organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o985-o986

Crystal structure of N,N′-bis­­[(pyridin-4-yl)meth­yl]naphthalene di­imide

aCentro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico
*Correspondence e-mail: adg@unam.mx

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 July 2014; accepted 4 August 2014; online 9 August 2014)

In the centrosymmetric title compound, C26H16N4O4 {systematic name: 6,13-bis­[(pyridin-4-yl)meth­yl]-6,13-di­aza­tetra­cyclo­[6.6.2.04,16011,15]hexa­deca-1,3,8,10,15-pantaene-5,7,12,14-tetrone}, the central ring system is essentially planar [maximum deviation = 0.0234 (8) Å] and approximately perpendicular to the terminal pyridine ring [dihedral angle = 84.38 (3)°]. The mol­ecules displays a trans conformation with the (pyridin-4-yl)methyl groups on both sides of the central naphthalene di­imide plane. In the crystal, mol­ecules are linked by ππ stacking between parallel pyridine rings [centroid–centroid distances = 3.7014 (8) and 3.8553 (8) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture.

1. Related literature

For crystal structures of related compounds, see: Xu et al. (2011[Xu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.]); Reczek et al. (2006[Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M. & Iverson, B. L. (2006). J. Am. Chem. Soc. 128, 7995-8002.]); Li et al. (2009[Li, G.-B., Liu, J.-M., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Inorg. Chem. 48, 8659-8661.]). For colorimetric applications and nanoscale properties, see: Pandeeswar et al. (2014[Pandeeswar, M., Khare, H., Ramakumar, S. & Govindaraju, T. (2014). RSC Adv. 4, 20154-20163.]); Trivedi et al. (2009[Trivedi, D. R., Fujiki, Y., Fujita, N., Shinkai, S. & Sada, K. (2009). Chem. Asia. J. 4, 254-261.]); Matsunaga et al. (2014[Matsunaga, Y., Goto, K., Kubono, K., Sako, K. & Shinmyozu, T. (2014). Chem. Eur. J. 20, 7309-7316.]); Pantoş et al. (2007[Pantoş, G. D., Wietor, J. L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. Engl. 46, 2238-2240.]). For the design of transistors, see: Jung et al. (2009[Jung, B. J., Sun, J., Lee, T., Sarjeant, A. & Katz, H. E. (2009). Chem. Mater. 12, 94-101.]); Oh et al. (2010[Oh, J. H., Suraru, S. L., Lee, W. Y., Könemann, M., Höffken, H. W., Röger, C. & Bao, Z. (2010). Adv. Funct. Mater. 20, 2148-2156.]). For organic supra­molecular solids, see: Cheney et al. (2007[Cheney, M. L., Mcmanus, G. J., Perman, J. A., Wang, Z. & Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 616-617.]). For the design and synthesis of one-dimensional coordination polymers, see: Li et al. (2011[Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763-2772.], 2012[Li, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012). CrystEngComm, 14, 2152-2158.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H16N4O4

  • Mr = 448.43

  • Triclinic, [P \overline 1]

  • a = 5.5891 (4) Å

  • b = 7.5232 (5) Å

  • c = 11.9525 (8) Å

  • α = 77.093 (3)°

  • β = 88.445 (4)°

  • γ = 87.590 (4)°

  • V = 489.37 (6) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.34 × 0.13 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.555, Tmax = 0.753

  • 14032 measured reflections

  • 1748 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.05

  • 1748 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.59 3.5014 (15) 165
C13—H13⋯O2ii 0.93 2.51 3.3242 (15) 146
Symmetry codes: (i) x-1, y, z; (ii) -x-1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The assembly of organic molecules in solid state has attracted much attention in supramolecular chemistry, especially in crystal engineering and materials science (Cheney et al., 2007). The study and understanding of intermolecular interactions in a crystal is a central topic for design and synthesis of functional organic materials with desirable optical, electronic and structural properties (Pandeeswar et al., 2014). Herein we report the crystal structure of the title compound, which was prepared from 1,4,5,8-naphthalene dianhydride and 4-aminomethyl-pyridine under reflux in dry DMF. Suitable single-crystals for X-ray diffraction, were obtained directly from reaction mixture after of 12 h. The compound with methanol solvate (1:1) has been reported (Li et al., 2009) and was obtained as by-product during preparation of transition polymeric complexes in a mixture (methanol:chloroform) under solvothermal conditions, structurally this solvated is similar to compound reported here, both trans conformation of N-(4-pyridilmethyl) groups as to the dihedral angles between central ring and pyridil groups (86.34°). The title compound has also been studied as a semi-rigid ditopic ligand to the synthesis of one-dimensional coordination polymers with Zn(II), Mn(II), Co(II), Cd(II) where the ligand plays the key role to determine the final conformation of the polymeric structures (Li et al., 2011, 2012). The coordination of (I) to the salts of ZnCl2, Zn(ClO4)2, Zn(CF3SO3)2 generates one-dimensional polymeric structures where trans conformation of (I) is maintained and not significant structural changes observed. A series of one-dimensional metal-organic frameworks of Mn(SCN)2, Co(SCN)2 and Cd(SCN)2 with (I) have been reported, in all cases (I) shows a Z mode conformation and links up two metal centers such that one-dimensional chains are formed with π-π stacking interactions (centroid-centroid distances = 3.92–4.14 Å).

Related literature top

For crystal structures of related compounds, see: Xu et al. (2011); Reczek et al. (2006); Li et al. (2009). For colorimetric applications and nanoscale properties, see: Pandeeswar et al. (2014); Trivedi et al. (2009); Matsunaga et al. (2014); Pantoş et al. (2007). For the design of transistors, see: Jung et al. (2009); Oh et al. (2010). For organic supramolecular solids, see: Cheney et al. (2007). For the design and synthesis of one-dimensional coordination polymers, see: Li et al. (2011, 2012).

Experimental top

All chemicals were acquired commercially and were used without further purification. A mixture of 1,4,5,8-naphthalene dianhydride (1.0 g, 0.005 mol) and 4-aminomethyl-pyridine (1.08 g, 0.01 mol) in dry DMF (35 ml) was heated under reflux in atmosphere of dinitrogen and stirring for 2 h. Afterwards the resulting yellow solution was cooling and pallid yellow crystals were obtained on the wall of the flask directly from the mixture which corresponds to the compound I pure according to 1H NMR in DMSO-d6. Yield: 95%. Elemental analysis calculated (%) for C26H16N4O4; C, 69.64; H, 3.60; N, 12.49; found: C, 69.60; H, 3.62; N, 12.45.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure with displacement ellipsoids drawn at the 30% probability level and H atoms as small sphere of arbitrary radii.
[Figure 2] Fig. 2. View p-stacking interactions in the crystal.
6,13-Bis[(pyridin-4-yl)methyl]-6,13-diazatetracyclo[6.6.2.04,16011,15]hexadeca-1,3,8,10,15-pantaene-5,7,12,14-tetrone top
Crystal data top
C26H16N4O4Z = 1
Mr = 448.43F(000) = 232
Triclinic, P1Dx = 1.522 Mg m3
a = 5.5891 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.5232 (5) ÅCell parameters from 9981 reflections
c = 11.9525 (8) Åθ = 3.8–68.3°
α = 77.093 (3)°µ = 0.87 mm1
β = 88.445 (4)°T = 296 K
γ = 87.590 (4)°Plate, colourless
V = 489.37 (6) Å30.34 × 0.13 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1748 independent reflections
Radiation source: Incoatec ImuS1643 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.045
ω scansθmax = 68.3°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 56
Tmin = 0.555, Tmax = 0.753k = 99
14032 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.0799P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1748 reflectionsΔρmax = 0.19 e Å3
154 parametersΔρmin = 0.19 e Å3
Crystal data top
C26H16N4O4γ = 87.590 (4)°
Mr = 448.43V = 489.37 (6) Å3
Triclinic, P1Z = 1
a = 5.5891 (4) ÅCu Kα radiation
b = 7.5232 (5) ŵ = 0.87 mm1
c = 11.9525 (8) ÅT = 296 K
α = 77.093 (3)°0.34 × 0.13 × 0.08 mm
β = 88.445 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1643 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.753Rint = 0.045
14032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
1748 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43898 (16)0.61174 (13)0.75255 (7)0.0471 (3)
N10.0333 (2)0.68325 (18)1.12186 (9)0.0587 (3)
C10.1698 (3)0.7665 (2)1.09030 (12)0.0600 (4)
H10.27270.77851.14780.072*
O20.21818 (18)0.96340 (12)0.62202 (8)0.0540 (3)
N20.10767 (18)0.78494 (13)0.68880 (8)0.0375 (3)
C20.2394 (2)0.83681 (19)0.97785 (11)0.0482 (3)
H20.38470.89380.96130.058*
C60.1602 (2)0.90343 (17)0.76740 (10)0.0425 (3)
H6A0.07421.01980.74280.051*
H6B0.33010.92620.76280.051*
C30.0913 (2)0.82151 (15)0.89059 (9)0.0372 (3)
C50.1744 (3)0.66899 (19)1.03678 (12)0.0511 (3)
H50.31830.61101.05600.061*
C40.1216 (2)0.73457 (17)0.92155 (10)0.0435 (3)
H40.22760.72040.86580.052*
C70.2667 (2)0.63581 (16)0.69075 (9)0.0360 (3)
C80.2169 (2)0.51409 (15)0.61294 (9)0.0337 (3)
C90.02134 (19)0.55699 (14)0.53820 (8)0.0315 (3)
C100.1324 (2)0.71073 (15)0.53795 (9)0.0340 (3)
C110.0899 (2)0.83074 (15)0.61813 (9)0.0376 (3)
C120.3627 (2)0.36316 (16)0.61186 (9)0.0383 (3)
H120.49060.33540.66180.046*
C130.3204 (2)0.74975 (16)0.46403 (10)0.0384 (3)
H130.42060.85160.46410.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (5)0.0592 (6)0.0403 (5)0.0028 (4)0.0085 (4)0.0169 (4)
N10.0686 (8)0.0691 (8)0.0368 (6)0.0111 (6)0.0030 (5)0.0118 (5)
C10.0676 (10)0.0771 (10)0.0401 (7)0.0099 (7)0.0136 (6)0.0243 (7)
O20.0626 (6)0.0463 (5)0.0580 (6)0.0133 (4)0.0097 (4)0.0237 (4)
N20.0465 (6)0.0387 (5)0.0292 (5)0.0039 (4)0.0003 (4)0.0113 (4)
C20.0479 (8)0.0572 (8)0.0454 (7)0.0002 (5)0.0060 (5)0.0234 (6)
C60.0530 (7)0.0405 (6)0.0372 (6)0.0087 (5)0.0007 (5)0.0143 (5)
C30.0436 (6)0.0356 (6)0.0358 (6)0.0031 (4)0.0018 (4)0.0156 (4)
C50.0508 (8)0.0541 (7)0.0456 (7)0.0033 (6)0.0064 (6)0.0074 (6)
C40.0454 (7)0.0467 (7)0.0391 (6)0.0006 (5)0.0036 (5)0.0108 (5)
C70.0376 (6)0.0437 (6)0.0264 (5)0.0056 (4)0.0017 (4)0.0069 (4)
C80.0368 (6)0.0388 (6)0.0249 (5)0.0027 (4)0.0023 (4)0.0060 (4)
C90.0349 (6)0.0351 (6)0.0235 (5)0.0026 (4)0.0032 (4)0.0044 (4)
C100.0384 (6)0.0356 (6)0.0272 (5)0.0012 (4)0.0026 (4)0.0055 (4)
C110.0436 (7)0.0364 (6)0.0325 (6)0.0003 (5)0.0021 (4)0.0077 (4)
C120.0376 (6)0.0453 (6)0.0304 (6)0.0027 (5)0.0051 (4)0.0055 (5)
C130.0420 (6)0.0376 (6)0.0346 (6)0.0061 (5)0.0002 (4)0.0071 (4)
Geometric parameters (Å, º) top
N1—C11.325 (2)C5—H50.9300
N1—C51.3293 (19)C6—H6A0.9700
N2—C111.3931 (16)C6—H6B0.9700
N2—C71.3982 (16)C7—C81.4823 (16)
N2—C61.4746 (14)C8—C121.3718 (16)
O1—C71.2123 (14)C8—C91.4110 (16)
O2—C111.2127 (15)C9—C101.4113 (16)
C1—C21.382 (2)C9—C9i1.416 (2)
C1—H10.9300C10—C131.3708 (17)
C2—C31.3766 (17)C10—C111.4855 (16)
C2—H20.9300C12—C13i1.4046 (17)
C3—C41.3836 (18)C12—H120.9300
C3—C61.5100 (16)C13—C12i1.4046 (17)
C4—C51.3834 (18)C13—H130.9300
C4—H40.9300
C1—N1—C5115.61 (12)C3—C6—H6B109.0
C11—N2—C7125.48 (10)H6A—C6—H6B107.8
C11—N2—C6118.44 (10)O1—C7—N2120.35 (10)
C7—N2—C6116.06 (10)O1—C7—C8122.58 (11)
N1—C1—C2124.53 (13)N2—C7—C8117.06 (10)
N1—C1—H1117.7C12—C8—C9120.29 (11)
C2—C1—H1117.7C12—C8—C7120.26 (11)
C3—C2—C1119.25 (13)C9—C8—C7119.44 (10)
C3—C2—H2120.4C8—C9—C10121.50 (11)
C1—C2—H2120.4C8—C9—C9i119.18 (13)
C2—C3—C4117.23 (11)C10—C9—C9i119.32 (13)
C2—C3—C6120.00 (11)C13—C10—C9120.29 (11)
C4—C3—C6122.74 (11)C13—C10—C11119.95 (10)
C5—C4—C3118.95 (12)C9—C10—C11119.77 (11)
C5—C4—H4120.5O2—C11—N2120.98 (11)
C3—C4—H4120.5O2—C11—C10122.31 (11)
N1—C5—C4124.44 (13)N2—C11—C10116.70 (10)
N1—C5—H5117.8C8—C12—C13i120.51 (11)
C4—C5—H5117.8C8—C12—H12119.7
N2—C6—C3112.85 (9)C13i—C12—H12119.7
N2—C6—H6A109.0C10—C13—C12i120.41 (10)
C3—C6—H6A109.0C10—C13—H13119.8
N2—C6—H6B109.0C12i—C13—H13119.8
C5—N1—C1—C20.1 (2)C12—C8—C9—C10179.61 (9)
N1—C1—C2—C30.0 (2)C7—C8—C9—C101.78 (16)
C11—N2—C6—C3104.43 (12)C12—C8—C9—C9i0.36 (19)
C7—N2—C6—C376.70 (13)C7—C8—C9—C9i178.25 (10)
C1—C2—C3—C40.20 (18)C8—C9—C10—C13179.67 (9)
C1—C2—C3—C6177.80 (12)C9i—C9—C10—C130.36 (19)
N2—C6—C3—C2139.13 (11)C8—C9—C10—C110.25 (17)
N2—C6—C3—C442.99 (16)C9i—C9—C10—C11179.72 (10)
C1—N1—C5—C40.1 (2)C7—N2—C11—O2179.77 (10)
N1—C5—C4—C30.0 (2)C6—N2—C11—O21.01 (17)
C2—C3—C4—C50.19 (17)C7—N2—C11—C100.43 (17)
C6—C3—C4—C5177.75 (11)C6—N2—C11—C10178.33 (9)
C11—N2—C7—O1177.16 (10)C13—C10—C11—O20.79 (18)
C6—N2—C7—O11.63 (16)C9—C10—C11—O2179.29 (10)
C11—N2—C7—C81.55 (16)C13—C10—C11—N2178.55 (9)
C6—N2—C7—C8179.67 (8)C9—C10—C11—N21.38 (16)
O1—C7—C8—C122.58 (17)C9—C8—C12—C13i0.44 (17)
N2—C7—C8—C12178.75 (9)C7—C8—C12—C13i178.16 (9)
O1—C7—C8—C9176.03 (10)C9—C10—C13—C12i0.29 (18)
N2—C7—C8—C92.64 (15)C11—C10—C13—C12i179.78 (10)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1ii0.932.593.5014 (15)165
C13—H13···O2iii0.932.513.3242 (15)146
Symmetry codes: (ii) x1, y, z; (iii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.593.5014 (15)165
C13—H13···O2ii0.932.513.3242 (15)146
Symmetry codes: (i) x1, y, z; (ii) x1, y+2, z+1.
 

Acknowledgements

ADG thanks CONACyT for the repatriation fellowship 203539 and M. Sc. María de las Nieves Zavala Segovia for technical assistance.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheney, M. L., Mcmanus, G. J., Perman, J. A., Wang, Z. & Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 616–617.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, B. J., Sun, J., Lee, T., Sarjeant, A. & Katz, H. E. (2009). Chem. Mater. 12, 94–101.  Web of Science CSD CrossRef Google Scholar
First citationLi, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012). CrystEngComm, 14, 2152-2158.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763–2772.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G.-B., Liu, J.-M., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Inorg. Chem. 48, 8659–8661.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMatsunaga, Y., Goto, K., Kubono, K., Sako, K. & Shinmyozu, T. (2014). Chem. Eur. J. 20, 7309–7316.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOh, J. H., Suraru, S. L., Lee, W. Y., Könemann, M., Höffken, H. W., Röger, C. & Bao, Z. (2010). Adv. Funct. Mater. 20, 2148–2156.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandeeswar, M., Khare, H., Ramakumar, S. & Govindaraju, T. (2014). RSC Adv. 4, 20154-20163.  Web of Science CSD CrossRef CAS Google Scholar
First citationPantoş, G. D., Wietor, J. L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. Engl. 46, 2238–2240.  Web of Science PubMed Google Scholar
First citationReczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M. & Iverson, B. L. (2006). J. Am. Chem. Soc. 128, 7995–8002.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, D. R., Fujiki, Y., Fujita, N., Shinkai, S. & Sada, K. (2009). Chem. Asia. J. 4, 254–261.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o985-o986
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds