metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m324-m325

Crystal structure of poly[aqua­[μ-1,1′-(9,9-di­methyl-9H-fluoren-2,7-di­yl)di-1H-imidazole](μ-naphthalene-1,4-di­carboxyl­ato)nickel(II)]

aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: qiyjchem@163.com

Edited by C. Näther, Universität Kiel, Germany (Received 7 July 2014; accepted 1 August 2014; online 6 August 2014)

In the title compound, [Ni(C12H6O4)(C21H18N4)(H2O)]n, the NiII cation is coordinated by three carboxyl­ate O atoms of two naphthalene-1,4-di­carboxyl­ate anions, one water mol­ecule and two N atoms of two 1,1′-(9,9-dimethyl-9H-fluoren-2,7-di­yl)di-1H-imidazole (DFDI) ligands, giving rise to a slightly distorted octa­hedral geometry. The NiII ions are linked by the DFDI ligands into chains, which are further connected by the carboxyl­ate anions into double chains that elongate in the the b-axis direction. These double chains are linked by centrosymmetric pairs of O—H⋯O hydrogen bonds into layers parallel to (10-1). The asymmetric unit consists of one crystallographically independent NiII cation, one carboxyl­ate and one DFDI ligand, as well as of one water mol­ecule, all of them located in general positions.

1. Related literature

For the synthesis and structures of related Ni and naphthalenedi­carboxyl­ates, see: Guo et al. (2013[Guo, C.-L., Yao, X.-Q., Cheng, Y.-Q. & Liu, Y. (2013). Acta Cryst. C69, 1022-1025.]); Kaduk & Hanko (2001[Kaduk, J. A. & Hanko, J. A. (2001). J. Appl. Cryst. 34, 710-714.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C12H6O4)(C21H18N4)(H2O)]

  • Mr = 617.29

  • Monoclinic, P 21 /n

  • a = 11.1696 (17) Å

  • b = 16.161 (2) Å

  • c = 16.004 (2) Å

  • β = 93.458 (3)°

  • V = 2883.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.21 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.865

  • 18236 measured reflections

  • 7043 independent reflections

  • 4614 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.167

  • S = 1.00

  • 7043 reflections

  • 394 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1 0.85 (1) 1.88 (2) 2.659 (3) 152 (4)
O1W—H1B⋯O4i 0.85 (1) 1.94 (1) 2.791 (3) 176 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The synthesis was performed under hydro­thermal conditions. A mixture of Ni(CH3COO)2.4(H2O), (0.2 mmol, 0.05 g), naphthalene-1,4-di­carb­oxy­lic acid (0.2 mmol, 0.044 g), 9,9-di­methyl-9H-fluorene-2,7-di­imidazole (0.2 mmol, 0.064 g) and H2O (15 mL) in a 25 mL stainless steel reactor with a Teflon liner was heated from 293 to 453 K in 2 h and a constant temperature was maintained at 453 K for 72 h, after which the mixture was cooled to 298 K. Green crystals of the title compound were recovered from the reaction.

Refinement top

All C—H H atoms were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model. The water H-atoms were located in a difference map and were refined with an O—H distance restrained to 0.85 (2) Å and with [Uiso(H) = 1.5 Ueq(O)].

Related literature top

For the synthesis and structures of related Ni and naphthalenedicarboxylates, see: Guo et al. (2013); Kaduk & Hanko (2001).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level. (i) -x + 1/2, y - 1/2, -z + 3/2; (ii) x, y - 1, z; (iii) x, y + 1, z.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a-axis. Hydrogen atoms are omitted for clarity.
Poly[aqua[µ-1,1'-(9,9-dimethyl-9H-fluoren-2,7-diyl)di-1H-imidazole](µ-naphthalene-1,4-dicarboxylato)nickel(II)] top
Crystal data top
[Ni(C12H6O4)(C21H18N4)(H2O)]F(000) = 1280
Mr = 617.29Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7293 reflections
a = 11.1696 (17) Åθ = 1.7–22.8°
b = 16.161 (2) ŵ = 0.72 mm1
c = 16.004 (2) ÅT = 293 K
β = 93.458 (3)°Block, green
V = 2883.6 (7) Å30.30 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7043 independent reflections
Radiation source: fine-focus sealed tube4614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1410
Tmin = 0.801, Tmax = 0.865k = 2021
18236 measured reflectionsl = 1521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0959P)2]
where P = (Fo2 + 2Fc2)/3
7043 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 1.24 e Å3
2 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ni(C12H6O4)(C21H18N4)(H2O)]V = 2883.6 (7) Å3
Mr = 617.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1696 (17) ŵ = 0.72 mm1
b = 16.161 (2) ÅT = 293 K
c = 16.004 (2) Å0.30 × 0.24 × 0.21 mm
β = 93.458 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4614 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.865Rint = 0.053
18236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.24 e Å3
7043 reflectionsΔρmin = 0.80 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.27771 (4)0.06178 (2)0.98863 (2)0.02497 (14)
C10.3429 (3)0.21356 (19)0.88921 (19)0.0279 (7)
C20.3086 (3)0.27180 (18)0.81633 (18)0.0257 (7)
C30.3433 (3)0.35240 (19)0.8250 (2)0.0316 (7)
H30.38530.36870.87420.038*
C40.3180 (3)0.4110 (2)0.7628 (2)0.0325 (8)
H40.34300.46540.77120.039*
C50.2566 (3)0.38957 (19)0.68914 (19)0.0262 (7)
C60.2184 (3)0.30647 (18)0.67658 (19)0.0260 (7)
C70.2414 (3)0.24588 (18)0.74100 (18)0.0247 (6)
C80.1991 (3)0.1646 (2)0.7261 (2)0.0346 (8)
H80.21180.12470.76760.042*
C90.1399 (4)0.1433 (2)0.6520 (2)0.0408 (9)
H90.11150.08960.64400.049*
C100.1217 (4)0.2020 (2)0.5879 (2)0.0417 (9)
H100.08280.18680.53720.050*
C110.1606 (3)0.2807 (2)0.59974 (19)0.0313 (7)
H110.14910.31870.55640.038*
C120.2384 (3)0.45528 (18)0.62262 (19)0.0259 (7)
C130.1741 (3)0.2175 (2)1.0487 (2)0.0391 (9)
H130.23520.24541.02360.047*
C140.0603 (3)0.1215 (2)1.0900 (2)0.0363 (8)
H140.02810.06941.09890.044*
C150.0164 (3)0.1935 (2)1.1183 (2)0.0412 (9)
H150.05060.20001.14950.049*
C160.0811 (3)0.3425 (2)1.1046 (2)0.0321 (7)
C170.0300 (3)0.3811 (2)1.1055 (3)0.0431 (9)
H170.10000.34991.09960.052*
C180.0362 (3)0.4668 (2)1.1155 (3)0.0451 (10)
H180.11010.49301.11760.054*
C190.0692 (3)0.5122 (2)1.1223 (2)0.0362 (8)
C200.1806 (3)0.4719 (2)1.1219 (2)0.0316 (7)
C210.1867 (3)0.38737 (19)1.1146 (2)0.0328 (7)
H210.26050.36061.11640.039*
C220.2840 (3)0.5320 (2)1.1301 (2)0.0322 (7)
C230.3652 (4)0.5239 (2)1.0574 (3)0.0451 (9)
H23A0.42980.56291.06430.068*
H23B0.31970.53501.00570.068*
H23C0.39710.46881.05620.068*
C240.3560 (4)0.5212 (2)1.2141 (2)0.0462 (9)
H24A0.42100.56011.21780.069*
H24B0.38730.46601.21810.069*
H24C0.30460.53081.25910.069*
C250.2157 (3)0.6146 (2)1.1293 (2)0.0349 (8)
C260.0924 (3)0.6021 (2)1.1263 (2)0.0365 (8)
C270.0149 (4)0.6698 (2)1.1260 (3)0.0477 (10)
H270.06760.66201.12530.057*
C280.0631 (4)0.7491 (2)1.1265 (3)0.0454 (10)
H280.01270.79491.12630.054*
C290.1852 (3)0.7599 (2)1.1273 (2)0.0366 (8)
C300.2639 (3)0.69321 (19)1.1287 (2)0.0343 (8)
H300.34630.70131.12930.041*
C310.1982 (3)0.9034 (2)1.0717 (2)0.0361 (8)
H310.12780.90161.03760.043*
C320.3630 (4)0.9439 (2)1.1328 (2)0.0381 (8)
H320.42860.97681.14910.046*
C330.3425 (4)0.8680 (2)1.1618 (2)0.0428 (9)
H330.39120.83871.20050.051*
N10.1599 (3)0.13708 (16)1.04611 (17)0.0311 (6)
N20.0896 (3)0.25512 (16)1.09216 (17)0.0327 (6)
N30.2357 (3)0.84159 (16)1.12350 (17)0.0334 (7)
N40.2723 (3)0.96596 (16)1.07513 (17)0.0320 (6)
O10.4258 (3)0.23703 (16)0.93909 (16)0.0480 (7)
O20.2836 (2)0.14906 (14)0.89537 (13)0.0362 (6)
O30.3289 (2)0.49273 (13)0.59960 (14)0.0303 (5)
O40.1345 (2)0.47139 (14)0.59113 (14)0.0324 (5)
O1W0.4228 (2)0.11528 (14)1.05066 (15)0.0347 (6)
H1A0.433 (4)0.1628 (12)1.030 (2)0.052*
H1B0.488 (2)0.089 (2)1.060 (3)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0363 (3)0.0194 (2)0.0184 (2)0.00295 (17)0.00517 (16)0.00024 (14)
C10.0347 (18)0.0284 (16)0.0200 (15)0.0009 (14)0.0045 (13)0.0032 (12)
C20.0313 (17)0.0266 (16)0.0186 (15)0.0008 (13)0.0031 (12)0.0037 (11)
C30.042 (2)0.0285 (17)0.0228 (16)0.0043 (14)0.0094 (14)0.0027 (12)
C40.044 (2)0.0213 (15)0.0312 (18)0.0038 (14)0.0074 (15)0.0014 (13)
C50.0298 (17)0.0253 (16)0.0229 (16)0.0032 (13)0.0029 (13)0.0031 (12)
C60.0298 (17)0.0227 (15)0.0248 (16)0.0042 (12)0.0034 (13)0.0018 (12)
C70.0281 (16)0.0257 (15)0.0201 (15)0.0007 (13)0.0012 (12)0.0011 (11)
C80.051 (2)0.0281 (17)0.0236 (17)0.0022 (15)0.0080 (15)0.0046 (13)
C90.061 (3)0.0276 (18)0.0322 (19)0.0095 (16)0.0139 (17)0.0017 (14)
C100.058 (2)0.036 (2)0.0280 (18)0.0009 (17)0.0164 (17)0.0028 (14)
C110.0383 (19)0.0304 (17)0.0238 (16)0.0065 (14)0.0080 (14)0.0039 (13)
C120.0343 (18)0.0199 (15)0.0229 (16)0.0050 (12)0.0033 (13)0.0019 (11)
C130.048 (2)0.0261 (17)0.045 (2)0.0079 (15)0.0165 (17)0.0048 (15)
C140.0361 (19)0.0251 (17)0.047 (2)0.0066 (14)0.0017 (16)0.0033 (15)
C150.036 (2)0.036 (2)0.053 (2)0.0067 (16)0.0144 (17)0.0021 (16)
C160.0396 (19)0.0251 (16)0.0321 (18)0.0031 (14)0.0069 (15)0.0033 (13)
C170.034 (2)0.0336 (19)0.062 (3)0.0042 (16)0.0066 (18)0.0045 (17)
C180.033 (2)0.0310 (19)0.072 (3)0.0013 (16)0.0112 (19)0.0045 (18)
C190.038 (2)0.0272 (18)0.044 (2)0.0015 (14)0.0075 (16)0.0007 (14)
C200.0365 (19)0.0278 (16)0.0306 (18)0.0030 (14)0.0027 (14)0.0002 (13)
C210.0341 (19)0.0262 (17)0.0387 (19)0.0017 (14)0.0062 (15)0.0005 (13)
C220.0342 (19)0.0253 (16)0.0372 (19)0.0034 (14)0.0034 (15)0.0010 (13)
C230.048 (2)0.038 (2)0.051 (2)0.0016 (17)0.0150 (19)0.0010 (17)
C240.045 (2)0.042 (2)0.051 (2)0.0063 (18)0.0086 (18)0.0022 (17)
C250.041 (2)0.0267 (17)0.037 (2)0.0019 (15)0.0054 (16)0.0014 (14)
C260.037 (2)0.0293 (18)0.044 (2)0.0020 (15)0.0080 (16)0.0014 (15)
C270.041 (2)0.0310 (19)0.072 (3)0.0023 (16)0.007 (2)0.0005 (18)
C280.046 (2)0.0292 (19)0.062 (3)0.0064 (17)0.011 (2)0.0000 (17)
C290.052 (2)0.0249 (17)0.0331 (19)0.0045 (15)0.0048 (16)0.0005 (13)
C300.039 (2)0.0275 (17)0.0363 (19)0.0031 (15)0.0044 (15)0.0022 (14)
C310.045 (2)0.0282 (17)0.0350 (19)0.0012 (15)0.0026 (16)0.0047 (14)
C320.053 (2)0.0317 (18)0.0288 (18)0.0091 (16)0.0068 (16)0.0026 (14)
C330.057 (2)0.036 (2)0.034 (2)0.0008 (18)0.0058 (18)0.0041 (15)
N10.0364 (16)0.0278 (14)0.0286 (15)0.0027 (12)0.0017 (12)0.0020 (11)
N20.0374 (16)0.0243 (14)0.0367 (16)0.0040 (12)0.0062 (13)0.0036 (11)
N30.0488 (18)0.0229 (13)0.0286 (15)0.0007 (12)0.0026 (13)0.0038 (11)
N40.0475 (18)0.0246 (14)0.0235 (14)0.0041 (13)0.0009 (12)0.0014 (11)
O10.0564 (17)0.0449 (15)0.0391 (15)0.0187 (13)0.0280 (12)0.0196 (11)
O20.0568 (16)0.0293 (12)0.0210 (12)0.0104 (11)0.0115 (11)0.0078 (9)
O30.0333 (13)0.0252 (11)0.0316 (13)0.0023 (10)0.0049 (10)0.0072 (9)
O40.0338 (13)0.0294 (12)0.0327 (13)0.0021 (10)0.0084 (10)0.0050 (9)
O1W0.0399 (14)0.0281 (13)0.0346 (13)0.0050 (11)0.0107 (11)0.0041 (10)
Geometric parameters (Å, º) top
Ni1—O1W2.041 (2)C17—C181.397 (5)
Ni1—N12.050 (3)C17—H170.9300
Ni1—O22.058 (2)C18—C191.387 (5)
Ni1—N4i2.080 (3)C18—H180.9300
Ni1—O3ii2.111 (2)C19—C201.405 (5)
Ni1—O4ii2.208 (2)C19—C261.477 (5)
Ni1—C12ii2.475 (3)C20—C211.373 (5)
C1—O21.242 (4)C20—C221.509 (5)
C1—O11.245 (4)C21—H210.9300
C1—C21.529 (4)C22—C231.524 (5)
C2—C31.364 (4)C22—C241.534 (5)
C2—C71.443 (4)C22—C251.536 (5)
C3—C41.391 (4)C23—H23A0.9600
C3—H30.9300C23—H23B0.9600
C4—C51.372 (4)C23—H23C0.9600
C4—H40.9300C24—H24A0.9600
C5—C61.420 (4)C24—H24B0.9600
C5—C121.509 (4)C24—H24C0.9600
C6—C111.417 (4)C25—C301.380 (4)
C6—C71.434 (4)C25—C261.390 (5)
C7—C81.411 (4)C26—C271.394 (5)
C8—C91.367 (5)C27—C281.391 (5)
C8—H80.9300C27—H270.9300
C9—C101.403 (5)C28—C291.374 (5)
C9—H90.9300C28—H280.9300
C10—C111.354 (5)C29—C301.389 (5)
C10—H100.9300C29—N31.439 (4)
C11—H110.9300C30—H300.9300
C12—O31.253 (4)C31—N41.306 (4)
C12—O41.264 (4)C31—N31.348 (4)
C12—Ni1iii2.475 (3)C31—H310.9300
C13—N11.309 (4)C32—C331.336 (5)
C13—N21.350 (4)C32—N41.375 (5)
C13—H130.9300C32—H320.9300
C14—C151.351 (5)C33—N31.375 (5)
C14—N11.375 (4)C33—H330.9300
C14—H140.9300N4—Ni1iv2.080 (3)
C15—N21.370 (4)O3—Ni1iii2.111 (2)
C15—H150.9300O4—Ni1iii2.208 (2)
C16—C211.386 (5)O1W—H1A0.848 (10)
C16—C171.390 (5)O1W—H1B0.851 (10)
C16—N21.430 (4)
O1W—Ni1—N192.43 (11)C19—C18—C17119.1 (3)
O1W—Ni1—O290.18 (9)C19—C18—H18120.4
N1—Ni1—O288.17 (11)C17—C18—H18120.4
O1W—Ni1—N4i92.62 (10)C18—C19—C20120.1 (3)
N1—Ni1—N4i95.62 (11)C18—C19—C26132.1 (3)
O2—Ni1—N4i175.18 (10)C20—C19—C26107.7 (3)
O1W—Ni1—O3ii161.60 (10)C21—C20—C19120.7 (3)
N1—Ni1—O3ii105.22 (10)C21—C20—C22127.3 (3)
O2—Ni1—O3ii85.34 (9)C19—C20—C22111.9 (3)
N4i—Ni1—O3ii90.79 (9)C20—C21—C16118.9 (3)
O1W—Ni1—O4ii101.21 (9)C20—C21—H21120.5
N1—Ni1—O4ii166.24 (10)C16—C21—H21120.5
O2—Ni1—O4ii89.96 (9)C20—C22—C23111.5 (3)
N4i—Ni1—O4ii85.64 (10)C20—C22—C24111.1 (3)
O3ii—Ni1—O4ii61.03 (8)C23—C22—C24110.8 (3)
O1W—Ni1—C12ii131.73 (11)C20—C22—C25100.5 (3)
N1—Ni1—C12ii135.62 (11)C23—C22—C25112.7 (3)
O2—Ni1—C12ii87.65 (9)C24—C22—C25109.9 (3)
N4i—Ni1—C12ii87.55 (10)C22—C23—H23A109.5
O3ii—Ni1—C12ii30.40 (10)C22—C23—H23B109.5
O4ii—Ni1—C12ii30.64 (9)H23A—C23—H23B109.5
O2—C1—O1125.7 (3)C22—C23—H23C109.5
O2—C1—C2117.9 (3)H23A—C23—H23C109.5
O1—C1—C2116.4 (3)H23B—C23—H23C109.5
C3—C2—C7119.5 (3)C22—C24—H24A109.5
C3—C2—C1117.0 (3)C22—C24—H24B109.5
C7—C2—C1123.5 (3)H24A—C24—H24B109.5
C2—C3—C4122.2 (3)C22—C24—H24C109.5
C2—C3—H3118.9H24A—C24—H24C109.5
C4—C3—H3118.9H24B—C24—H24C109.5
C5—C4—C3120.8 (3)C30—C25—C26121.2 (3)
C5—C4—H4119.6C30—C25—C22127.4 (3)
C3—C4—H4119.6C26—C25—C22111.4 (3)
C4—C5—C6119.4 (3)C25—C26—C27120.0 (3)
C4—C5—C12117.8 (3)C25—C26—C19108.3 (3)
C6—C5—C12122.7 (3)C27—C26—C19131.6 (3)
C11—C6—C5121.2 (3)C28—C27—C26118.9 (4)
C11—C6—C7118.4 (3)C28—C27—H27120.6
C5—C6—C7120.3 (3)C26—C27—H27120.6
C8—C7—C6118.1 (3)C29—C28—C27120.0 (3)
C8—C7—C2124.3 (3)C29—C28—H28120.0
C6—C7—C2117.6 (3)C27—C28—H28120.0
C9—C8—C7121.4 (3)C28—C29—C30121.9 (3)
C9—C8—H8119.3C28—C29—N3120.5 (3)
C7—C8—H8119.3C30—C29—N3117.6 (3)
C8—C9—C10120.3 (3)C25—C30—C29117.9 (3)
C8—C9—H9119.8C25—C30—H30121.0
C10—C9—H9119.8C29—C30—H30121.1
C11—C10—C9120.2 (3)N4—C31—N3112.0 (3)
C11—C10—H10119.9N4—C31—H31124.0
C9—C10—H10119.9N3—C31—H31124.0
C10—C11—C6121.6 (3)C33—C32—N4109.6 (3)
C10—C11—H11119.2C33—C32—H32125.2
C6—C11—H11119.2N4—C32—H32125.2
O3—C12—O4121.4 (3)C32—C33—N3107.1 (3)
O3—C12—C5118.1 (3)C32—C33—H33126.5
O4—C12—C5120.5 (3)N3—C33—H33126.5
O3—C12—Ni1iii58.50 (15)C13—N1—C14105.4 (3)
O4—C12—Ni1iii62.91 (16)C13—N1—Ni1121.6 (2)
C5—C12—Ni1iii176.3 (2)C14—N1—Ni1133.0 (2)
N1—C13—N2112.1 (3)C13—N2—C15106.2 (3)
N1—C13—H13123.9C13—N2—C16124.8 (3)
N2—C13—H13123.9C15—N2—C16129.0 (3)
C15—C14—N1109.6 (3)C31—N3—C33105.8 (3)
C15—C14—H14125.2C31—N3—C29126.7 (3)
N1—C14—H14125.2C33—N3—C29126.7 (3)
C14—C15—N2106.7 (3)C31—N4—C32105.5 (3)
C14—C15—H15126.6C31—N4—Ni1iv126.3 (2)
N2—C15—H15126.6C32—N4—Ni1iv126.1 (2)
C21—C16—C17121.2 (3)C1—O2—Ni1132.4 (2)
C21—C16—N2118.0 (3)C12—O3—Ni1iii91.11 (18)
C17—C16—N2120.8 (3)C12—O4—Ni1iii86.45 (19)
C16—C17—C18119.8 (3)Ni1—O1W—H1A108 (3)
C16—C17—H17120.1Ni1—O1W—H1B122 (3)
C18—C17—H17120.1H1A—O1W—H1B113 (4)
O2—C1—C2—C3158.1 (3)C22—C25—C26—C191.8 (4)
O1—C1—C2—C319.3 (5)C18—C19—C26—C25177.5 (4)
O2—C1—C2—C721.1 (5)C20—C19—C26—C250.7 (4)
O1—C1—C2—C7161.4 (3)C18—C19—C26—C271.2 (7)
C7—C2—C3—C41.2 (5)C20—C19—C26—C27178.0 (4)
C1—C2—C3—C4179.6 (3)C25—C26—C27—C281.5 (6)
C2—C3—C4—C50.2 (6)C19—C26—C27—C28177.0 (4)
C3—C4—C5—C60.1 (5)C26—C27—C28—C290.1 (6)
C3—C4—C5—C12176.7 (3)C27—C28—C29—C300.9 (6)
C4—C5—C6—C11176.5 (3)C27—C28—C29—N3176.8 (4)
C12—C5—C6—C110.1 (5)C26—C25—C30—C291.6 (5)
C4—C5—C6—C71.4 (5)C22—C25—C30—C29179.5 (3)
C12—C5—C6—C7178.0 (3)C28—C29—C30—C250.0 (5)
C11—C6—C7—C83.5 (5)N3—C29—C30—C25177.7 (3)
C5—C6—C7—C8178.5 (3)N4—C32—C33—N31.3 (4)
C11—C6—C7—C2175.3 (3)N2—C13—N1—C140.2 (4)
C5—C6—C7—C22.7 (5)N2—C13—N1—Ni1177.6 (2)
C3—C2—C7—C8178.7 (3)C15—C14—N1—C130.0 (4)
C1—C2—C7—C80.5 (5)C15—C14—N1—Ni1177.5 (3)
C3—C2—C7—C62.5 (5)O1W—Ni1—N1—C1349.8 (3)
C1—C2—C7—C6178.3 (3)O2—Ni1—N1—C1340.3 (3)
C6—C7—C8—C91.3 (5)N4i—Ni1—N1—C13142.7 (3)
C2—C7—C8—C9177.4 (3)O3ii—Ni1—N1—C13124.9 (3)
C7—C8—C9—C101.2 (6)O4ii—Ni1—N1—C13122.6 (4)
C8—C9—C10—C111.3 (6)C12ii—Ni1—N1—C13125.0 (3)
C9—C10—C11—C61.1 (6)O1W—Ni1—N1—C14127.3 (3)
C5—C6—C11—C10178.5 (3)O2—Ni1—N1—C14142.6 (3)
C7—C6—C11—C103.5 (5)N4i—Ni1—N1—C1434.5 (3)
C4—C5—C12—O353.8 (4)O3ii—Ni1—N1—C1457.9 (3)
C6—C5—C12—O3122.8 (3)O4ii—Ni1—N1—C1460.2 (6)
C4—C5—C12—O4126.5 (3)C12ii—Ni1—N1—C1457.8 (4)
C6—C5—C12—O456.9 (4)N1—C13—N2—C150.4 (4)
C4—C5—C12—Ni1iii77 (3)N1—C13—N2—C16179.1 (3)
C6—C5—C12—Ni1iii100 (3)C14—C15—N2—C130.4 (4)
N1—C14—C15—N20.3 (4)C14—C15—N2—C16179.0 (3)
C21—C16—C17—C181.0 (6)C21—C16—N2—C1335.6 (5)
N2—C16—C17—C18178.3 (3)C17—C16—N2—C13143.7 (4)
C16—C17—C18—C191.6 (6)C21—C16—N2—C15146.0 (4)
C17—C18—C19—C202.2 (6)C17—C16—N2—C1534.7 (6)
C17—C18—C19—C26174.3 (4)N4—C31—N3—C330.4 (4)
C18—C19—C20—C210.3 (5)N4—C31—N3—C29171.0 (3)
C26—C19—C20—C21177.0 (3)C32—C33—N3—C311.0 (4)
C18—C19—C20—C22179.8 (3)C32—C33—N3—C29171.6 (3)
C26—C19—C20—C222.9 (4)C28—C29—N3—C3145.2 (5)
C19—C20—C21—C162.3 (5)C30—C29—N3—C31132.6 (4)
C22—C20—C21—C16177.6 (3)C28—C29—N3—C33146.1 (4)
C17—C16—C21—C202.9 (5)C30—C29—N3—C3336.2 (5)
N2—C16—C21—C20176.4 (3)N3—C31—N4—C320.4 (4)
C21—C20—C22—C2356.6 (5)N3—C31—N4—Ni1iv163.9 (2)
C19—C20—C22—C23123.3 (3)C33—C32—N4—C311.0 (4)
C21—C20—C22—C2467.5 (4)C33—C32—N4—Ni1iv163.3 (3)
C19—C20—C22—C24112.6 (3)O1—C1—O2—Ni17.5 (6)
C21—C20—C22—C25176.2 (3)C2—C1—O2—Ni1169.7 (2)
C19—C20—C22—C253.7 (4)O1W—Ni1—O2—C18.8 (3)
C20—C22—C25—C30174.8 (3)N1—Ni1—O2—C183.7 (3)
C23—C22—C25—C3056.0 (5)N4i—Ni1—O2—C1134.4 (12)
C24—C22—C25—C3068.0 (4)O3ii—Ni1—O2—C1170.9 (3)
C20—C22—C25—C263.3 (4)O4ii—Ni1—O2—C1110.0 (3)
C23—C22—C25—C26122.0 (3)C12ii—Ni1—O2—C1140.5 (3)
C24—C22—C25—C26113.9 (3)O4—C12—O3—Ni1iii1.4 (3)
C30—C25—C26—C272.4 (6)C5—C12—O3—Ni1iii178.3 (2)
C22—C25—C26—C27179.4 (3)O3—C12—O4—Ni1iii1.3 (3)
C30—C25—C26—C19176.4 (3)C5—C12—O4—Ni1iii178.4 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.85 (1)1.88 (2)2.659 (3)152 (4)
O1W—H1B···O4v0.85 (1)1.94 (1)2.791 (3)176 (4)
Symmetry code: (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.848 (10)1.88 (2)2.659 (3)152 (4)
O1W—H1B···O4i0.851 (10)1.942 (11)2.791 (3)176 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Science Foundation of Jilin Province (grant No. 20140101121JC).

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, C.-L., Yao, X.-Q., Cheng, Y.-Q. & Liu, Y. (2013). Acta Cryst. C69, 1022–1025.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaduk, J. A. & Hanko, J. A. (2001). J. Appl. Cryst. 34, 710–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m324-m325
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds