aiii 0.99 2.51 3.409 (4) 151
C24—H24A⋯F7A_aiii 0.99 2.53 3.224 (5) 127
C24—H24B⋯F2B_biii 0.99 2.09 3.00 (2) 152
C24—H24B⋯F5B_biii 0.99 2.51 3.41 (3) 150
C26—H26⋯F1A_aiii 0.95 2.55 3.328 (5) 140
C26—H26⋯F4B_biii 0.95 2.36 3.26 (3) 156
C28—H28⋯N10viii 0.95 2.23 3.169 (12) 169
C30—H30A⋯N9_avi 0.99 2.59 3.484 (7) 151
C30—H30B⋯F4A_ai 0.99 2.54 3.182 (5) 122
C32_a—H32A_a⋯F12A_avi 0.98 2.36 3.273 (8) 155
C32_a—H32B_a⋯F7A_a 0.98 2.54 3.150 (7) 121
C32_a—H32C_a⋯F1A_a 0.98 2.58 3.446 (8) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) x-1, y, z; (viii) x, y, z+1.
[Figure 2]
Figure 2
(a) Illustration of the asymmetric unit rendering the disorder of the hexa­fluorido­phosphate anions and aceto­nitrile solvate mol­ecules (see Refinement section for details). An additional ππ stacked [Ru(L–N4H2)tape]2+ cation demonstrates, due to the view along the normal of the tape ligand's r.m.s. plane, the nearly face-to-face ππ stacking motif between the tape ligand moieties. The atomic numbering is shown for the anions and solvent mol­ecules as well as for the ruthenium atoms. Hydrogen atoms are omitted for clarity. [Symmetry codes: (ii) 1 − x, −y, 1 −z, (ix) 1 −x, 1 −y, −z.] (b) A side view of the dimer formed by two [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422CH3CN, featuring the stacking inter­actions via planar tape ligand moieties. Only H atoms essential for illustration of the hydrogen bonds, shown as orange dashed lines, are included.
[Figure 3]
Figure 3
A packing diagram of the title compound is displayed along the c axis, illustrating the herringbone-type motif formed by two [Ru(L–N4H2)tape]2+ dimers. The disordered minor atoms are omitted for clarity.

4. Database survey

For related RuII complexes with 2,11-dimethyl-2,11-di­aza­[3.3](2,6)-pyridino­phane, see Brietzke, Mickler, Kelling, Schilde et al. (2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]). For RuII tetra­aza­perylene complexes containing bi­pyridine-type ligands, see: Brietzke, Mickler, Kelling & Holdt (2012[Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788-2797.]); Brietzke et al. (2014[Brietzke, T., Kässler, D., Kelling, A., Schilde, U. & Holdt, H.-J. (2014). Acta Cryst. E70, m238-m239.]).

5. Synthesis and crystallization

The syntheses of the ligands L–N4H2 (Bottino et al., 1988[Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521-3529.]) and tape (Brietzke, Mickler, Kelling & Holdt, 2012[Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788-2797.]) have been reported previously. [Ru(L–N4H2)tape](PF6)2 was synthesized as reported for [Ru(L–N4Me2)tape](PF6)2 (Brietzke, Mickler, Kelling, Schilde et al., 2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]), using L–N4H2 (73.5 mg, 306 µmol) instead of L–N4Me2. A yield of 44% (120.0 mg, 135 µmol) was obtained; m.p. > 573 K. 1H NMR = (MeCN–d3): δ = 8.69 (d, J = 5.5 Hz, 2H, Cd—H), 8.56 (d, J = 6.6 Hz, 2H, Ca—H), 8.01 (t, J = 8.0 Hz, 2H, C4—H), 7.77 (d, J = 5.5 Hz, 2H, Cc—H), 7.72 (d, J = 6.6 Hz, 2H, Cb—H), 7.65 (d, J = 8.0 Hz, 4H, C3—H + C5—H), 5.6 (bs, 2H, N—H), 4.83 (bd, J = 14.0 Hz, 4H, CH2), 4.47 (d, J = 17.4 Hz, 4H, CH2) p.p.m. 13C NMR = (MeCN-d3): δ = 160.0 (C2 + C6), 152.4 (Ce), 150.28 (Cd), 150.24 (Ca), 145.7 (Cf), 138.9 (C4), 136.7 (Cb′), 123.5 (Cb), 122.7 (C3 + C5), 122.0 (Cc), 119.3 (Ce′), 64.8 (CH2) p.p.m. ESI=-MS: calculated for [M–PF6]+ 743.0809; found 743.0778.

Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of diethyl ether into a saturated aceto­nitrile solution of [Ru(L–N4H2)tape](PF6)2. The solution was filled into a test tube, which was placed into a diethyl ether-containing bottle. Dark-green crystals began to form at ambient temperature within a few days.

6. Refinement

Disorder was observed for both the hexa­fluorido­phosphate anions as well as the aceto­nitrile solvate mol­ecules. Both PF6 anions were refined as disordered over one major and one minor moiety each. The geometry of the minor moieties were each restrained to be similar to that of the major moieties (within an estimated standard deviation of 0.02 Å). The minor moieties were subjected to a rigid bond restraint (RIGU command of SHELX2014, estimated standard deviation 0.004 Å2), and the anisotropic displacement parameters of the major and minor phospho­rus atoms were each constrained to be identical. Associated with the major moiety of the PF6 anion of P1 is an aceto­nitrile mol­ecule that is absent for the minor moiety. Subject to the restraints and constraints used, the occupancy ratios refined to 0.9215 (17) to 0.0785 (17) for the PF6 units of P1A and P1B, and to 0.801 (6) and 0.199 (6) for those of P2A and P2B.

A second aceto­nitrile mol­ecule is disordered across a crystallographic inversion center, with substantial overlap for the two carbon atoms of symmetry-related mol­ecules. The geometry of the mol­ecule was restrained to be similar to that of the first aceto­nitrile mol­ecule, and the ADPs of its C and N atoms were restrained to be have similar Uij components to their neighbors closer than 2 Å, including those of symmetry-related atoms (SIMU restraint in SHELX2014, estimated standard deviation 0.01 Å2).

All hydrogen atoms connected to C and N atoms were placed in their expected calculated positions and refined as riding with C—H = 0.98 (CH3), 0.99 (CH2), 0.95 (Carom), N—H = 1.0 Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C).

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3N
Mr 946.11
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.7027 (3), 21.7157 (7), 13.9377 (4)
β (°) 97.938 (2)
V3) 3508.08 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 1.30 × 0.65 × 0.31
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.613, 0.843
No. of measured, independent and observed [I > 2σ(I)] reflections 60767, 9454, 7744
Rint 0.087
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.09
No. of reflections 9454
No. of parameters 651
No. of restraints 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.84, −1.22
Computer programs: X-AREA and X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Heteroaromatic ligands with more than three fused rings are commonly called large-surface ligands. These ligand have attracted attention due to their use as connecting building blocks for supra­molecular assemblies. If large-surface ligands feature more than one ligand donor site, connection between neighboring complexes can be realized through normal metal coordination, (Ishow et al., 1998), but the large π system also allows for strong ππ stacking inter­actions. (Kammer et al., 2006; Gut et al., 2002). In order to study the properties of ruthenium complexes containing large-surface ligands, we have recently reported an easy entry to such complexes (Brietzke, Mickler, Kelling, Schilde et al., 2012). Therein, we formulated the advantages of the macrocycle 2,11-di­methyl-2,11-di­aza­[3.3](2,6)-pyridino­phane (L–N4Me2) over bi­pyridine (bpy)-type ligands in saturating the coordination sphere of an o­cta­hedral ruthenium complex containing the large-surface ligand of inter­est. The microwave-assisted synthesis of the precursor [Ru(L–N4Me2)]2+, starting from [Ru(DMSO)4Cl2] and L–N4Me2, in an ethano­lic solution finished within 30 min. It is not only fast, but also reproducible with only few byproducts, and hence requires no labor-intensive workup. Moreover, using the C2v symmetric macrocycle rather than bi­pyridine-type ligands avoids the formation of mono- and dinuclear complexes with multiple stereoisomeric forms (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke et al., 2014). To test the applicability of our microwave-assisted synthetic strategy for use with other related macrocyclic ligands, we choose the unmethyl­ated parent compound of L–N4Me2, 2,11-di­aza­[3.3](2,6)-pyridino­phane (L–N4H2) as a new ligand for RuII. Herein, we present the structure of the complex [Ru(L–N4H2)tape](PF6)2, (L–N4H2 = 2,11-di­aza­[3.3](2,6)pyridino­phane; tape = 1,6,7,12-tetra­aza­perylene), obtained as its aceto­nitrile solvate.

Structural commentary top

Fig. 1 illustrates the molecular structure of the complex [Ru(L–N4H2)tape]2+ in [Ru(C14H16N4)(C16H8N4](PF6)2·1.422 C2H3N. The Ru—N bond lengths formed by the tape ligand (Table 1) are very close to those reported earlier for [Ru(L–N4Me2)tape]2+ (Brietzke, Mickler, Kelling, Schilde et al., 2012). The deviation of the Namine—Ru—Namine angle [153.79 (10)°] from the idealized value of 180° is slightly larger than for analogous ruthenium L–N4Me2 complexes [155.46 (9)–155.93 (17)°; Brietzke, Mickler, Kelling, Schilde et al., 2012].

Supra­molecular features top

In the solid state, the cations form discrete centrosymmetric dimers, similar to those seen previously in mononuclear ruthenium–tape complexes. The dimers are held together by ππ stacking inter­actions via the planar tetra­aza­perylene units, with a typical inter­planar distance of 3.39 Å. For the tape ligand, the root-mean-square deviation from planarity was calculated to be 0.0211 Å. However, in the case of [Ru(L–N4H2)tape]2+, the dimers are also connected through bifurcated hydrogen bonds between one of the two L–N4H2 ligand amine protons and both nitro­gen atoms of the uncoordinated tape ligand α,α'-di­imine unit of the second complex cation of the dimer. In the solid state, these additional hydrogen bonds result in a short Ru···Ru distance of 8.8306 (2) Å, a tape ligand centroid–centroid distance of 3.49 (2) Å and an angle of 13.7 (1.4)° between the ring normal and the centroid-to-centroid vector. Therefore, the ππ stacking motif can be described as parallel-displaced, but near to face-to-face (Fig. 2). In metal complexes, a near face-to-face alignment of the polycyclic units is extremely rare (Janiak, 2000). Furthermore, a large number of weak hydrogen bonds connect cations, anions and solvent molecules, stabilizing the crystal packing (Table 2), supported by P—F···π-ring (tape, py) inter­actions [please provide some numerical details]. In the packing, the dimers are oriented in a herringbone-like motif, surrounded by hexafluoridophosphate anions. The solvent aceto­nitrile molecules fill the space between complex moieties (Fig. 3). For a description of the disorder of the anions and solvent molecules, see the Refinement section.

Database survey top

For related RuII complexes with 2,11-di­methyl-2,11-di­aza­[3.3](2,6)-pyridino­phane, see Brietzke, Mickler, Kelling, Schilde et al. (2012); Brietzke et al. (2014). For RuII tetra­aza­perylene complexes containing bi­pyridine-type ligands, see: Brietzke, Mickler, Kelling & Holdt (2012).

Synthesis and crystallization top

The synthesis of the ligands L–N4H2 (Bottino et al., 1988) and tape (Brietzke, Mickler, Kelling & Holdt, 2012) have been reported previously. [Ru(L–N4H2)tape](PF6)2 was synthesized as reported for [Ru(L–N4Me2)tape](PF6)2 (Brietzke, Mickler, Kelling, Schilde et al., 2012), using L–N4H2 (73.5 mg, 306 µmol) instead of L–N4Me2. A yield of 44% (120.0 mg, 135 µmol) was obtained; m.p. > 573 K. 1H NMR = (MeCN–d3): δ = 8.69 (d, J = 5.5 Hz, 2H, Cd—H), 8.56 (d, J = 6.6 Hz, 2H, Ca—H), 8.01 (t, J = 8.0 Hz, 2H, C4—H), 7.77 (d, J = 5.5 Hz, 2H, Cc—H), 7.72 (d, J = 6.6 Hz, 2H, Cb—H), 7.65 (d, J = 8.0 Hz, 4H, C3—H + C5—H), 5.6 (bs, 2H, N—H), 4.83 (bd, J = 14.0 Hz, 4H, CH2), 4.47 (d, J = 17.4 Hz, 4H, CH2) p.p.m. 13C NMR = (MeCN-d3): δ = 160.0 (C2 + C6), 152.4 (Ce), 150.28 (Cd), 150.24 (Ca), 145.7 (Cf), 138.9 (C4), 136.7 (Cb'), 123.5 (Cb), 122.7 (C3 + C5), 122.0 (Cc), 119.3 (Ce'), 64.8 (CH2) p.p.m.. ESI=-MS: calculated for [M–PF6]+ 743.0809; found 743.0778.

Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of di­ethyl ether into a saturated aceto­nitrile solution of [Ru(L–N4H2)tape](PF6)2. The solution was filled into a test tube, which was placed into a di­ethyl ether-containing bottle. Dark-green crystals began to form at ambient temperature within a few days.

Refinement top

Disorder was observed for both the hexafluoridophosphate anions as well as the aceto­nitrile solvate molecules. Both PF6 anions were refined as disordered over one major and one minor moiety each. The geometry of the minor moieties were each restrained to be similar to that of the major moieties (within an estimated standard deviation of 0.02 Å). The minor moieties were subjected to a rigid bond restraint (RIGU command of SHELX2014, estimated standard deviation 0.004 Å2), and the anisotropic displacement parameters of the major and minor phospho­rus atoms were each constrained to be identical. Associated with the major moiety of the PF6 anion of P1 is an aceto­nitrile molecule that is absent for the minor moiety. Subject to the restraints and constraints used, the occupancy ratios refined to 0.9215 (17) to 0.0785 (17) for the PF6 units of P1A and P1B, and to 0.801 (6) and 0.1999 (6) for those of P2A and P2B.

A second aceto­nitrile molecule is disordered across a crystallographic inversion center, with substantial overlap for the two carbon atoms of symmetry-related molecules. The geometry of the molecule was restrained to be similar to that of the first aceto­nitrile molecule, and the ADPs of its C and N atoms were restrained to be have similar Uij components to their neighbors closer than 2 Å, including those of symmetry-related atoms (SIMU restraint in SHELX2014, estimated standard deviation 0.01 Å2).

All hydrogen atoms connected to C and N atoms were placed in their expected calculated positions and refined as riding with C—H = 0.98 (CH3), 0.99 (CH2), 0.95 (Carom), N—H = 1.0 Å, and with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H) = 1.5Ueq(C).

Crystal data, data collection and structure refinement details are summarized in Table 3.

Related literature top

For related literature, see: Bottino et al. (1988); Brietzke et al. (2014); Brietzke, Mickler, Kelling & Holdt (2012); Brietzke, Mickler, Kelling, Schilde, Krüger & Holdt (2012); Janiak (2000).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422 C2H3N with the atomic numbering scheme and 30% probability displacement ellipsoids. Anions and solvent molecules are omitted for clarity.
[Figure 2] Fig. 2. (a) Illustration of the asymmetric unit rendering the disorder of the hexafluoridophosphate anions and acetonitrile solvate molecules (see Refinement section for details). An additional ππ stacked [Ru(L–N4H2)tape]2+ cation demonstrates, due to the view along the normal of the tape ligand's r.m.s. plane, the nearly face-to-face ππ stacking motif between the tape ligand moieties. The atomic numbering is shown for the anions and solvent molecules as well as for the ruthenium atoms. Hydrogen atoms are omitted for clarity. [Symmetry codes: (ii) 1-x, -y, 1-z, (ix) 1-x, 1-y, -z.] (b) A side view of the dimer formed by two [Ru(L–N4H2)tape]2+ in [Ru(L–N4H2)tape](PF6)2·1.422 C2H3N, featuring the stacking interactions via planar tape ligand moieties. Only H atoms essential for illustration of the hydrogen bonds, shown as orange dashed lines, are included.
[Figure 3] Fig. 3. A packing diagram of the title compound is displayed along the c axis, illustrating the herringbone-type motif formed by two [Ru(L–N4H2)tape]2+ dimers. The disordered minor atoms are omitted for clarity.
(2,11-Diaza[3.3](2,6)pyridinophane-κ4N,N',N'',N''')(1,6,7,12-tetraazaperylene-κ2N1,N12)ruthenium(II) bis(hexafluoridophosphate) acetonitrile 1.422-solvate top
Crystal data top
[Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3NF(000) = 1893.4
Mr = 946.11Dx = 1.791 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7027 (3) ÅCell parameters from 63561 reflections
b = 21.7157 (7) Åθ = 1.5–29.6°
c = 13.9377 (4) ŵ = 0.65 mm1
β = 97.938 (2)°T = 150 K
V = 3508.08 (18) Å3Prism, dark green
Z = 41.30 × 0.65 × 0.31 mm
Data collection top
STOE IPDS 2
diffractometer
9454 independent reflections
Radiation source: sealed X-ray tube7744 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.087
Detector resolution: 6.67 pixels mm-1θmax = 29.3°, θmin = 1.8°
rotation method scansh = 1614
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
k = 2929
Tmin = 0.613, Tmax = 0.843l = 1919
60767 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0787P)2 + 2.127P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
9454 reflectionsΔρmax = 1.84 e Å3
651 parametersΔρmin = 1.22 e Å3
183 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (4)
Crystal data top
[Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3NV = 3508.08 (18) Å3
Mr = 946.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7027 (3) ŵ = 0.65 mm1
b = 21.7157 (7) ÅT = 150 K
c = 13.9377 (4) Å1.30 × 0.65 × 0.31 mm
β = 97.938 (2)°
Data collection top
STOE IPDS 2
diffractometer
9454 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
7744 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.843Rint = 0.087
60767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048183 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.09Δρmax = 1.84 e Å3
9454 reflectionsΔρmin = 1.22 e Å3
651 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.40042 (2)0.19157 (2)0.58944 (2)0.03723 (9)
N10.49654 (19)0.11825 (11)0.64626 (15)0.0367 (5)
N20.46354 (19)0.15956 (11)0.46830 (16)0.0368 (4)
N30.5182 (2)0.26652 (13)0.6188 (2)0.0537 (7)
H3N0.59050.25850.60610.064*
N40.3005 (2)0.26143 (11)0.53082 (16)0.0398 (5)
N50.2354 (2)0.14885 (11)0.58215 (17)0.0411 (5)
H5N0.23570.11120.55820.049*
N60.3522 (2)0.22164 (12)0.71383 (17)0.0458 (6)
N70.7375 (2)0.04526 (12)0.55594 (17)0.0410 (5)
N80.7102 (2)0.00109 (12)0.36755 (17)0.0431 (5)
C10.5101 (2)0.09624 (14)0.73954 (19)0.0419 (6)
H10.47290.11760.78610.050*
C20.5738 (2)0.04565 (14)0.76894 (18)0.0403 (6)
H20.57930.03210.83420.048*
C30.7009 (3)0.03870 (14)0.72236 (19)0.0416 (6)
H30.71370.05530.78600.050*
C40.7498 (3)0.06536 (15)0.6482 (2)0.0464 (7)
H40.79610.10090.66340.056*
C50.6950 (3)0.02554 (16)0.2771 (2)0.0489 (7)
H50.73360.00610.22960.059*
C60.6285 (3)0.07603 (15)0.2488 (2)0.0465 (7)
H60.62100.09040.18390.056*
C70.4978 (3)0.15793 (14)0.3018 (2)0.0435 (6)
H70.48360.17560.23900.052*
C80.4473 (3)0.18253 (14)0.3751 (2)0.0433 (6)
H80.39830.21730.36150.052*
C90.5501 (2)0.08765 (12)0.58204 (17)0.0330 (5)
C100.6189 (2)0.03545 (12)0.60524 (17)0.0327 (5)
C110.6734 (2)0.00476 (12)0.53437 (18)0.0339 (5)
C120.6582 (2)0.02915 (12)0.43437 (18)0.0349 (5)
C130.5882 (2)0.08220 (13)0.41366 (17)0.0341 (5)
C140.5334 (2)0.11075 (12)0.48493 (18)0.0335 (5)
C150.6323 (2)0.01304 (13)0.70162 (18)0.0357 (5)
C160.5714 (2)0.10613 (14)0.31837 (19)0.0392 (6)
C170.4761 (3)0.31805 (17)0.5503 (3)0.0596 (9)
H17A0.50400.35800.57870.072*
H17B0.50740.31260.48840.072*
C180.3465 (3)0.31816 (15)0.5318 (3)0.0486 (7)
C190.2756 (3)0.36940 (16)0.5145 (2)0.0534 (7)
H190.30770.40960.51460.064*
C200.1575 (3)0.36070 (16)0.4970 (2)0.0499 (7)
H200.10760.39520.48500.060*
C210.1115 (3)0.30167 (15)0.4970 (2)0.0467 (7)
H210.03040.29530.48540.056*
C220.1864 (2)0.25246 (14)0.51419 (18)0.0406 (6)
C230.1520 (3)0.18614 (14)0.5144 (2)0.0447 (6)
H23A0.14830.16930.44800.054*
H23B0.07410.18280.53400.054*
C240.2034 (3)0.14619 (16)0.6821 (2)0.0505 (7)
H24A0.23330.10760.71430.061*
H24B0.11830.14620.67880.061*
C250.2531 (3)0.20074 (15)0.7401 (2)0.0486 (7)
C260.2081 (4)0.22746 (19)0.8173 (2)0.0605 (10)
H260.13820.21290.83670.073*
C270.2687 (4)0.2763 (2)0.8653 (2)0.0725 (13)
H270.23990.29520.91860.087*
C280.3680 (4)0.2973 (2)0.8372 (3)0.0711 (13)
H280.40820.33080.87030.085*
C290.4110 (3)0.26922 (17)0.7592 (2)0.0578 (9)
C300.5223 (3)0.2836 (2)0.7230 (3)0.0664 (11)
H30A0.53880.32810.73090.080*
H30B0.58560.26070.76200.080*
P2A_a0.8068 (3)0.42105 (13)0.4826 (2)0.0447 (4)0.801 (6)
F7A_a0.7169 (3)0.4256 (2)0.3859 (2)0.0686 (11)0.801 (6)
F8A_a0.8952 (6)0.4132 (4)0.5788 (4)0.073 (2)0.801 (6)
F9A_a0.8867 (5)0.4699 (2)0.4427 (3)0.119 (2)0.801 (6)
F10A_a0.7290 (3)0.3697 (2)0.5217 (3)0.1071 (18)0.801 (6)
F11A_a0.8748 (3)0.3704 (2)0.4319 (2)0.0715 (11)0.801 (6)
F12A_a0.7436 (5)0.4740 (2)0.5315 (3)0.122 (2)0.801 (6)
P2B_b0.7944 (11)0.4130 (6)0.4882 (10)0.0447 (4)0.199 (6)
F7B_b0.6911 (14)0.4026 (9)0.4033 (11)0.076 (4)0.199 (6)
F8B_b0.8948 (19)0.4222 (13)0.5756 (15)0.053 (4)0.199 (6)
F9B_b0.7949 (14)0.4848 (5)0.4693 (10)0.075 (4)0.199 (6)
F10B_b0.8082 (15)0.3414 (5)0.4931 (10)0.090 (4)0.199 (6)
F11B_b0.8886 (12)0.4117 (9)0.4167 (9)0.081 (4)0.199 (6)
F12B_b0.6988 (9)0.4239 (8)0.5536 (8)0.068 (3)0.199 (6)
P1A_a0.33081 (8)0.31111 (5)0.17529 (8)0.0538 (3)0.9215 (17)
F1A_a0.4320 (3)0.31248 (12)0.2642 (3)0.0900 (11)0.9215 (17)
F2A_a0.2279 (2)0.30908 (12)0.08663 (17)0.0644 (6)0.9215 (17)
F3A_a0.3730 (4)0.37384 (18)0.1391 (4)0.1430 (19)0.9215 (17)
F4A_a0.2860 (2)0.24711 (14)0.2119 (2)0.0810 (8)0.9215 (17)
F5A_a0.2477 (3)0.3457 (2)0.2363 (2)0.1186 (15)0.9215 (17)
F6A_a0.4133 (3)0.2749 (2)0.1160 (3)0.1041 (11)0.9215 (17)
P1B_b0.3791 (8)0.3534 (5)0.2328 (8)0.0538 (3)0.0785 (17)
F1B_b0.2932 (17)0.3068 (10)0.2780 (18)0.061 (5)0.0785 (17)
F2B_b0.4610 (19)0.3981 (11)0.185 (2)0.082 (6)0.0785 (17)
F3B_b0.2821 (18)0.3626 (12)0.1461 (17)0.073 (5)0.0785 (17)
F4B_b0.4705 (19)0.3486 (12)0.3286 (16)0.076 (5)0.0785 (17)
F5B_b0.433 (2)0.2970 (9)0.187 (2)0.065 (5)0.0785 (17)
F6B_b0.324 (2)0.4083 (11)0.288 (2)0.085 (6)0.0785 (17)
N9_a0.5253 (5)0.5581 (3)0.2892 (6)0.135 (3)0.9215 (17)
C31_a0.4952 (4)0.5135 (3)0.3184 (5)0.0832 (15)0.9215 (17)
C32_a0.4527 (5)0.4596 (3)0.3578 (6)0.105 (2)0.9215 (17)
H32A_a0.37990.46890.38210.158*0.9215 (17)
H32B_a0.50920.44460.41110.158*0.9215 (17)
H32C_a0.43940.42790.30740.158*0.9215 (17)
N100.4690 (12)0.4178 (5)0.0541 (15)0.189 (6)0.5
C330.482 (2)0.4656 (7)0.023 (2)0.151 (6)0.5
C340.5079 (14)0.5265 (5)0.0086 (15)0.088 (4)0.5
H34A0.44260.55340.01440.132*0.5
H34B0.57690.54100.01720.132*0.5
H34C0.52190.52730.07960.132*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03631 (13)0.04128 (15)0.03304 (13)0.00739 (8)0.00104 (8)0.00181 (8)
N10.0365 (11)0.0423 (12)0.0302 (10)0.0077 (9)0.0011 (8)0.0006 (8)
N20.0355 (10)0.0411 (12)0.0333 (10)0.0032 (9)0.0029 (8)0.0002 (9)
N30.0371 (12)0.0515 (15)0.0704 (18)0.0019 (11)0.0005 (12)0.0090 (13)
N40.0406 (12)0.0421 (12)0.0352 (10)0.0084 (10)0.0001 (9)0.0012 (9)
N50.0420 (12)0.0401 (12)0.0417 (12)0.0047 (10)0.0078 (9)0.0039 (9)
N60.0511 (14)0.0498 (14)0.0344 (11)0.0186 (11)0.0018 (10)0.0052 (10)
N70.0402 (12)0.0447 (13)0.0363 (11)0.0072 (10)0.0011 (9)0.0051 (9)
N80.0434 (12)0.0516 (14)0.0348 (11)0.0036 (10)0.0076 (9)0.0061 (10)
C10.0432 (14)0.0517 (16)0.0308 (12)0.0084 (12)0.0055 (10)0.0032 (11)
C20.0434 (14)0.0486 (15)0.0282 (11)0.0044 (12)0.0024 (10)0.0005 (10)
C30.0447 (14)0.0463 (15)0.0318 (12)0.0063 (12)0.0018 (10)0.0003 (10)
C40.0505 (16)0.0466 (16)0.0394 (14)0.0125 (13)0.0029 (12)0.0025 (12)
C50.0502 (16)0.0620 (19)0.0362 (13)0.0018 (14)0.0122 (12)0.0040 (13)
C60.0510 (16)0.0565 (18)0.0329 (12)0.0012 (14)0.0093 (11)0.0022 (12)
C70.0464 (15)0.0485 (16)0.0349 (12)0.0006 (12)0.0029 (11)0.0080 (11)
C80.0422 (14)0.0469 (15)0.0394 (14)0.0027 (12)0.0010 (11)0.0070 (11)
C90.0286 (10)0.0381 (13)0.0316 (11)0.0003 (9)0.0015 (9)0.0022 (9)
C100.0302 (11)0.0356 (12)0.0311 (11)0.0008 (9)0.0000 (9)0.0022 (9)
C110.0300 (11)0.0376 (12)0.0331 (11)0.0031 (9)0.0006 (9)0.0044 (9)
C120.0321 (11)0.0410 (13)0.0312 (11)0.0022 (10)0.0033 (9)0.0039 (10)
C130.0305 (11)0.0400 (13)0.0314 (11)0.0034 (9)0.0026 (9)0.0015 (9)
C140.0296 (11)0.0380 (12)0.0321 (11)0.0008 (9)0.0015 (9)0.0012 (9)
C150.0353 (12)0.0402 (13)0.0303 (11)0.0002 (10)0.0006 (9)0.0018 (10)
C160.0389 (13)0.0461 (15)0.0327 (12)0.0044 (11)0.0053 (10)0.0006 (10)
C170.0472 (17)0.0492 (18)0.081 (3)0.0014 (14)0.0055 (17)0.0021 (17)
C180.0466 (16)0.0450 (15)0.0534 (17)0.0032 (13)0.0043 (13)0.0038 (13)
C190.0590 (19)0.0432 (16)0.0572 (18)0.0068 (14)0.0060 (15)0.0073 (14)
C200.0555 (18)0.0518 (17)0.0414 (14)0.0147 (14)0.0025 (13)0.0042 (13)
C210.0440 (15)0.0586 (18)0.0354 (13)0.0153 (13)0.0018 (11)0.0015 (12)
C220.0407 (13)0.0492 (15)0.0303 (11)0.0089 (12)0.0002 (10)0.0032 (10)
C230.0376 (14)0.0517 (17)0.0433 (15)0.0064 (12)0.0005 (11)0.0073 (12)
C240.0557 (18)0.0502 (17)0.0493 (16)0.0112 (14)0.0208 (14)0.0039 (13)
C250.0599 (18)0.0540 (17)0.0324 (13)0.0250 (14)0.0081 (12)0.0026 (11)
C260.074 (2)0.072 (2)0.0370 (14)0.0348 (19)0.0137 (14)0.0020 (14)
C270.088 (3)0.088 (3)0.0377 (15)0.049 (2)0.0052 (17)0.0161 (17)
C280.072 (3)0.079 (3)0.0531 (19)0.037 (2)0.0241 (18)0.0289 (18)
C290.0607 (19)0.0594 (19)0.0465 (16)0.0259 (16)0.0171 (14)0.0149 (14)
C300.0500 (18)0.068 (2)0.074 (2)0.0122 (17)0.0178 (17)0.0264 (19)
P2A_a0.0495 (8)0.0536 (9)0.0305 (5)0.0068 (6)0.0035 (5)0.0021 (6)
F7A_a0.0612 (19)0.095 (3)0.0446 (14)0.0162 (18)0.0104 (13)0.0000 (16)
F8A_a0.074 (3)0.103 (5)0.038 (2)0.017 (3)0.0093 (19)0.001 (2)
F9A_a0.144 (4)0.119 (4)0.087 (3)0.066 (3)0.012 (3)0.035 (2)
F10A_a0.065 (2)0.146 (4)0.111 (3)0.030 (2)0.017 (2)0.056 (3)
F11A_a0.0552 (16)0.095 (3)0.0623 (18)0.0215 (17)0.0006 (13)0.0264 (18)
F12A_a0.166 (5)0.118 (4)0.070 (2)0.093 (4)0.020 (3)0.035 (2)
P2B_b0.0495 (8)0.0536 (9)0.0305 (5)0.0068 (6)0.0035 (5)0.0021 (6)
F7B_b0.075 (7)0.082 (9)0.067 (7)0.024 (5)0.008 (5)0.032 (6)
F8B_b0.056 (7)0.062 (8)0.042 (7)0.006 (5)0.008 (5)0.015 (5)
F9B_b0.101 (8)0.057 (5)0.070 (7)0.003 (4)0.015 (6)0.008 (4)
F10B_b0.115 (10)0.067 (5)0.080 (7)0.016 (5)0.020 (6)0.016 (4)
F11B_b0.085 (7)0.110 (10)0.050 (5)0.029 (6)0.021 (5)0.011 (6)
F12B_b0.052 (5)0.097 (9)0.056 (5)0.012 (5)0.011 (4)0.038 (5)
P1A_a0.0385 (4)0.0567 (6)0.0637 (6)0.0047 (4)0.0018 (4)0.0080 (4)
F1A_a0.0674 (17)0.0674 (17)0.119 (3)0.0021 (13)0.0435 (18)0.0102 (16)
F2A_a0.0545 (13)0.0872 (18)0.0500 (12)0.0095 (11)0.0013 (10)0.0056 (10)
F3A_a0.107 (3)0.093 (2)0.210 (5)0.032 (2)0.046 (3)0.080 (3)
F4A_a0.0538 (13)0.0899 (19)0.0937 (19)0.0141 (13)0.0099 (13)0.0333 (16)
F5A_a0.104 (2)0.160 (4)0.082 (2)0.069 (3)0.0224 (18)0.049 (2)
F6A_a0.0612 (17)0.136 (3)0.121 (3)0.0272 (19)0.0349 (17)0.007 (2)
P1B_b0.0385 (4)0.0567 (6)0.0637 (6)0.0047 (4)0.0018 (4)0.0080 (4)
F1B_b0.040 (7)0.061 (9)0.078 (10)0.011 (6)0.008 (7)0.022 (7)
F2B_b0.054 (9)0.066 (9)0.123 (12)0.009 (7)0.004 (8)0.029 (8)
F3B_b0.050 (8)0.063 (11)0.103 (8)0.001 (7)0.004 (6)0.033 (7)
F4B_b0.052 (8)0.066 (11)0.103 (8)0.006 (7)0.014 (6)0.008 (7)
F5B_b0.047 (9)0.058 (7)0.087 (10)0.002 (6)0.001 (8)0.020 (7)
F6B_b0.061 (10)0.073 (8)0.119 (11)0.012 (7)0.002 (8)0.005 (7)
N9_a0.069 (3)0.072 (3)0.264 (9)0.004 (3)0.021 (4)0.011 (4)
C31_a0.047 (2)0.073 (3)0.127 (5)0.007 (2)0.005 (3)0.018 (3)
C32_a0.064 (3)0.099 (4)0.152 (6)0.001 (3)0.010 (3)0.007 (4)
N100.114 (9)0.095 (8)0.335 (18)0.005 (7)0.052 (11)0.012 (11)
C330.079 (9)0.113 (10)0.247 (15)0.004 (9)0.025 (10)0.005 (11)
C340.039 (5)0.085 (6)0.142 (10)0.010 (5)0.018 (6)0.025 (7)
Geometric parameters (Å, º) top
Ru1—N62.005 (2)C20—C211.390 (5)
Ru1—N42.018 (2)C20—H200.9500
Ru1—N12.045 (2)C21—C221.382 (4)
Ru1—N22.055 (2)C21—H210.9500
Ru1—N52.132 (3)C22—C231.495 (4)
Ru1—N32.135 (3)C23—H23A0.9900
N1—C91.338 (3)C23—H23B0.9900
N1—C11.374 (3)C24—C251.505 (5)
N2—C141.339 (3)C24—H24A0.9900
N2—C81.380 (4)C24—H24B0.9900
N3—C301.492 (5)C25—C261.388 (4)
N3—C171.509 (5)C26—C271.395 (6)
N3—H3N0.9051C26—H260.9500
N4—C221.338 (4)C27—C281.356 (7)
N4—C181.343 (4)C27—H270.9500
N5—C241.493 (4)C28—C291.400 (5)
N5—C231.499 (4)C28—H280.9500
N5—H5N0.8825C29—C301.494 (6)
N6—C251.342 (5)C30—H30A0.9900
N6—C291.349 (5)C30—H30B0.9900
N7—C111.330 (4)P2A_a—F9A_a1.566 (4)
N7—C41.347 (4)P2A_a—F12A_a1.573 (4)
N8—C121.328 (3)P2A_a—F11A_a1.581 (4)
N8—C51.356 (4)P2A_a—F10A_a1.583 (4)
C1—C21.359 (4)P2A_a—F8A_a1.585 (4)
C1—H10.9500P2A_a—F7A_a1.594 (4)
C2—C151.424 (4)P2B_b—F12B_b1.556 (13)
C2—H20.9500P2B_b—F10B_b1.565 (14)
C3—C41.376 (4)P2B_b—F9B_b1.581 (14)
C3—C151.388 (4)P2B_b—F8B_b1.584 (14)
C3—H30.9500P2B_b—F11B_b1.585 (13)
C4—H40.9500P2B_b—F7B_b1.586 (14)
C5—C61.371 (5)P1A_a—F3A_a1.556 (3)
C5—H50.9500P1A_a—F6A_a1.566 (3)
C6—C161.411 (4)P1A_a—F5A_a1.569 (3)
C6—H60.9500P1A_a—F1A_a1.592 (3)
C7—C81.358 (4)P1A_a—F4A_a1.594 (3)
C7—C161.416 (4)P1A_a—F2A_a1.603 (3)
C7—H70.9500P1B_b—F3B_b1.552 (15)
C8—H80.9500P1B_b—F5B_b1.555 (16)
C9—C101.402 (4)P1B_b—F2B_b1.576 (15)
C9—C141.431 (3)P1B_b—F4B_b1.594 (15)
C10—C111.415 (3)P1B_b—F6B_b1.601 (16)
C10—C151.417 (3)P1B_b—F1B_b1.614 (15)
C11—C121.479 (4)N9_a—C31_a1.125 (8)
C12—C131.420 (4)C31_a—C32_a1.413 (8)
C13—C141.400 (3)C32_a—H32A_a0.9800
C13—C161.414 (4)C32_a—H32B_a0.9800
C17—C181.504 (5)C32_a—H32C_a0.9800
C17—H17A0.9900N10—C331.125 (8)
C17—H17B0.9900C33—C341.413 (8)
C18—C191.389 (5)C34—H34A0.9800
C19—C201.383 (5)C34—H34B0.9800
C19—H190.9500C34—H34C0.9800
N6—Ru1—N483.61 (9)C21—C22—C23125.5 (3)
N6—Ru1—N197.14 (9)C22—C23—N5111.7 (2)
N4—Ru1—N1177.60 (10)C22—C23—H23A109.3
N6—Ru1—N2175.16 (9)N5—C23—H23A109.3
N4—Ru1—N2100.11 (9)C22—C23—H23B109.3
N1—Ru1—N279.27 (9)N5—C23—H23B109.3
N6—Ru1—N579.72 (10)H23A—C23—H23B107.9
N4—Ru1—N580.65 (10)N5—C24—C25110.0 (3)
N1—Ru1—N597.22 (9)N5—C24—H24A109.7
N2—Ru1—N5103.86 (9)C25—C24—H24A109.7
N6—Ru1—N380.65 (12)N5—C24—H24B109.7
N4—Ru1—N380.06 (11)C25—C24—H24B109.7
N1—Ru1—N3102.31 (11)H24A—C24—H24B108.2
N2—Ru1—N396.87 (11)N6—C25—C26120.3 (3)
N5—Ru1—N3153.79 (10)N6—C25—C24113.8 (3)
C9—N1—C1117.2 (2)C26—C25—C24125.8 (4)
C9—N1—Ru1114.26 (17)C25—C26—C27117.8 (4)
C1—N1—Ru1128.52 (18)C25—C26—H26121.1
C14—N2—C8116.8 (2)C27—C26—H26121.1
C14—N2—Ru1113.92 (17)C28—C27—C26121.2 (3)
C8—N2—Ru1129.2 (2)C28—C27—H27119.4
C30—N3—C17113.3 (3)C26—C27—H27119.4
C30—N3—Ru1108.0 (2)C27—C28—C29119.4 (4)
C17—N3—Ru1107.4 (2)C27—C28—H28120.3
C30—N3—H3N109.4C29—C28—H28120.3
C17—N3—H3N104.6N6—C29—C28118.9 (4)
Ru1—N3—H3N114.3N6—C29—C30114.4 (3)
C22—N4—C18121.6 (3)C28—C29—C30126.5 (4)
C22—N4—Ru1118.0 (2)N3—C30—C29111.4 (3)
C18—N4—Ru1118.4 (2)N3—C30—H30A109.3
C24—N5—C23112.5 (2)C29—C30—H30A109.3
C24—N5—Ru1108.35 (19)N3—C30—H30B109.3
C23—N5—Ru1107.56 (18)C29—C30—H30B109.3
C24—N5—H5N109.4H30A—C30—H30B108.0
C23—N5—H5N107.3F9A_a—P2A_a—F12A_a89.9 (4)
Ru1—N5—H5N111.7F9A_a—P2A_a—F11A_a87.2 (3)
C25—N6—C29122.3 (3)F12A_a—P2A_a—F11A_a177.0 (4)
C25—N6—Ru1118.9 (2)F9A_a—P2A_a—F10A_a177.8 (4)
C29—N6—Ru1117.9 (2)F12A_a—P2A_a—F10A_a92.3 (4)
C11—N7—C4117.6 (2)F11A_a—P2A_a—F10A_a90.7 (3)
C12—N8—C5117.3 (3)F9A_a—P2A_a—F8A_a91.2 (4)
C2—C1—N1123.6 (2)F12A_a—P2A_a—F8A_a90.2 (4)
C2—C1—H1118.2F11A_a—P2A_a—F8A_a89.6 (3)
N1—C1—H1118.2F10A_a—P2A_a—F8A_a88.4 (4)
C1—C2—C15119.8 (2)F9A_a—P2A_a—F7A_a90.8 (3)
C1—C2—H2120.1F12A_a—P2A_a—F7A_a91.5 (3)
C15—C2—H2120.1F11A_a—P2A_a—F7A_a88.8 (2)
C4—C3—C15118.2 (3)F10A_a—P2A_a—F7A_a89.5 (2)
C4—C3—H3120.9F8A_a—P2A_a—F7A_a177.3 (4)
C15—C3—H3120.9F12B_b—P2B_b—F10B_b101.7 (11)
N7—C4—C3125.4 (3)F12B_b—P2B_b—F9B_b88.2 (10)
N7—C4—H4117.3F10B_b—P2B_b—F9B_b170.0 (12)
C3—C4—H4117.3F12B_b—P2B_b—F8B_b92.7 (12)
N8—C5—C6125.2 (3)F10B_b—P2B_b—F8B_b91.7 (13)
N8—C5—H5117.4F9B_b—P2B_b—F8B_b89.2 (12)
C6—C5—H5117.4F12B_b—P2B_b—F11B_b171.9 (13)
C5—C6—C16118.5 (3)F10B_b—P2B_b—F11B_b86.2 (11)
C5—C6—H6120.8F9B_b—P2B_b—F11B_b83.9 (10)
C16—C6—H6120.8F8B_b—P2B_b—F11B_b88.8 (12)
C8—C7—C16120.6 (3)F12B_b—P2B_b—F7B_b85.6 (9)
C8—C7—H7119.7F10B_b—P2B_b—F7B_b87.3 (10)
C16—C7—H7119.7F9B_b—P2B_b—F7B_b92.1 (10)
C7—C8—N2123.2 (3)F8B_b—P2B_b—F7B_b177.8 (14)
C7—C8—H8118.4F11B_b—P2B_b—F7B_b93.0 (11)
N2—C8—H8118.4F3A_a—P1A_a—F6A_a91.3 (3)
N1—C9—C10123.7 (2)F3A_a—P1A_a—F5A_a90.3 (3)
N1—C9—C14116.3 (2)F6A_a—P1A_a—F5A_a178.4 (3)
C10—C9—C14120.0 (2)F3A_a—P1A_a—F1A_a90.06 (19)
C9—C10—C11121.3 (2)F6A_a—P1A_a—F1A_a88.5 (2)
C9—C10—C15118.8 (2)F5A_a—P1A_a—F1A_a91.1 (2)
C11—C10—C15119.9 (2)F3A_a—P1A_a—F4A_a179.29 (18)
N7—C11—C10121.4 (2)F6A_a—P1A_a—F4A_a89.1 (2)
N7—C11—C12119.8 (2)F5A_a—P1A_a—F4A_a89.3 (2)
C10—C11—C12118.8 (2)F1A_a—P1A_a—F4A_a90.53 (15)
N8—C12—C13122.5 (2)F3A_a—P1A_a—F2A_a90.70 (18)
N8—C12—C11119.3 (2)F6A_a—P1A_a—F2A_a91.83 (18)
C13—C12—C11118.2 (2)F5A_a—P1A_a—F2A_a88.55 (15)
C14—C13—C16119.1 (2)F1A_a—P1A_a—F2A_a179.18 (18)
C14—C13—C12121.6 (2)F4A_a—P1A_a—F2A_a88.72 (14)
C16—C13—C12119.3 (2)F3B_b—P1B_b—F5B_b94.2 (14)
N2—C14—C13123.8 (2)F3B_b—P1B_b—F2B_b90.7 (13)
N2—C14—C9116.2 (2)F5B_b—P1B_b—F2B_b90.3 (13)
C13—C14—C9120.0 (2)F3B_b—P1B_b—F4B_b173.7 (15)
C3—C15—C10117.4 (2)F5B_b—P1B_b—F4B_b91.9 (13)
C3—C15—C2125.6 (2)F2B_b—P1B_b—F4B_b91.0 (13)
C10—C15—C2117.0 (2)F3B_b—P1B_b—F6B_b88.9 (13)
C6—C16—C13117.2 (3)F5B_b—P1B_b—F6B_b175.5 (15)
C6—C16—C7126.2 (3)F2B_b—P1B_b—F6B_b92.9 (14)
C13—C16—C7116.5 (2)F4B_b—P1B_b—F6B_b85.0 (13)
C18—C17—N3110.1 (3)F3B_b—P1B_b—F1B_b87.5 (12)
C18—C17—H17A109.6F5B_b—P1B_b—F1B_b88.8 (12)
N3—C17—H17A109.6F2B_b—P1B_b—F1B_b178.0 (15)
C18—C17—H17B109.6F4B_b—P1B_b—F1B_b90.9 (12)
N3—C17—H17B109.6F6B_b—P1B_b—F1B_b88.1 (13)
H17A—C17—H17B108.2N9_a—C31_a—C32_a176.6 (7)
N4—C18—C19120.3 (3)C31_a—C32_a—H32A_a109.5
N4—C18—C17113.2 (3)C31_a—C32_a—H32B_a109.5
C19—C18—C17126.5 (3)H32A_a—C32_a—H32B_a109.5
C20—C19—C18118.6 (3)C31_a—C32_a—H32C_a109.5
C20—C19—H19120.7H32A_a—C32_a—H32C_a109.5
C18—C19—H19120.7H32B_a—C32_a—H32C_a109.5
C19—C20—C21120.3 (3)N10—C33—C34174.0 (19)
C19—C20—H20119.9C33—C34—H34A109.5
C21—C20—H20119.9C33—C34—H34B109.5
C22—C21—C20118.4 (3)H34A—C34—H34B109.5
C22—C21—H21120.8C33—C34—H34C109.5
C20—C21—H21120.8H34A—C34—H34C109.5
N4—C22—C21120.8 (3)H34B—C34—H34C109.5
N4—C22—C23113.7 (2)
C9—N1—C1—C20.3 (4)C1—C2—C15—C100.9 (4)
Ru1—N1—C1—C2177.9 (2)C5—C6—C16—C130.7 (4)
N1—C1—C2—C151.0 (5)C5—C6—C16—C7178.7 (3)
C11—N7—C4—C30.5 (5)C14—C13—C16—C6179.9 (3)
C15—C3—C4—N70.4 (5)C12—C13—C16—C61.4 (4)
C12—N8—C5—C61.5 (5)C14—C13—C16—C70.7 (4)
N8—C5—C6—C160.8 (5)C12—C13—C16—C7178.1 (2)
C16—C7—C8—N20.0 (5)C8—C7—C16—C6179.6 (3)
C14—N2—C8—C70.3 (4)C8—C7—C16—C130.2 (4)
Ru1—N2—C8—C7177.6 (2)C30—N3—C17—C1885.1 (4)
C1—N1—C9—C100.5 (4)Ru1—N3—C17—C1834.0 (4)
Ru1—N1—C9—C10178.98 (19)C22—N4—C18—C190.6 (5)
C1—N1—C9—C14179.0 (2)Ru1—N4—C18—C19164.4 (3)
Ru1—N1—C9—C140.6 (3)C22—N4—C18—C17179.1 (3)
N1—C9—C10—C11179.9 (2)Ru1—N4—C18—C1717.1 (4)
C14—C9—C10—C110.3 (4)N3—C17—C18—N434.3 (4)
N1—C9—C10—C150.6 (4)N3—C17—C18—C19147.3 (3)
C14—C9—C10—C15179.0 (2)N4—C18—C19—C200.5 (5)
C4—N7—C11—C100.8 (4)C17—C18—C19—C20178.8 (3)
C4—N7—C11—C12179.3 (3)C18—C19—C20—C210.0 (5)
C9—C10—C11—N7179.1 (2)C19—C20—C21—C220.4 (5)
C15—C10—C11—N70.2 (4)C18—N4—C22—C210.3 (4)
C9—C10—C11—C120.8 (4)Ru1—N4—C22—C21164.1 (2)
C15—C10—C11—C12179.9 (2)C18—N4—C22—C23179.1 (3)
C5—N8—C12—C130.7 (4)Ru1—N4—C22—C2317.1 (3)
C5—N8—C12—C11179.1 (3)C20—C21—C22—N40.2 (4)
N7—C11—C12—N80.9 (4)C20—C21—C22—C23178.4 (3)
C10—C11—C12—N8179.2 (2)N4—C22—C23—N531.3 (3)
N7—C11—C12—C13179.3 (2)C21—C22—C23—N5150.0 (3)
C10—C11—C12—C130.6 (4)C24—N5—C23—C2290.0 (3)
N8—C12—C13—C14179.4 (2)Ru1—N5—C23—C2229.3 (3)
C11—C12—C13—C140.7 (4)C23—N5—C24—C2586.8 (3)
N8—C12—C13—C160.7 (4)Ru1—N5—C24—C2532.0 (3)
C11—C12—C13—C16179.5 (2)C29—N6—C25—C260.9 (4)
C8—N2—C14—C130.8 (4)Ru1—N6—C25—C26169.9 (2)
Ru1—N2—C14—C13178.5 (2)C29—N6—C25—C24178.3 (3)
C8—N2—C14—C9179.6 (2)Ru1—N6—C25—C2412.7 (3)
Ru1—N2—C14—C91.9 (3)N5—C24—C25—N630.1 (4)
C16—C13—C14—N21.0 (4)N5—C24—C25—C26152.7 (3)
C12—C13—C14—N2177.7 (2)N6—C25—C26—C270.3 (5)
C16—C13—C14—C9179.4 (2)C24—C25—C26—C27177.3 (3)
C12—C13—C14—C91.9 (4)C25—C26—C27—C280.4 (5)
N1—C9—C14—N21.7 (3)C26—C27—C28—C290.5 (6)
C10—C9—C14—N2177.9 (2)C25—N6—C29—C280.8 (5)
N1—C9—C14—C13178.7 (2)Ru1—N6—C29—C28170.0 (2)
C10—C9—C14—C131.7 (4)C25—N6—C29—C30176.9 (3)
C4—C3—C15—C100.9 (4)Ru1—N6—C29—C3013.9 (4)
C4—C3—C15—C2178.9 (3)C27—C28—C29—N60.1 (5)
C9—C10—C15—C3180.0 (2)C27—C28—C29—C30175.7 (4)
C11—C10—C15—C30.7 (4)C17—N3—C30—C2990.1 (4)
C9—C10—C15—C20.1 (4)Ru1—N3—C30—C2928.7 (4)
C11—C10—C15—C2179.2 (2)N6—C29—C30—N328.9 (4)
C1—C2—C15—C3179.3 (3)C28—C29—C30—N3155.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···F2A_ai0.912.223.037 (4)150
N3—H3N···F4A_ai0.912.553.236 (4)133
N5—H5N···N7ii0.882.203.006 (3)153
N5—H5N···N8ii0.882.693.373 (4)135
C1—H1···F11A_aiii0.952.483.376 (5)157
C1—H1···F11B_biii0.952.283.019 (11)134
C3—H3···F8A_aiv0.952.513.301 (8)141
C3—H3···F12A_aiv0.952.603.414 (5)144
C3—H3···F8B_biv0.952.503.28 (3)140
C3—H3···F12B_biv0.952.373.283 (10)161
C5—H5···F7A_av0.952.503.404 (5)159
C8—H8···F1A_a0.952.533.211 (4)128
C8—H8···F4A_a0.952.403.085 (4)129
C8—H8···F1B_b0.952.503.42 (2)163
C17—H17A···N9_avi0.992.653.500 (8)145
C17—H17B···F4B_b0.992.343.15 (2)138
C19—H19···F9B_bvi0.952.613.287 (12)128
C21—H21···F11A_avii0.952.483.166 (4)129
C23—H23B···F6A_aiii0.992.513.409 (4)151
C24—H24A···F7A_aiii0.992.533.224 (5)127
C24—H24B···F2B_biii0.992.093.00 (2)152
C24—H24B···F5B_biii0.992.513.41 (3)150
C26—H26···F1A_aiii0.952.553.328 (5)140
C26—H26···F4B_biii0.952.363.26 (3)156
C28—H28···N10viii0.952.233.169 (12)169
C30—H30A···N9_avi0.992.593.484 (7)151
C30—H30B···F4A_ai0.992.543.182 (5)122
C32_a—H32A_a···F12A_avi0.982.363.273 (8)155
C32_a—H32B_a···F7A_a0.982.543.150 (7)121
C32_a—H32C_a···F1A_a0.982.583.446 (8)148
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x, y, z+1.
Selected bond lengths (Å) top
Ru1—N62.005 (2)Ru1—N22.055 (2)
Ru1—N42.018 (2)Ru1—N52.132 (3)
Ru1—N12.045 (2)Ru1—N32.135 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···F2A_ai0.912.223.037 (4)149.8
N3—H3N···F4A_ai0.912.553.236 (4)133.2
N5—H5N···N7ii0.882.203.006 (3)152.5
N5—H5N···N8ii0.882.693.373 (4)134.9
C1—H1···F11A_aiii0.952.483.376 (5)156.6
C1—H1···F11B_biii0.952.283.019 (11)134.4
C3—H3···F8A_aiv0.952.513.301 (8)140.6
C3—H3···F12A_aiv0.952.603.414 (5)143.6
C3—H3···F8B_biv0.952.503.28 (3)139.7
C3—H3···F12B_biv0.952.373.283 (10)160.9
C5—H5···F7A_av0.952.503.404 (5)159.1
C8—H8···F1A_a0.952.533.211 (4)128.4
C8—H8···F4A_a0.952.403.085 (4)129.1
C8—H8···F1B_b0.952.503.42 (2)162.6
C17—H17A···N9_avi0.992.653.500 (8)144.5
C17—H17B···F4B_b0.992.343.15 (2)138.4
C19—H19···F9B_bvi0.952.613.287 (12)128.4
C21—H21···F11A_avii0.952.483.166 (4)129.1
C23—H23B···F6A_aiii0.992.513.409 (4)151.2
C24—H24A···F7A_aiii0.992.533.224 (5)126.9
C24—H24B···F2B_biii0.992.093.00 (2)152.1
C24—H24B···F5B_biii0.992.513.41 (3)150.2
C26—H26···F1A_aiii0.952.553.328 (5)139.9
C26—H26···F4B_biii0.952.363.26 (3)156.2
C28—H28···N10viii0.952.233.169 (12)169.0
C30—H30A···N9_avi0.992.593.484 (7)150.8
C30—H30B···F4A_ai0.992.543.182 (5)122.1
C32_a—H32A_a···F12A_avi0.982.363.273 (8)155.3
C32_a—H32B_a···F7A_a0.982.543.150 (7)120.5
C32_a—H32C_a···F1A_a0.982.583.446 (8)147.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ru(C14H16N4)(C16H8N4)](PF6)2·1.422C2H3N
Mr946.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.7027 (3), 21.7157 (7), 13.9377 (4)
β (°) 97.938 (2)
V3)3508.08 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)1.30 × 0.65 × 0.31
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2011)
Tmin, Tmax0.613, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
60767, 9454, 7744
Rint0.087
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.09
No. of reflections9454
No. of parameters651
No. of restraints183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.84, 1.22

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge financial assistance provided by the University of Potsdam.

References

First citationBottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrietzke, T., Kässler, D., Kelling, A., Schilde, U. & Holdt, H.-J. (2014). Acta Cryst. E70, m238–m239.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788–2797.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632–4643.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGut, D., Rudi, A., Kopilov, J., Goldberg, I. & Kol, M. (2002). J. Am. Chem. Soc. 124, 5449–5456.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIshow, E., Gourdon, A., Launay, J.-P., Lecante, P., Verelst, M., Chiorboli, C., Scandola, F. & Bignozzi, C.-A. (1998). Inorg. Chem. 37, 3603–3609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKammer, S., Müller, H., Grunwald, N., Bellin, A., Kelling, A., Schilde, U., Mickler, W., Dosche, C. & Holdt, H.-J. (2006). Eur. J. Inorg. Chem. pp. 1547–1551.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages 265-268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds