research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 111-114

Crystal structure of the high-energy-density material guanylurea dipicryl­amide

aChemisches Institut, Otto-von-Guericke-Universitaet Magdeburg, Universitaetsplatz 2, D-39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Youngstown State University, USA (Received 18 July 2014; accepted 24 July 2014; online 31 July 2014)

The title compound, 1-carbamoylguanidinium bis­(2,4,6-tri­nitro­phen­yl)amide [H2NC(=O)NHC(NH2)2]+[N{C6H2(NO2)3-2,4,6}2] (= guanylurea dipicryl­amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl­amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl­amide anions. The crystal packing is dominated by an extensive network of N—H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m−3, which makes the title compound a potential secondary explosive.

1. Chemical context

High-energy-density materials (HEDMs) form an important class of explosive compounds. Several significant advantages such as high heats of combustion, high propulsive power, high specific impulse, as well as smokeless combustion make them highly useful as propellants, explosives, and pyrotechnics (Oestmark et al., 2007[Oestmark, H., Walin, S. & Goede, P. (2007). Cent. Eur. J. Energetic Mater. 4, 83-108.]; Rice et al., 2007[Rice, B. M., Byrd, E. F. C. & Mattson, W. D. (2007). Struct. Bond. 125, 153-194.]; Badgujar et al., 2008[Badgujar, D. M., Talawar, M. B., Asthana, S. N. & Mahulikar, P. P. (2008). J. Hazard. Mater. 151, 289-305.]; Göbel & Klapötke, 2009[Göbel, M. & Klapötke, T. M. (2009). Adv. Funct. Mater. 19, 347-365.]; Nair et al., 2010[Nair, U. R., Asthana, S. N., Rao, A. S. & Gandhe, B. R. (2010). Def. Sci. J. 60, 137-151.]; Klapötke, 2011[Klapötke, T. M. (2011). In Chemistry of High-Energy Materials. Berlin/New York: Walter de Gruyter.]). An important class of such high-energy-density materials are polynitro aromatics such as tri­nitro­toluene (TNT), picric acid, tri­nitro­resorcinol (= styphnic acid), and 2,2′,4,4′,6,6′-hexa­nitro­diphenyl­amine (= dipcryl­amine). Dipicryl­amine com­bines several very inter­esting structural features: It contains six nitro groups, which are flexible and can inter­act and adjust in the crystal lattice. Moreover, dipicryl­amine has a secondary amine group which can be deprotonated with alkali and alkaline earth-metal hydroxides to form water-soluble dipicryl­amide salts. In the resulting dipicryl­amide anion (= DPA), partial delocalization of the negative charge mediated by the aromatic rings is possible, which may facilitate coord­ination of the oxygen atoms of the nitro groups with suitable metal ions (Eringathodi et al., 2005[Eringathodi, S., Agnihotri, P., Ganguly, B., Bhatt, P., Subramanian, P. S., Paul, P. & Ghosh, P. K. (2005). Eur. J. Inorg. Chem. pp. 2198-2205.]; Agnihotri et al., 2006[Agnihotri, P., Patra, S., Suresh, E., Paul, P. & Ghosh, P. K. (2006). Eur. J. Inorg. Chem. pp. 4938-4944.]). Moreover, the DPA anion has various sites which are capable of forming different types of hydrogen bonds in the solid state.

[Scheme 1]

The ammonium salt of dipicryl­amine, also known as Aurantia or Imperial Yellow, was discovered in 1874 by Gnehm and used as a yellow colorant for leather, wool, and silk until the early 20th century (Gnehm, 1874[Gnehm, R. (1874). Ber. Dtsch. Chem. Ges. 7, 1399-1401.], 1876[Gnehm, R. (1876). Ber. Dtsch. Chem. Ges. 7, 1245-1246.]). However, these practical uses have been terminated due to the highly toxic and explosive nature of dipicryl­amine (Kjelland, 1971[Kjelland, J. (1971). Chem. Ind. (London), pp. 1309-1313.]). Dipicryl­amine can also be used for the extraction of K+ ions from sea bittern, which contains a mixture of K+, Na+, and Mg2+ salts (Winkel & Maas, 1936[Winkel, A. & Maas, D. I. H. (1936). Angew. Chem. 49, 827-830.]). A related study carried out with a mixture of K+, Rb+, and Cs+ ions revealed that the Cs+ ion shows maximum selectivity towards DPA (Bray et al., 1962[Bray, L. A., Martin, E. C., Moore, R. L. & Richland, W. A. (1962). US Atomic Energy Commun. HW-SA-2620, p. 8.]). In fact, it has been reported that DPA can be used for the recovery of Cs+ from radioactive wastes (Kyrš et al., 1960[Kyrš, M., Pelčιk, J. & Polanský, P. (1960). Collect. Czech. Chem. Commun. 25, 2642-2650.]). Only in recent years has the structural chemistry of alkali metal and alkaline earth metal as well as ammonium and azolium dipicryl­amides been investigated in detail. All these compounds were found to display inter­esting hydrogen-bonded supra­molecular structures in the solid state (Eringathodi et al., 2005[Eringathodi, S., Agnihotri, P., Ganguly, B., Bhatt, P., Subramanian, P. S., Paul, P. & Ghosh, P. K. (2005). Eur. J. Inorg. Chem. pp. 2198-2205.]; Agnihotri et al., 2006[Agnihotri, P., Patra, S., Suresh, E., Paul, P. & Ghosh, P. K. (2006). Eur. J. Inorg. Chem. pp. 4938-4944.]; Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]).

2. Spectroscopic features

In the course of our ongoing studies on the crystal structures of energetic compounds (Deblitz et al. 2012a[Deblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012a). Crystals, 2, 34-42.],b[Deblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012b). Inorg. Chem. Commun. 18, 57-60.]; Stock et al., 2014[Stock, G., Hrib, C. G., Deblitz, R., Kühling, M., Plenikowski, G. & Edelmann, F. T. (2014). Inorg. Chem. Commun. 43, 90-93.]), we investigated the preparation and structural characterization of the title compound, guanylurea dipicryl­amide, [H2NC(=O)NHC(NH2)2]2[N{C6H2(NO2)3-2,4,6}2]. The guan­yl­urea cation has frequently been reported to be a useful component in energetic nitro­gen-rich salts, e.g. guanylurea dinitramide (Langlet, 1998[Langlet, A. (1998). Propellants, explosives, and airbag inflators containing guanylurea dinitramide. PCT Int. Appl. WO 9855428 A1 19981210.]) or guanylurea tetra­zolate salts (Wang et al., 2009[Wang, R., Guo, Y., Zng, Z. & Shreeve, J. M. (2009). Chem. Commun. pp. 2697-2699.]). An aqueous solution of sodium dipicryl­amide was prepared in situ by deprotonating dipicryl­amine with NaOH. Treatment of this dark-red solution with solid 1-carbamoylguanidinium sulfate, [H2NC(=O)NHC(NH2)2]2SO4 (also known as guanylurea sulfate) (Lotsch & Schnick, 2005[Lotsch, B. V. & Schnick, W. (2005). Z. Anorg. Allg. Chem. 631, 2967-29969.]), afforded dark-red block-like crystals of the title compound after undisturbed standing of the reaction mixture for 10 d. The product was characterized by spectroscopic methods and elemental analysis. The 1H NMR spectrum displayed a sharp singlet at δ = 8.78 p.p.m. for the aromatic protons of the DPA anion, which is in excellent agreement with the literature values (Eringathodi et al., 2005[Eringathodi, S., Agnihotri, P., Ganguly, B., Bhatt, P., Subramanian, P. S., Paul, P. & Ghosh, P. K. (2005). Eur. J. Inorg. Chem. pp. 2198-2205.]; Agnihotri et al., 2006[Agnihotri, P., Patra, S., Suresh, E., Paul, P. & Ghosh, P. K. (2006). Eur. J. Inorg. Chem. pp. 4938-4944.]; Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]). However, the NH and NH2 protons only gave rise to two very broad resonances spread over a range of ca 4 p.p.m. [δ(C(O)NH2] = ca 6.3–7.1 p.p.m., δ[NHC(NH2)2] = ca 3.3–5.8 p.p.m.). In contrast, inter­pretation of the 13C NMR spectrum was straightforward. In perfect agreement with the 13C NMR data of previously reported ammonium and azolium DPA salts (Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]), the spectrum of the title compound displayed signals of the aromatic ring carbons at δ = 143.4, 139.5, 132.6, and 125.1 p.p.m. The two carbon resonances of the guanylurea cation were well separated at δ = 157.4 p.p.m. (C=O) and δ = 155.5 p.p.m. [NHC(NH2)2). IR bands in the range of 3200–3400 cm−1 were characteristic for the N—H valence vibrations in the guanylurea cation. A strong carbonyl band was observed at 1632 cm−1, whereas the band at 1532 cm−1 is characteristic for the nitro groups.

3. Structural commentary

Single crystals obtained directly from the reaction mixture were found to be suitable for X-ray diffraction. The title compound crystallizes in the triclinic space group P[\overline{1}]. The crystal structure consists of mutually linked 1-carbamoylguanidinium cations and dipicryl­amide anions (Fig. 1[link]). The angle C1—N1—C7 at the amide nitro­gen atom of the DPA anion is 131.66 (10)°, with C—N bond lengths of 1.3021 (15) (C1—N1) and 1.3403 (15) Å (C7—N1). These values are somewhat shorter than the C—N bond lengths in free dipicryl­amine (1.373, 1.375 Å; Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]) but comparable to those reported for related azolium dipicryl­amides which have central C—N bond lengths in the range of 1.281–1.338 Å (Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]). These values indicate delocalization of the nitro­gen lone pair on N1 in dipicryl­amide salts, thereby stabilizing the anion by strengthening the C1—N1 and C7—N1 bonds. As a structural consequence, not only is the central C1—N1—C7 angle widened, but there is also a significant elongation of the four C—C bonds adjacent to C1 and C7 (average 1.433 Å) as compared to the other aromatic C—C bonds (average 1.378 Å). The C—N bond lengths in the nearly planar (r.m.s. deviation = 0.0371 Å) 1-carbamoylguanidinium cation also indicate significant electron delocalization. The geometry around the carbon atom in the amidinium fragment NHC(NH2)2 is nearly trigonal-planar with N—C—N angles between 117.52 (11) and 121.48 (11)° and C—N distances in the very narrow range of 1.3064 (15)–1.3158 (15) Å. Overall, the structural parameters of the cation in the title compound do not differ significantly from those in 1-carbamoylguanid­in­ium sulfate, [H2NC(=O)NHC(NH2)2]2SO4 (Lotsch & Schnick, 2005[Lotsch, B. V. & Schnick, W. (2005). Z. Anorg. Allg. Chem. 631, 2967-29969.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids represent 50% probability levels.

4. Supra­molecular features

Both the cation and the anion comprise numerous sites capable of forming different types of hydrogen bonds. Thus it is not surprising that the crystal packing (Fig. 2[link]) is controlled by an extensive hydrogen-bonding network (Table. 1[link]). Six distinct N—H⋯O hydrogen bonds are found in the crystal packing of the title compound. First of all, pairs of cations are formed through dimerization via two N—H⋯O hydrogen bonds between the ureic fragments, which is also very typical for carb­oxy­lic amides. Furthermore, the NH2 groups in the amidinium fragments NHC(NH2)2 engage in four N—H⋯O hydrogen bonds to three different nitro groups of the DPA anion. The calculated density of 1.795 Mg m−3 is not only higher than the densities reported for other DPA-based salts (1.69–1.78 Mg m−3), but also much higher than the density of TNT (1.65 Mg m−3) (Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]). The high density of the title compound can be traced back in large part to the hydrogen bonding in the crystal structure. The energetic properties (e.g. impact and friction sensitivity) of guanylurea dipicryl­amide have not been tested, but recent findings have shown that the impact sensitivities of various ammonium and azolium dipicryl­amides are in the range of that of the secondary explosive TNT (Huang et al., 2011[Huang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593-13602.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O13i 0.87 (2) 2.11 (2) 2.9507 (17) 163.1 (18)
N8—H8B⋯O3ii 0.85 (2) 2.434 (19) 3.1495 (18) 142.4 (16)
N10—H10A⋯O13 0.86 (2) 1.98 (2) 2.6403 (16) 132.2 (17)
N10—H10A⋯O9iii 0.86 (2) 2.26 (2) 2.7991 (17) 120.7 (16)
N11—H11A⋯O1iv 0.859 (19) 2.222 (18) 2.7590 (16) 120.5 (15)
N11—H11B⋯O6 0.85 (2) 2.15 (2) 2.9833 (17) 167.7 (18)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) x+1, y, z.
[Figure 2]
Figure 2
A packing diagram of the title compound. Dashed lines indicate N—H⋯O hydrogen-bonding inter­actions.

5. Synthesis and crystallization

Cautionary note: Dipicryl­amine and dipicryl­amide salts are potentially explosive and should be handled only in small amounts using proper safety equipment (Klapötke, 2011[Klapötke, T. M. (2011). In Chemistry of High-Energy Materials. Berlin/New York: Walter de Gruyter.]).

Preparation of guanylurea dipicryl­amide: To a suspension of dipicryl­amine (1.0 g, 2.3 mmol) in 10 ml water were added two pellets of NaOH to give a dark red solution of sodium dipicryl­amide; 0.23 g (1.5 mmol) of guanylurea sulfate were added as solid, and the mixture was allowed to stand undisturbed at room temperature. After 10 d, 0.87 g (70%) dark-red crystals of the title compound had formed, which were isolated by filtration and dried in air. Analysis calculated for C14H11N11O13 (541.3 g/mol): C 31.06, H 2.05, N, 28.46; found: C 31.87, H 2.27, N 28.10%. IR (KBr pellet): νmax 3403 (vs), 2171 (w), 1632 (vs), 1532 (s), 1402 (vs), 1270 (s), 1129 (m), 924 (w), 878 (m), 840 (w), 773 (w), 701 (m), 622 (m), 452 (m). 1H NMR (600 MHz, acetone-d6, 298 K): δ = 8.78 (s, 4 H, C6H2(NO2)3), ca 6.3–7.1 [vbr, 2 H, C(O)NH2], ca 3.3–5.8 [vbr, 5 H, NHC(NH2)2] p.p.m. 13C NMR (150.9 MHz, acetone-d6, 298 K): δ = 157.4 (C=O); 155.5 [NHC(NH2)2]; 143.4, 139.5, 132.6, 125.1 [C6H2(NO2)3] p.p.m.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positions and isotropic thermal parameters of hydrogen atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C2H7N4O+·C12H4N7O12
Mr 541.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.9764 (16), 8.6658 (17), 15.278 (3)
α, β, γ (°) 87.79 (3), 76.18 (3), 77.59 (3)
V3) 1001.4 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.40 × 0.20 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction For a sphere [the interpolation procedure of Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) was used with some modification]
Tmin, Tmax 0.861, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 12316, 5347, 4600
Rint 0.029
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02
No. of reflections 5347
No. of parameters 387
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.38, −0.24
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) and SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

High-energy-density materials (d) form an important class of explosive compounds. Several significant advantages such as high heats of combustion, high propulsive power, high specific impulse, as well as smokeless combustion make them highly useful as propellants, explosives, and pyrotechnics (Oestmark et al., 2007; Rice et al., 2007; Badgujar et al., 2008; Göbel & Klapötke, 2009; Nair et al., 2010; Klapötke, 2011). An important class of such high-energy-density materials are polynitro aromatics such as tri­nitro­toluene (TNT), picric acid, tri­nitro­resorcinol (= styphnic acid), and 2,2',4,4',6,6'-hexa­nitro­diphenyl­amine (= dipcryl­amine). Dipicryl­amine combines several very inter­esting structural features: It contains six nitro groups, which are flexible and can inter­act and adjust in the crystal lattice. Moreover, dipicryl­amine has a secondary amine group which can be deprotonated with alkali and alkaline earth-metal hydroxides to form water-soluble dipicryl­amide salts. In the resulting dipicryl­amide anion (= DPA-), partial delocalization of the negative charge mediated by the aromatic rings is possible, which may facilitate coordination of the oxygen atoms of the nitro groups with suitable metal ions (Eringathodi et al., 2005; Agnihotri et al., 2006). Moreover, the DPA- anion has various sites which are capable of forming different types of hydrogen bonds in the solid state.

The ammonium salt of dipicryl­amine, also known as Aurantia or Imperial Yellow, was discovered in 1874 by Gnehm and used as a yellow colorant for leather, wool, and silk until the early 20th century (Gnehm, 1874, 1876). However, these practical uses have been terminated due to the highly toxic and explosive nature of dipicryl­amine (Kjelland, 1971). Dipicryl­amine can also be used for the extraction of K+ ions from sea bittern, which contains a mixture of K+, Na+, and Mg2+ salts (Winkel & Maas, 1936). A related study carried out with a mixture of K+, Rb+, and Cs+ ions revealed that the Cs+ ion shows maximum selectivity towards DPA- (Bray et al., 1962). In fact, it has been reported that DPA- can be used for the recovery of Cs+ from radioactive wastes (Kyrš et al., 1960). Only in recent years has the structural chemistry of alkali metal and alkaline earth metal as well as ammonium and azolium dipicryl­amides been investigated in detail. All these compounds were found to display inter­esting hydrogen-bonded supra­molecular structures in the solid state (Eringathodi et al., 2005; Agnihotri et al., 2006; Huang et al., 2011).

Spectroscopic features top

In the course of our ongoing studies on the crystal structures of energetic compounds (Deblitz et al. 2012a,b; Stock et al., 2014), we investigated the preparation and structural characterization of the title compound, guanylurea dipicryl­amide, [H2NC(=O)NHC(NH2)2]2[N{C6H2(NO2)3-2,4,6}2]. The guanylurea cation has frequently been reported to be a useful component in energetic nitro­gen-rich salts, e.g. guanylurea dinitramide (Langlet, 1998) or guanylurea tetra­zolate salts (Wang et al., 2009). An aqueous solution of sodium dipicryl­amide was prepared in situ by deprotonating dipicryl­amine with NaOH. Treatment of this dark-red solution with solid 1-carbamoylguanidinium sulfate, [H2NC(=O)NHC(NH2)2]2SO4 (also known as guanylurea sulfate) (Lotsch & Schnick, 2005), afforded dark-red block-like crystals of the title compound after undisturbed standing of the reaction mixture for 10 d. The product was characterized by spectroscopic methods and elemental analysis. The 1H NMR spectrum displayed a sharp singlet at δ = 8.78 p.p.m. for the aromatic protons of the DPA- anion, which is in excellent agreement with the literature values (Eringathodi et al., 2005; Agnihotri et al., 2006; Huang et al., 2011). However, the NH and NH2 protons only gave rise to two very broad resonances spread over a range of ca 4 p.p.m. (δ(C(O)NH2) = ca 6.3–7.1 p.p.m., δ[NHC(NH2)2] = ca 3.3–5.8 p.p.m.). In contrast, inter­pretation of the 13C NMR spectrum was straightforward. In perfect agreement with the 13C NMR data of previously reported ammonium and azolium DPA salts (Huang et al., 2011), the spectrum of the title compound displayed signals of the aromatic ring carbons at δ = 143.4, 139.5, 132.6, and 125.1 p.p.m.. The two carbon resonances of the guanylurea cation were well separated at δ = 157.4 p.p.m. (CO) and δ = 155.5 p.p.m. [NHC(NH2)2). IR bands in the range of 3200–3400 cm-1 were characteristic for the N—H valence vibrations in the guanylurea cation. A strong carbonyl band was observed at 1632 cm-1, whereas the band at 1532 cm-1 is characteristic for the nitro groups.

Structural commentary top

Single crystals obtained directly from the reaction mixture were found to be suitable for X-ray diffraction. The title compound crystallizes in the triclinic space group P1. The crystal structure consists of mutually linked 1-carbamoylguanidinium cations and dipicryl­amide anions (Fig. 1). The angle C1—N1—C7 at the amide nitro­gen atom of the DPA- anion is 131.66 (10)°, with C—N bond lengths of 1.3021 (15) (C1—N1) and 1.3403 (15) Å (C7—N1). These values are somewhat shorter than the C—N bond lengths in free dipicryl­amine (1.373, 1.375 Å; Huang et al., 2011) but comparable to those reported for related azolium dipicryl­amides which have central C—N bond lengths in the range of 1.281–1.338 Å (Huang et al., 2011). These values indicate delocalization of the nitro­gen lone pair on N1 in dipicryl­amide salts, thereby stabilizing the anion by strengthening the C1—N1 and C7—N1 bonds. As a structural consequence, not only is the central C1—N1—C7 angle widened, but there is also a significant elongation of the four C—C bonds adjacent to C1 and C7 (average 1.433 Å) as compared to the other aromatic C—C bonds (average 1.378 Å). The C—N bond lengths in the nearly planar (r.m.s. deviation = 0.00? Å) 1-carbamoylguanidinium cation also indicate significant electron delocalization. The geometry around the carbon atom in the amidinium fragment NHC(NH2)2 is nearly trigonal-planar with N—C—N angles between 117.52 (11) and 121.48 (11)° and C—N distances in the very narrow range of 1.3064 (15)–1.3158 (15) Å. Overall, the structural parameters of the cation in the title compound do not differ significantly from those in 1-carbamoylguanidinium sulfate, [H2NC(=O)NHC(NH2)2]2SO4 (Lotsch & Schnick, 2005).

Supra­molecular features top

Both the cation and the anion comprise numerous sites capable of forming different types of hydrogen bonds. Thus it is not surprising that the crystal packing (Fig. 2) is controlled by an extensive hydrogen-bonding network. Six distinct N—H···O hydrogen bonds are found in the crystal packing of the title compound. First of all, pairs of cations are formed through dimerization via two N—H···O hydrogen bonds between the ureic fragments, which is also very typical for carb­oxy­lic amides. Furthermore, the NH2 groups in the amidinium fragments NHC(NH2)2 engage in four N—H···O hydrogen bonds to three different nitro groups of the DPA- anion. The calculated density of 1.795 Mg m-3 is not only higher than the densities reported for other DPA-based salts (1.69–1.78 Mg m-3), but also much higher than the density of TNT (1.65 Mg m-3) (Huang et al., 2011). The high density of the title compound can be traced back in large part to the hydrogen bonding in the crystal structure. The energetic properties (e.g. impact and friction sensitivity) of guanylurea dipicryl­amide have not been tested, but recent findings have shown that the impact sensitivities of various ammonium and azolium dipicryl­amides are in the range of that of the secondary explosive TNT (Huang et al., 2011).

Synthesis and crystallization top

Cautionary note: Dipicryl­amine and dipicryl­amide salts are potentially explosive and should be handled only in small amounts using proper safety equipment (Klapötke, 2011).

Preparation of guanylurea dipicryl­amide: To a suspension of dipicryl­amine (1.0 g, 2.3 mmol) in 10 ml water were added two pellets of NaOH to give a dark red solution of sodium dipicryl­amide; 0.23 g (mmol) of guanylurea sulfate were added as solid, and the mixture was allowed to stand undisturbed at room temperature. After 10 d, 0.87 g (70%) dark-red crystals of the title compound had formed, which were isolated by filtration and dried in air. Analysis calculated for C14H11N11O13 (541.3 g/mol): C 31.06, H 2.05, N, 28.46; found: C 31.87, H 2.27, N 28.10%. IR (KBr pellet): νmax 3403 (vs), 2171 (w), 1632 (vs), 1532 (s), 1402 (vs), 1270 (s), 1129 (m), 924 (w), 878 (m), 840 (w), 773 (w), 701 (m), 622 (m), 452 (m). 1H NMR (600 MHz, acetone-d6, 298 K): δ = 8.78 (s, 4 H, C6H2(NO2)3), ca 6.3–7.1 [vbr, 2 H, C(O)NH2], ca 3.3–5.8 [vbr, 5 H, NHC(NH2)2] p.p.m. 13C NMR (150.9 MHz, acetone-d6, 298 K): δ = 157.4 (C=O); 155.5 [NHC(NH2)2]; 143.4, 139.5, 132.6, 125.1 [C6H2(NO2)3] p.p.m.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. Positions and isotropic thermal parameters of hydrogen atoms were freely refined.

Related literature top

For reviews on high-energy-density materials, see: Oestmark et al. (2007); Rice et al. (2007); Badgujar et al. (2008); Göbel & Klapötke (2009); Nair et al. (2010); Klapötke (2011). For general information on dipicrylamine, see: Gnehm (1874); Gnehm (1876); Winkel & Maas (1936); Kyrš et al. (1960); Bray et al. (1962). For related structures of dipicrylamide salts, see: Eringathodi et al. (2005); Agnihotri et al. (2006); Huang et al. (2011). For related guanylurea salts, see: Langlet (1998); Lotsch & Schnick (2005); Wang et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. A packing diagram of the title compound. Dashed lines indicate N—H···O hydrogen-bonding interactions.
1-Carbamoylguanidinium bis(2,4,6-trinitrophenyl)azanide top
Crystal data top
C2H7N4O+·C12H4N7O12Z = 2
Mr = 541.34F(000) = 552
Triclinic, P1Dx = 1.795 Mg m3
a = 7.9764 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6658 (17) ÅCell parameters from 15866 reflections
c = 15.278 (3) Åθ = 2.4–29.6°
α = 87.79 (3)°µ = 0.16 mm1
β = 76.18 (3)°T = 173 K
γ = 77.59 (3)°Platelet, red
V = 1001.4 (3) Å30.40 × 0.20 × 0.10 × 0.40 (radius) mm
Data collection top
Stoe IPDS 2T
diffractometer
5347 independent reflections
Radiation source: fine-focus sealed tube4600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.4°
rotation method scansh = 1010
Absorption correction: for a sphere
[the interpolation procedure of Dwiggins (1975) is used with some modification]
k = 1110
Tmin = 0.861, Tmax = 0.862l = 2020
12316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3153P]
where P = (Fo2 + 2Fc2)/3
5347 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C2H7N4O+·C12H4N7O12γ = 77.59 (3)°
Mr = 541.34V = 1001.4 (3) Å3
Triclinic, P1Z = 2
a = 7.9764 (16) ÅMo Kα radiation
b = 8.6658 (17) ŵ = 0.16 mm1
c = 15.278 (3) ÅT = 173 K
α = 87.79 (3)°0.40 × 0.20 × 0.10 × 0.40 (radius) mm
β = 76.18 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
5347 independent reflections
Absorption correction: for a sphere
[the interpolation procedure of Dwiggins (1975) is used with some modification]
4600 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.029
12316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.02Δρmax = 0.38 e Å3
5347 reflectionsΔρmin = 0.24 e Å3
387 parameters
Special details top

Experimental. Absorption correction: interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146-148) is used with some modification.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13227 (14)0.24457 (12)0.39236 (7)0.0151 (2)
C20.03965 (14)0.21716 (13)0.43593 (7)0.0158 (2)
C30.11338 (14)0.23130 (13)0.52583 (8)0.0171 (2)
C40.02176 (15)0.28759 (13)0.58079 (7)0.0179 (2)
C50.13785 (15)0.33132 (13)0.54440 (8)0.0178 (2)
C60.20813 (14)0.31551 (13)0.45315 (8)0.0162 (2)
C70.36230 (14)0.18019 (13)0.25658 (7)0.0155 (2)
C80.39833 (14)0.26546 (13)0.17498 (7)0.0163 (2)
C90.56417 (15)0.25536 (13)0.11987 (7)0.0172 (2)
C100.70261 (14)0.14633 (13)0.14019 (7)0.0173 (2)
C110.67718 (15)0.04590 (13)0.21192 (8)0.0171 (2)
C120.51165 (15)0.06495 (13)0.26863 (7)0.0158 (2)
C130.52565 (15)0.81485 (13)0.08734 (8)0.0179 (2)
C140.71331 (15)0.61455 (13)0.16006 (8)0.0172 (2)
N10.19803 (13)0.19905 (13)0.30867 (7)0.0200 (2)
N20.13796 (12)0.16126 (11)0.37884 (6)0.01692 (18)
N30.09042 (14)0.29484 (14)0.67591 (7)0.0238 (2)
N40.37044 (13)0.37051 (12)0.41873 (7)0.0205 (2)
N50.25570 (14)0.37578 (12)0.14648 (7)0.0213 (2)
N60.88031 (14)0.14007 (13)0.08619 (7)0.0234 (2)
N70.49658 (13)0.04504 (12)0.34353 (7)0.01838 (19)
N80.35796 (15)0.88985 (15)0.09821 (8)0.0259 (2)
N90.55299 (13)0.69662 (12)0.15042 (7)0.01906 (19)
N100.85939 (14)0.63735 (14)0.10593 (8)0.0261 (2)
N110.71516 (15)0.51081 (12)0.22520 (7)0.0215 (2)
O10.16781 (14)0.24229 (13)0.31524 (7)0.0337 (2)
O20.18842 (15)0.03875 (12)0.39857 (7)0.0314 (2)
O30.22256 (13)0.23815 (13)0.70773 (6)0.0304 (2)
O40.01651 (15)0.35404 (17)0.72337 (7)0.0422 (3)
O50.47838 (14)0.35606 (16)0.46451 (8)0.0397 (3)
O60.38899 (13)0.43379 (11)0.34384 (6)0.0274 (2)
O70.10972 (12)0.34437 (13)0.16262 (7)0.0317 (2)
O80.29112 (15)0.49270 (13)0.10475 (8)0.0367 (2)
O90.90145 (13)0.24434 (14)0.03099 (7)0.0352 (2)
O100.99853 (12)0.03311 (14)0.09936 (8)0.0354 (2)
O110.58711 (14)0.17887 (11)0.32959 (7)0.0294 (2)
O120.39664 (14)0.00059 (12)0.41533 (6)0.0307 (2)
O130.64763 (12)0.84315 (11)0.02764 (6)0.02486 (19)
H30.223 (2)0.207 (2)0.5474 (11)0.025 (4)*
H50.199 (2)0.369 (2)0.5811 (11)0.024 (4)*
H8A0.333 (3)0.968 (2)0.0628 (13)0.037 (5)*
H8B0.277 (3)0.865 (2)0.1401 (13)0.033 (5)*
H90.583 (2)0.321 (2)0.0692 (11)0.025 (4)*
H9A0.465 (3)0.679 (2)0.1898 (12)0.031 (4)*
H10A0.852 (3)0.705 (2)0.0631 (13)0.038 (5)*
H10B0.958 (3)0.589 (3)0.1157 (14)0.046 (5)*
H110.768 (2)0.030 (2)0.2250 (11)0.027 (4)*
H11A0.814 (3)0.462 (2)0.2352 (12)0.031 (4)*
H11B0.621 (3)0.502 (2)0.2631 (13)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0106 (5)0.0169 (5)0.0157 (5)0.0022 (4)0.0004 (4)0.0022 (4)
C20.0119 (5)0.0176 (5)0.0176 (5)0.0037 (4)0.0027 (4)0.0021 (4)
C30.0119 (5)0.0191 (5)0.0183 (5)0.0038 (4)0.0000 (4)0.0035 (4)
C40.0150 (5)0.0215 (5)0.0140 (5)0.0025 (4)0.0013 (4)0.0006 (4)
C50.0156 (5)0.0189 (5)0.0177 (5)0.0028 (4)0.0020 (4)0.0014 (4)
C60.0107 (4)0.0180 (5)0.0183 (5)0.0035 (4)0.0004 (4)0.0004 (4)
C70.0127 (5)0.0192 (5)0.0142 (5)0.0038 (4)0.0015 (4)0.0015 (4)
C80.0135 (5)0.0187 (5)0.0148 (5)0.0004 (4)0.0027 (4)0.0009 (4)
C90.0165 (5)0.0200 (5)0.0138 (5)0.0037 (4)0.0012 (4)0.0000 (4)
C100.0119 (5)0.0221 (5)0.0157 (5)0.0032 (4)0.0009 (4)0.0018 (4)
C110.0132 (5)0.0193 (5)0.0179 (5)0.0013 (4)0.0036 (4)0.0011 (4)
C120.0156 (5)0.0175 (5)0.0144 (5)0.0043 (4)0.0032 (4)0.0016 (4)
C130.0162 (5)0.0205 (5)0.0161 (5)0.0013 (4)0.0045 (4)0.0004 (4)
C140.0141 (5)0.0177 (5)0.0186 (5)0.0025 (4)0.0024 (4)0.0017 (4)
N10.0121 (4)0.0303 (5)0.0162 (4)0.0043 (4)0.0006 (3)0.0014 (4)
N20.0126 (4)0.0196 (4)0.0179 (4)0.0037 (3)0.0025 (3)0.0027 (3)
N30.0185 (5)0.0332 (5)0.0160 (5)0.0033 (4)0.0013 (4)0.0005 (4)
N40.0147 (4)0.0227 (5)0.0229 (5)0.0072 (4)0.0018 (4)0.0041 (4)
N50.0184 (5)0.0226 (5)0.0190 (5)0.0031 (4)0.0038 (4)0.0003 (4)
N60.0138 (5)0.0314 (5)0.0214 (5)0.0033 (4)0.0016 (4)0.0001 (4)
N70.0176 (5)0.0184 (4)0.0191 (4)0.0044 (3)0.0039 (4)0.0028 (3)
N80.0152 (5)0.0320 (6)0.0261 (5)0.0018 (4)0.0037 (4)0.0071 (4)
N90.0110 (4)0.0246 (5)0.0190 (5)0.0024 (4)0.0006 (4)0.0052 (4)
N100.0120 (5)0.0321 (6)0.0286 (5)0.0002 (4)0.0002 (4)0.0146 (4)
N110.0164 (5)0.0220 (5)0.0238 (5)0.0031 (4)0.0025 (4)0.0086 (4)
O10.0378 (6)0.0385 (5)0.0367 (5)0.0192 (4)0.0248 (5)0.0205 (4)
O20.0435 (6)0.0256 (5)0.0346 (5)0.0194 (4)0.0177 (5)0.0086 (4)
O30.0249 (5)0.0429 (6)0.0193 (4)0.0115 (4)0.0059 (4)0.0034 (4)
O40.0331 (6)0.0761 (9)0.0199 (5)0.0200 (6)0.0015 (4)0.0126 (5)
O50.0232 (5)0.0655 (8)0.0370 (6)0.0218 (5)0.0092 (4)0.0016 (5)
O60.0252 (5)0.0296 (5)0.0252 (4)0.0133 (4)0.0044 (4)0.0024 (4)
O70.0154 (4)0.0409 (5)0.0363 (5)0.0005 (4)0.0075 (4)0.0043 (4)
O80.0336 (5)0.0282 (5)0.0433 (6)0.0004 (4)0.0078 (5)0.0145 (4)
O90.0218 (5)0.0443 (6)0.0327 (5)0.0087 (4)0.0060 (4)0.0125 (4)
O100.0134 (4)0.0450 (6)0.0387 (6)0.0043 (4)0.0011 (4)0.0058 (5)
O110.0363 (5)0.0191 (4)0.0281 (5)0.0028 (4)0.0070 (4)0.0027 (3)
O120.0329 (5)0.0293 (5)0.0202 (4)0.0006 (4)0.0050 (4)0.0062 (4)
O130.0184 (4)0.0303 (5)0.0208 (4)0.0003 (3)0.0007 (3)0.0089 (3)
Geometric parameters (Å, º) top
C1—N11.3021 (15)C13—N81.3295 (16)
C1—C21.4394 (15)C13—N91.3980 (15)
C1—C61.4419 (16)C14—N101.3064 (16)
C2—C31.3577 (16)C14—N111.3158 (15)
C2—N21.4605 (15)C14—N91.3615 (15)
C3—C41.3981 (17)N2—O11.2167 (13)
C3—H30.924 (18)N2—O21.2169 (14)
C4—C51.3880 (16)N3—O41.2245 (16)
C4—N31.4241 (15)N3—O31.2441 (15)
C5—C61.3728 (16)N4—O51.2170 (15)
C5—H50.933 (17)N4—O61.2398 (14)
C6—N41.4493 (15)N5—O71.2184 (15)
C7—N11.3403 (15)N5—O81.2248 (15)
C7—C121.4247 (16)N6—O101.2205 (15)
C7—C81.4256 (16)N6—O91.2228 (15)
C8—C91.3748 (16)N7—O121.2146 (14)
C8—N51.4612 (15)N7—O111.2237 (14)
C9—C101.3789 (16)N8—H8A0.87 (2)
C9—H90.943 (17)N8—H8B0.85 (2)
C10—C111.3770 (16)N9—H9A0.845 (19)
C10—N61.4506 (15)N10—H10A0.86 (2)
C11—C121.3755 (16)N10—H10B0.85 (2)
C11—H110.926 (17)N11—H11A0.859 (19)
C12—N71.4602 (15)N11—H11B0.85 (2)
C13—O131.2248 (15)
N1—C1—C2118.13 (10)O13—C13—N9121.68 (11)
N1—C1—C6130.03 (10)N8—C13—N9113.95 (11)
C2—C1—C6111.79 (10)N10—C14—N11121.48 (11)
C3—C2—C1125.42 (10)N10—C14—N9121.00 (11)
C3—C2—N2117.65 (10)N11—C14—N9117.52 (11)
C1—C2—N2116.84 (10)C1—N1—C7131.66 (10)
C2—C3—C4118.04 (10)O1—N2—O2123.85 (10)
C2—C3—H3118.7 (10)O1—N2—C2117.73 (10)
C4—C3—H3123.2 (10)O2—N2—C2118.40 (10)
C5—C4—C3121.07 (10)O4—N3—O3122.46 (11)
C5—C4—N3119.53 (11)O4—N3—C4119.22 (11)
C3—C4—N3119.37 (10)O3—N3—C4118.32 (11)
C6—C5—C4119.18 (11)O5—N4—O6123.58 (11)
C6—C5—H5119.8 (10)O5—N4—C6119.33 (11)
C4—C5—H5121.0 (10)O6—N4—C6117.07 (10)
C5—C6—C1123.71 (10)O7—N5—O8123.41 (11)
C5—C6—N4116.52 (10)O7—N5—C8118.60 (10)
C1—C6—N4119.74 (10)O8—N5—C8117.94 (11)
N1—C7—C12125.74 (10)O10—N6—O9124.42 (11)
N1—C7—C8121.07 (10)O10—N6—C10118.28 (11)
C12—C7—C8112.79 (10)O9—N6—C10117.29 (11)
C9—C8—C7124.08 (10)O12—N7—O11123.96 (11)
C9—C8—N5115.57 (10)O12—N7—C12118.82 (10)
C7—C8—N5120.32 (10)O11—N7—C12117.22 (10)
C8—C9—C10118.29 (11)C13—N8—H8A118.3 (13)
C8—C9—H9121.0 (10)C13—N8—H8B121.2 (13)
C10—C9—H9120.7 (10)H8A—N8—H8B120.4 (18)
C11—C10—C9121.68 (11)C14—N9—C13125.47 (10)
C11—C10—N6119.08 (10)C14—N9—H9A115.3 (12)
C9—C10—N6119.23 (11)C13—N9—H9A118.9 (12)
C12—C11—C10118.50 (10)C14—N10—H10A118.5 (13)
C12—C11—H11119.0 (11)C14—N10—H10B119.0 (14)
C10—C11—H11122.4 (11)H10A—N10—H10B122.4 (19)
C11—C12—C7124.02 (10)C14—N11—H11A119.4 (12)
C11—C12—N7115.00 (10)C14—N11—H11B121.4 (13)
C7—C12—N7120.98 (10)H11A—N11—H11B118.3 (18)
O13—C13—N8124.37 (11)
N1—C1—C2—C3167.76 (11)C2—C1—N1—C7165.33 (12)
C6—C1—C2—C39.85 (15)C6—C1—N1—C711.8 (2)
N1—C1—C2—N28.72 (15)C12—C7—N1—C166.71 (19)
C6—C1—C2—N2173.68 (9)C8—C7—N1—C1121.14 (14)
C1—C2—C3—C44.74 (17)C3—C2—N2—O1125.71 (12)
N2—C2—C3—C4178.81 (10)C1—C2—N2—O157.53 (14)
C2—C3—C4—C51.49 (17)C3—C2—N2—O252.73 (15)
C2—C3—C4—N3176.28 (10)C1—C2—N2—O2124.03 (12)
C3—C4—C5—C61.44 (17)C5—C4—N3—O47.09 (18)
N3—C4—C5—C6176.32 (10)C3—C4—N3—O4175.11 (12)
C4—C5—C6—C14.75 (17)C5—C4—N3—O3171.84 (11)
C4—C5—C6—N4177.02 (10)C3—C4—N3—O35.96 (17)
N1—C1—C6—C5167.52 (12)C5—C6—N4—O534.71 (16)
C2—C1—C6—C59.72 (15)C1—C6—N4—O5143.59 (12)
N1—C1—C6—N410.66 (18)C5—C6—N4—O6143.68 (11)
C2—C1—C6—N4172.10 (9)C1—C6—N4—O638.02 (15)
N1—C7—C8—C9177.97 (11)C9—C8—N5—O7147.05 (12)
C12—C7—C8—C98.94 (16)C7—C8—N5—O734.82 (16)
N1—C7—C8—N50.00 (16)C9—C8—N5—O830.50 (16)
C12—C7—C8—N5173.10 (10)C7—C8—N5—O8147.63 (12)
C7—C8—C9—C105.82 (17)C11—C10—N6—O108.75 (17)
N5—C8—C9—C10176.13 (10)C9—C10—N6—O10172.92 (12)
C8—C9—C10—C111.94 (17)C11—C10—N6—O9170.40 (12)
C8—C9—C10—N6176.35 (10)C9—C10—N6—O97.93 (17)
C9—C10—C11—C125.54 (17)C11—C12—N7—O12145.75 (11)
N6—C10—C11—C12172.75 (10)C7—C12—N7—O1235.22 (16)
C10—C11—C12—C71.73 (17)C11—C12—N7—O1134.09 (15)
C10—C11—C12—N7179.28 (10)C7—C12—N7—O11144.94 (11)
N1—C7—C12—C11177.77 (11)N10—C14—N9—C132.99 (19)
C8—C7—C12—C115.06 (16)N11—C14—N9—C13177.65 (11)
N1—C7—C12—N71.17 (17)O13—C13—N9—C148.07 (19)
C8—C7—C12—N7173.87 (10)N8—C13—N9—C14172.57 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O13i0.87 (2)2.11 (2)2.9507 (17)163.1 (18)
N8—H8B···O3ii0.85 (2)2.434 (19)3.1495 (18)142.4 (16)
N10—H10A···O130.86 (2)1.98 (2)2.6403 (16)132.2 (17)
N10—H10A···O9iii0.86 (2)2.26 (2)2.7991 (17)120.7 (16)
N11—H11A···O1iv0.859 (19)2.222 (18)2.7590 (16)120.5 (15)
N11—H11B···O60.85 (2)2.15 (2)2.9833 (17)167.7 (18)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O13i0.87 (2)2.11 (2)2.9507 (17)163.1 (18)
N8—H8B···O3ii0.85 (2)2.434 (19)3.1495 (18)142.4 (16)
N10—H10A···O130.86 (2)1.98 (2)2.6403 (16)132.2 (17)
N10—H10A···O9iii0.86 (2)2.26 (2)2.7991 (17)120.7 (16)
N11—H11A···O1iv0.859 (19)2.222 (18)2.7590 (16)120.5 (15)
N11—H11B···O60.85 (2)2.15 (2)2.9833 (17)167.7 (18)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC2H7N4O+·C12H4N7O12
Mr541.34
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.9764 (16), 8.6658 (17), 15.278 (3)
α, β, γ (°)87.79 (3), 76.18 (3), 77.59 (3)
V3)1001.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.20 × 0.10 × 0.40 (radius)
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionFor a sphere
[the interpolation procedure of Dwiggins (1975) is used with some modification]
Tmin, Tmax0.861, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12316, 5347, 4600
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02
No. of reflections5347
No. of parameters387
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationAgnihotri, P., Patra, S., Suresh, E., Paul, P. & Ghosh, P. K. (2006). Eur. J. Inorg. Chem. pp. 4938–4944.  Web of Science CSD CrossRef Google Scholar
First citationBadgujar, D. M., Talawar, M. B., Asthana, S. N. & Mahulikar, P. P. (2008). J. Hazard. Mater. 151, 289–305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBray, L. A., Martin, E. C., Moore, R. L. & Richland, W. A. (1962). US Atomic Energy Commun. HW-SA-2620, p. 8.  Google Scholar
First citationDeblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012a). Crystals, 2, 34-42.  CrossRef CAS Google Scholar
First citationDeblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012b). Inorg. Chem. Commun. 18, 57–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEringathodi, S., Agnihotri, P., Ganguly, B., Bhatt, P., Subramanian, P. S., Paul, P. & Ghosh, P. K. (2005). Eur. J. Inorg. Chem. pp. 2198–2205.  Web of Science CSD CrossRef Google Scholar
First citationGnehm, R. (1874). Ber. Dtsch. Chem. Ges. 7, 1399–1401.  CrossRef Google Scholar
First citationGnehm, R. (1876). Ber. Dtsch. Chem. Ges. 7, 1245–1246.  CrossRef Google Scholar
First citationGöbel, M. & Klapötke, T. M. (2009). Adv. Funct. Mater. 19, 347–365.  Google Scholar
First citationHuang, H., Zhou, Z., Song, J., Liang, L., Wang, K., Cao, D., Sun, W., Dong, X. & Xue, M. (2011). Chem. Eur. J. 17, 13593–13602.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKjelland, J. (1971). Chem. Ind. (London), pp. 1309–1313.  Google Scholar
First citationKlapötke, T. M. (2011). In Chemistry of High-Energy Materials. Berlin/New York: Walter de Gruyter.  Google Scholar
First citationKyrš, M., Pelčιk, J. & Polanský, P. (1960). Collect. Czech. Chem. Commun. 25, 2642–2650.  Google Scholar
First citationLanglet, A. (1998). Propellants, explosives, and airbag inflators containing guanylurea dinitramide. PCT Int. Appl. WO 9855428 A1 19981210.  Google Scholar
First citationLotsch, B. V. & Schnick, W. (2005). Z. Anorg. Allg. Chem. 631, 2967–29969.  Web of Science CSD CrossRef CAS Google Scholar
First citationNair, U. R., Asthana, S. N., Rao, A. S. & Gandhe, B. R. (2010). Def. Sci. J. 60, 137–151.  CrossRef CAS Google Scholar
First citationOestmark, H., Walin, S. & Goede, P. (2007). Cent. Eur. J. Energetic Mater. 4, 83–108.  CAS Google Scholar
First citationRice, B. M., Byrd, E. F. C. & Mattson, W. D. (2007). Struct. Bond. 125, 153–194.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, G., Hrib, C. G., Deblitz, R., Kühling, M., Plenikowski, G. & Edelmann, F. T. (2014). Inorg. Chem. Commun. 43, 90–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, R., Guo, Y., Zng, Z. & Shreeve, J. M. (2009). Chem. Commun. pp. 2697–2699.  Web of Science CSD CrossRef Google Scholar
First citationWinkel, A. & Maas, D. I. H. (1936). Angew. Chem. 49, 827–830.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 111-114
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds