Download citation
Download citation
link to html
In the title compound, C17H27N3OS2, the amide group is approximately coplanar with the pyridine ring [dihedral angle = 1.6 (1)°], whereas the di­thio­carbamate group is nearly perpendicular to the pyridine ring [dihedral angle = 76.7 (1)°]. In the crystal, pairs of weak C-H...O hydrogen bonds link the mol­ecules into inversion dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814019321/xu5816sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814019321/xu5816Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814019321/xu5816Isup3.cml
Supplementary material

CCDC reference: 1021242

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.061
  • wR factor = 0.211
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C14 Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0063 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 7.813 Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.074 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 25 Report PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 2 Note
Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 1 Report PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.10 Report PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 102 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Chemical context top

Pyridine derivatives are important compounds (Joule & Mills, 2000) and various substituted derivatives can be synthesized via li­thia­tion and subsequent reaction with electrophiles (Turner, 1983). During research focused on synthesis of novel substituted pyridines (El-Hiti, 2003; Smith et al., 1999) we have synthesized the title compound in high yield. For the X-ray structures for related compounds, see: El-Hiti et al., 2014; Koch et al., 2008; Mazik & Sicking, 2004.

Structural commentary top

In the molecule of the title compound, C17H27N3OS2, (Fig. 1), the pyridine group is almost co-planar (1.6 (1)o) to the amide group whereas the angle to the carbamodi­thio­ate is 76.7 (1)o. No strong hydrogen bonding inter­actions occur, with pairs of molecules being linked by pairs of C—H..O contacts (Fig. 2). The molecular pairs are stacked along [010] leading to a structure in which the t-butyl groups form bilayers parallel to the ab plane.

Synthesis and crystallization top

4-Pivalamido­pyridin-3-yl diiso­propyl­carbamodi­thio­ate was obtained in 93% yield from double li­thia­tion of 4-(pivaloyl­amino)­pyridin-3-yl with n-butyl­lithium at –78 to 0°C in anhydrous THF under nitro­gen followed by reaction with tetra­iso­propyl­thiuram di­sulfide (Smith et al., 1988, 1994). Crystallization from ethyl acetate gave colorless crystals of the title compound. The spectroscopic data of the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported (Smith et al., 1994).

Refinement details top

H atoms were positioned geometrically and refined using a riding model, with Uiso(H) constrained to be 1.2 times Ueq for the bonded atom except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Related literature top

For background to pyridine derivatives, see: Joule & Mills (2000); Smith et al. (1999). For the synthesis of the title compound, see: Smith et al. (1988). For spectroscopic data for this compound, see: Smith et al. (1994). For routes to modify the pyridine ring, see: El-Hiti (2003); Turner (1983). For crystal structures of related compounds, see: El-Hiti et al. (2014); Koch et al. (2008); Mazik & Sicking (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. The symmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing in the crystal structure showing C—H···O contacts as dotted lines with hydrogen atoms omitted for clarity.
4-(2,2-Dimethylpropanamido)pyridin-3-yl N,N-diisopropyldithiocarbamate top
Crystal data top
C17H27N3OS2Z = 2
Mr = 353.53F(000) = 380
Triclinic, P1Dx = 1.203 Mg m3
a = 7.9776 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5412 (9) ÅCell parameters from 3458 reflections
c = 13.0541 (14) Åθ = 4.7–73.3°
α = 83.099 (8)°µ = 2.52 mm1
β = 83.227 (8)°T = 293 K
γ = 84.608 (7)°Block, colourless
V = 976.33 (17) Å30.36 × 0.24 × 0.19 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3391 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.021
ω scansθmax = 73.5°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.662, Tmax = 1.000k = 1111
6616 measured reflectionsl = 1116
3779 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1014P)2 + 0.897P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3779 reflectionsΔρmax = 0.39 e Å3
215 parametersΔρmin = 0.29 e Å3
Crystal data top
C17H27N3OS2γ = 84.608 (7)°
Mr = 353.53V = 976.33 (17) Å3
Triclinic, P1Z = 2
a = 7.9776 (7) ÅCu Kα radiation
b = 9.5412 (9) ŵ = 2.52 mm1
c = 13.0541 (14) ÅT = 293 K
α = 83.099 (8)°0.36 × 0.24 × 0.19 mm
β = 83.227 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3779 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3391 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 1.000Rint = 0.021
6616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.16Δρmax = 0.39 e Å3
3779 reflectionsΔρmin = 0.29 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0193 (4)0.7422 (4)0.4668 (2)0.0459 (7)
C20.1318 (4)0.6291 (3)0.4352 (2)0.0452 (7)
C30.2680 (5)0.5875 (4)0.4929 (3)0.0537 (8)
H30.34490.51210.47590.064*
C40.2866 (5)0.6596 (5)0.5752 (3)0.0635 (10)
H40.37920.63110.61200.076*
C50.0505 (5)0.8057 (4)0.5520 (3)0.0565 (8)
H50.02530.87980.57270.068*
C60.1194 (4)0.8903 (3)0.2919 (2)0.0419 (6)
C70.2165 (5)1.0250 (5)0.1370 (3)0.0658 (10)
H70.09631.04260.12930.079*
C80.3150 (9)1.1680 (6)0.1370 (5)0.0960 (17)
H8A0.43411.15600.14410.144*
H8B0.28471.22500.07290.144*
H8C0.28891.21410.19390.144*
C90.2421 (9)0.9459 (7)0.0484 (4)0.1004 (18)
H9A0.16240.86410.04670.151*
H9B0.22501.00630.01560.151*
H9C0.35520.91650.05730.151*
C100.4303 (4)0.9068 (4)0.2679 (3)0.0534 (8)
H100.49060.95530.21080.064*
C110.4589 (6)0.7522 (5)0.2694 (4)0.0733 (12)
H11A0.40320.71740.20710.110*
H11B0.57810.74180.27360.110*
H11C0.41350.69900.32850.110*
C120.5115 (5)0.9746 (5)0.3641 (3)0.0704 (11)
H12A0.47140.92200.42500.106*
H12B0.63240.97390.36840.106*
H12C0.48161.07050.35920.106*
C130.2026 (5)0.4709 (4)0.2956 (3)0.0554 (8)
C140.1560 (6)0.4522 (4)0.1882 (3)0.0613 (9)
C150.0198 (8)0.5172 (7)0.1668 (4)0.0987 (18)
H15A0.10280.47670.21830.148*
H15B0.04190.49830.09920.148*
H15C0.02550.61770.16930.148*
C160.2920 (10)0.5217 (8)0.1114 (4)0.113 (2)
H16A0.28060.50050.04270.169*
H16B0.40200.48590.13010.169*
H16C0.27850.62250.11340.169*
C170.1623 (8)0.2942 (5)0.1788 (4)0.0875 (15)
H17A0.07840.25200.22890.131*
H17B0.27250.25070.19140.131*
H17C0.13990.28030.11020.131*
N10.1823 (5)0.7673 (4)0.6064 (3)0.0678 (9)
N20.1026 (4)0.5683 (3)0.3481 (2)0.0523 (7)
H20.00790.59610.32390.063*
N30.2495 (3)0.9371 (3)0.2384 (2)0.0467 (6)
O20.3244 (5)0.4055 (4)0.3306 (3)0.0946 (12)
S10.17473 (10)0.79230 (10)0.41574 (6)0.0518 (3)
S20.08414 (10)0.91374 (10)0.25296 (7)0.0535 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (16)0.0523 (17)0.0417 (15)0.0037 (13)0.0063 (12)0.0018 (13)
C20.0450 (17)0.0487 (17)0.0425 (15)0.0054 (13)0.0070 (13)0.0038 (12)
C30.0479 (19)0.061 (2)0.0522 (18)0.0012 (15)0.0112 (15)0.0045 (15)
C40.055 (2)0.083 (3)0.055 (2)0.0003 (19)0.0214 (17)0.0078 (18)
C50.058 (2)0.064 (2)0.0489 (18)0.0016 (16)0.0091 (15)0.0113 (15)
C60.0387 (15)0.0442 (15)0.0439 (15)0.0038 (12)0.0051 (12)0.0079 (12)
C70.053 (2)0.087 (3)0.055 (2)0.0067 (19)0.0119 (16)0.0123 (19)
C80.117 (5)0.075 (3)0.093 (4)0.006 (3)0.029 (3)0.017 (3)
C90.125 (5)0.124 (5)0.048 (2)0.006 (4)0.005 (3)0.007 (3)
C100.0340 (16)0.072 (2)0.0564 (19)0.0040 (15)0.0084 (14)0.0128 (16)
C110.054 (2)0.082 (3)0.090 (3)0.021 (2)0.011 (2)0.019 (2)
C120.046 (2)0.097 (3)0.070 (2)0.007 (2)0.0047 (17)0.025 (2)
C130.056 (2)0.0511 (18)0.061 (2)0.0001 (15)0.0111 (16)0.0131 (15)
C140.072 (2)0.059 (2)0.055 (2)0.0088 (18)0.0056 (18)0.0155 (16)
C150.111 (4)0.120 (4)0.076 (3)0.014 (3)0.046 (3)0.040 (3)
C160.142 (6)0.136 (5)0.066 (3)0.069 (5)0.002 (3)0.005 (3)
C170.111 (4)0.071 (3)0.087 (3)0.011 (3)0.009 (3)0.033 (2)
N10.068 (2)0.084 (2)0.0559 (18)0.0008 (18)0.0189 (16)0.0206 (16)
N20.0496 (16)0.0579 (16)0.0520 (15)0.0043 (13)0.0158 (12)0.0134 (13)
N30.0377 (13)0.0586 (16)0.0447 (14)0.0029 (11)0.0089 (11)0.0055 (11)
O20.090 (2)0.098 (2)0.102 (2)0.042 (2)0.041 (2)0.045 (2)
S10.0388 (4)0.0662 (5)0.0473 (5)0.0015 (3)0.0035 (3)0.0026 (4)
S20.0376 (4)0.0614 (5)0.0600 (5)0.0087 (3)0.0049 (3)0.0029 (4)
Geometric parameters (Å, º) top
C1—C51.386 (5)C10—C111.511 (6)
C1—C21.406 (5)C10—C121.530 (5)
C1—S11.760 (3)C10—H100.9800
C2—N21.390 (4)C11—H11A0.9600
C2—C31.395 (5)C11—H11B0.9600
C3—C41.373 (5)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—N11.332 (5)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—N11.336 (5)C13—O21.210 (5)
C5—H50.9300C13—N21.361 (5)
C6—N31.331 (4)C13—C141.527 (5)
C6—S21.671 (3)C14—C151.522 (7)
C6—S11.797 (3)C14—C171.523 (6)
C7—N31.489 (5)C14—C161.530 (7)
C7—C91.498 (7)C15—H15A0.9600
C7—C81.509 (7)C15—H15B0.9600
C7—H70.9800C15—H15C0.9600
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C9—H9A0.9600C17—H17A0.9600
C9—H9B0.9600C17—H17B0.9600
C9—H9C0.9600C17—H17C0.9600
C10—N31.494 (4)N2—H20.8600
C5—C1—C2118.5 (3)C10—C11—H11C109.5
C5—C1—S1117.4 (3)H11A—C11—H11C109.5
C2—C1—S1123.5 (2)H11B—C11—H11C109.5
N2—C2—C3124.4 (3)C10—C12—H12A109.5
N2—C2—C1118.3 (3)C10—C12—H12B109.5
C3—C2—C1117.3 (3)H12A—C12—H12B109.5
C4—C3—C2118.8 (3)C10—C12—H12C109.5
C4—C3—H3120.6H12A—C12—H12C109.5
C2—C3—H3120.6H12B—C12—H12C109.5
N1—C4—C3125.0 (3)O2—C13—N2122.1 (4)
N1—C4—H4117.5O2—C13—C14121.6 (4)
C3—C4—H4117.5N2—C13—C14116.2 (3)
N1—C5—C1124.3 (4)C15—C14—C17107.8 (4)
N1—C5—H5117.9C15—C14—C13114.1 (3)
C1—C5—H5117.9C17—C14—C13108.3 (4)
N3—C6—S2125.8 (2)C15—C14—C16110.6 (5)
N3—C6—S1115.0 (2)C17—C14—C16110.7 (4)
S2—C6—S1119.17 (18)C13—C14—C16105.3 (4)
N3—C7—C9111.2 (4)C14—C15—H15A109.5
N3—C7—C8111.3 (4)C14—C15—H15B109.5
C9—C7—C8114.1 (4)H15A—C15—H15B109.5
N3—C7—H7106.6C14—C15—H15C109.5
C9—C7—H7106.6H15A—C15—H15C109.5
C8—C7—H7106.6H15B—C15—H15C109.5
C7—C8—H8A109.5C14—C16—H16A109.5
C7—C8—H8B109.5C14—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C14—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—C9—H9A109.5C14—C17—H17A109.5
C7—C9—H9B109.5C14—C17—H17B109.5
H9A—C9—H9B109.5H17A—C17—H17B109.5
C7—C9—H9C109.5C14—C17—H17C109.5
H9A—C9—H9C109.5H17A—C17—H17C109.5
H9B—C9—H9C109.5H17B—C17—H17C109.5
N3—C10—C11113.1 (3)C4—N1—C5116.0 (3)
N3—C10—C12113.3 (3)C13—N2—C2129.2 (3)
C11—C10—C12114.6 (4)C13—N2—H2115.4
N3—C10—H10104.9C2—N2—H2115.4
C11—C10—H10104.9C6—N3—C7118.8 (3)
C12—C10—H10104.9C6—N3—C10126.5 (3)
C10—C11—H11A109.5C7—N3—C10114.7 (3)
C10—C11—H11B109.5C1—S1—C6104.98 (15)
H11A—C11—H11B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.543.447 (5)164
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.543.447 (5)164
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds