organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 16 June 2014; accepted 18 June 2014; online 21 June 2014)

In the title compound, C11H7ClO3, a chlorinated and methyl­ated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0670 Å), with the largest deviation from the least-squares plane [0.2349 (17) Å] being for the pyran carbonyl O atom. In the crystal, mol­ecules are linked through ππ stacking inter­actions along the a axis [centroid–centroid distance between the pyran rings = 3.824 (6) Å] and two stacks are connected by type I halogen–halogen inter­actions between the Cl atoms [Cl⋯Cl = 3.397 (3) Å].

Keywords: crystal structure.

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o514.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]). For halogen–halogen inter­actions, see: Metrangolo & Resnati (2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]); Mukherjee & Desiraju (2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7ClO3

  • Mr = 222.63

  • Triclinic, [P \overline 1]

  • a = 3.824 (6) Å

  • b = 6.111 (9) Å

  • c = 19.962 (10) Å

  • α = 81.83 (7)°

  • β = 88.82 (7)°

  • γ = 87.04 (12)°

  • V = 461.1 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.10 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 2677 measured reflections

  • 2092 independent reflections

  • 1784 reflections with F2 > 2σ(F2)

  • Rint = 0.076

  • 3 standard reflections every 150 reflections intensity decay: −0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.08

  • 2092 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonding and halogen···halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry, and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of halogenated 3-formyl­chromone derivatives 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Both halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen inter­action between the chlorine atoms at 6-position are observed in 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Fig. 3, (top). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 3, middle). As part of our inter­est in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and methyl­ated 3-formyl­chromone derivative 6-chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-donating group on the chlorine atom at 6-position and its inter­action mode.

The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0670 Å, and the largest deviation is 0.2349 (17) Å for O3 (Fig. 1).

In the crystal, the molecules are stacked with the translation-symmetry equivalenti [centroid–centroid distance between the pyran rings = 3.824 (6) Å, i: x + 1, y, z], as shown in Fig. 2. In addition, a type I halogen···halogen inter­action is observed between the chlorine atoms at 6-position [Cl1···Cl1ii = 3.397 (3) Å, C5–Cl1–Cl1ii = 148.41 (7)°, ii: –x, –y, –z], as shown in Fig. 3 (bottom). Thus, a contact between the formyl oxygen atom and the chlorine atom at 6-position is not observed in the title compound. The chemical nature of the chlorine atom at 6-position in the title compound should be similar to that of the chlorine one at 6-position in 6,8-di­chloro-4-oxochromene-3-carbaldehyde.

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aceto­nitrile solution of the commercially available title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (0 0 20) was omitted because of systematic error.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Structure description top

Halogen bonding and halogen···halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry, and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of halogenated 3-formyl­chromone derivatives 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Both halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen inter­action between the chlorine atoms at 6-position are observed in 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Fig. 3, (top). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 3, middle). As part of our inter­est in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and methyl­ated 3-formyl­chromone derivative 6-chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-donating group on the chlorine atom at 6-position and its inter­action mode.

The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0670 Å, and the largest deviation is 0.2349 (17) Å for O3 (Fig. 1).

In the crystal, the molecules are stacked with the translation-symmetry equivalenti [centroid–centroid distance between the pyran rings = 3.824 (6) Å, i: x + 1, y, z], as shown in Fig. 2. In addition, a type I halogen···halogen inter­action is observed between the chlorine atoms at 6-position [Cl1···Cl1ii = 3.397 (3) Å, C5–Cl1–Cl1ii = 148.41 (7)°, ii: –x, –y, –z], as shown in Fig. 3 (bottom). Thus, a contact between the formyl oxygen atom and the chlorine atom at 6-position is not observed in the title compound. The chemical nature of the chlorine atom at 6-position in the title compound should be similar to that of the chlorine one at 6-position in 6,8-di­chloro-4-oxochromene-3-carbaldehyde.

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aceto­nitrile solution of the commercially available title compound at room temperature.

Refinement details top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (0 0 20) was omitted because of systematic error.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing view of the title compound.
[Figure 3] Fig. 3. Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (middle), and the title compound (bottom).
6-Chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C11H7ClO3Z = 2
Mr = 222.63F(000) = 228.00
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 3.824 (6) ÅCell parameters from 25 reflections
b = 6.111 (9) Åθ = 15.1–17.5°
c = 19.962 (10) ŵ = 0.39 mm1
α = 81.83 (7)°T = 100 K
β = 88.82 (7)°Plate, colorless
γ = 87.04 (12)°0.45 × 0.20 × 0.10 mm
V = 461.1 (10) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 42
2677 measured reflectionsk = 77
2092 independent reflectionsl = 2525
1784 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.076 intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2265P]
where P = (Fo2 + 2Fc2)/3
2092 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.44 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H7ClO3γ = 87.04 (12)°
Mr = 222.63V = 461.1 (10) Å3
Triclinic, P1Z = 2
a = 3.824 (6) ÅMo Kα radiation
b = 6.111 (9) ŵ = 0.39 mm1
c = 19.962 (10) ÅT = 100 K
α = 81.83 (7)°0.45 × 0.20 × 0.10 mm
β = 88.82 (7)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.076
2677 measured reflections3 standard reflections every 150 reflections
2092 independent reflections intensity decay: 0.3%
1784 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
2092 reflectionsΔρmin = 0.44 e Å3
137 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17920 (11)0.14364 (6)0.056454 (19)0.01599 (13)
O10.4150 (4)0.24855 (18)0.33907 (6)0.0147 (3)
O20.0788 (4)0.30118 (19)0.30226 (6)0.0175 (3)
O30.2039 (4)0.2523 (3)0.49681 (6)0.0257 (3)
C10.3352 (5)0.0873 (3)0.38908 (8)0.0149 (4)
C20.1817 (5)0.1014 (3)0.38028 (8)0.0143 (4)
C30.0832 (5)0.1417 (3)0.31299 (8)0.0125 (3)
C40.1395 (4)0.0114 (3)0.19037 (8)0.0124 (3)
C50.2401 (4)0.1770 (3)0.14057 (8)0.0125 (3)
C60.3901 (4)0.3707 (3)0.15567 (8)0.0123 (3)
C70.4419 (4)0.3892 (3)0.22300 (8)0.0131 (3)
C80.1912 (4)0.0316 (3)0.25829 (8)0.0117 (3)
C90.3461 (4)0.2198 (3)0.27341 (8)0.0122 (3)
C100.4919 (5)0.5510 (3)0.10037 (9)0.0158 (4)
C110.1133 (5)0.2676 (3)0.43982 (9)0.0185 (4)
H10.39040.10680.43400.0179*
H20.03570.11560.17860.0149*
H30.54260.51710.23490.0157*
H4A0.60250.66730.12030.0190*
H5B0.28240.61390.07580.0190*
H6C0.65710.48930.06900.0190*
H70.00880.39400.43310.0222*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0226 (3)0.0153 (2)0.0106 (2)0.00165 (14)0.00239 (13)0.00318 (13)
O10.0210 (6)0.0146 (6)0.0093 (6)0.0054 (5)0.0015 (5)0.0026 (4)
O20.0222 (7)0.0151 (6)0.0160 (6)0.0074 (5)0.0018 (5)0.0024 (5)
O30.0382 (8)0.0262 (7)0.0129 (7)0.0108 (6)0.0028 (6)0.0009 (5)
C10.0178 (8)0.0169 (8)0.0102 (8)0.0016 (6)0.0000 (6)0.0019 (6)
C20.0161 (8)0.0148 (8)0.0121 (8)0.0014 (6)0.0000 (6)0.0018 (6)
C30.0119 (7)0.0129 (7)0.0130 (8)0.0000 (6)0.0002 (6)0.0030 (6)
C40.0123 (8)0.0113 (7)0.0142 (8)0.0005 (6)0.0012 (6)0.0039 (6)
C50.0125 (8)0.0140 (7)0.0116 (7)0.0012 (6)0.0012 (6)0.0037 (6)
C60.0101 (7)0.0113 (7)0.0151 (8)0.0011 (6)0.0000 (6)0.0015 (6)
C70.0128 (8)0.0108 (7)0.0160 (8)0.0011 (6)0.0004 (6)0.0032 (6)
C80.0119 (8)0.0110 (7)0.0125 (8)0.0000 (6)0.0016 (6)0.0026 (6)
C90.0124 (8)0.0136 (7)0.0114 (8)0.0001 (6)0.0017 (6)0.0044 (6)
C100.0198 (8)0.0120 (7)0.0152 (8)0.0021 (6)0.0010 (6)0.0001 (6)
C110.0237 (9)0.0177 (8)0.0143 (8)0.0054 (7)0.0004 (7)0.0015 (6)
Geometric parameters (Å, º) top
Cl1—C51.7418 (19)C6—C71.384 (3)
O1—C11.341 (3)C6—C101.505 (3)
O1—C91.379 (3)C7—C91.395 (3)
O2—C31.228 (3)C8—C91.394 (3)
O3—C111.214 (3)C1—H10.950
C1—C21.355 (3)C4—H20.950
C2—C31.460 (3)C7—H30.950
C2—C111.478 (3)C10—H4A0.980
C3—C81.477 (3)C10—H5B0.980
C4—C51.378 (3)C10—H6C0.980
C4—C81.398 (3)C11—H70.950
C5—C61.414 (3)
Cl1···C103.061 (5)O3···H7iv3.3646
O1···C32.874 (5)O3···H7viii2.5400
O2···C13.580 (5)C1···H7ii3.5865
O2···C42.865 (4)C2···H1vii3.4323
O2···C112.895 (3)C2···H7iv3.5942
O3···C12.825 (4)C3···H3v3.5438
C1···C73.584 (4)C3···H3vi3.2093
C1···C82.751 (3)C4···H2iv3.4855
C2···C92.772 (4)C4···H3vi3.3323
C4···C72.797 (5)C4···H4Av3.4637
C5···C92.742 (3)C4···H4Avi3.1405
C6···C82.821 (4)C4···H5Bvi3.5800
Cl1···Cl1i3.397 (3)C5···H2iv3.4899
O1···O2ii3.259 (5)C5···H4Avi3.4169
O1···O2iii3.432 (5)C5···H6Cvii3.0939
O1···C2iv3.578 (6)C6···H2ii3.4420
O1···C3iv3.487 (6)C6···H4Avii3.4668
O2···O1v3.432 (5)C6···H6Cvii3.3186
O2···O1vi3.259 (5)C7···H2ii3.3414
O2···C2vii3.452 (5)C7···H3vii3.4983
O2···C3vii3.313 (6)C8···H3vi3.4446
O2···C7v3.282 (4)C9···H3vii3.5296
O2···C7vi3.222 (5)C10···H2ii3.1715
O2···C8vii3.422 (6)C10···H2iii3.5202
O2···C9vi3.389 (5)C10···H4Avii3.4653
O3···O3viii3.462 (5)C10···H5Biv3.0874
O3···O3ix3.400 (5)C10···H6Cvii3.3170
O3···C1ix3.271 (4)C10···H6Cxii3.4850
O3···C1x3.212 (4)C11···H1vii3.4892
O3···C11viii3.306 (5)C11···H1ix3.3664
C1···O3ix3.271 (4)C11···H1x3.4654
C1···O3x3.212 (4)C11···H7iv3.4101
C1···C2iv3.390 (6)C11···H7viii3.0703
C1···C3iv3.530 (5)H1···O3ix2.8065
C2···O1vii3.578 (6)H1···O3x2.3848
C2···O2iv3.452 (5)H1···C2iv3.4323
C2···C1vii3.390 (6)H1···C11iv3.4892
C3···O1vii3.487 (6)H1···C11ix3.3664
C3···O2iv3.313 (6)H1···C11x3.4654
C3···C1vii3.530 (5)H1···H1x2.8906
C3···C9vii3.522 (6)H1···H7ii3.3381
C4···C6vii3.537 (6)H2···C4vii3.4855
C4···C7vii3.548 (6)H2···C5vii3.4899
C5···C6vii3.424 (6)H2···C6vi3.4420
C5···C10vii3.599 (6)H2···C7vi3.3414
C6···C4iv3.537 (6)H2···C10v3.5202
C6···C5iv3.424 (6)H2···C10vi3.1715
C7···O2ii3.222 (5)H2···H3v3.0807
C7···O2iii3.282 (4)H2···H3vi2.9969
C7···C4iv3.548 (6)H2···H4Av2.5702
C7···C8iv3.533 (6)H2···H4Avi2.8020
C8···O2iv3.422 (6)H2···H5Bvi2.9247
C8···C7vii3.533 (6)H3···O2ii2.9512
C8···C9vii3.396 (6)H3···O2iii2.4107
C9···O2ii3.389 (5)H3···C3ii3.2093
C9···C3iv3.522 (6)H3···C3iii3.5438
C9···C8iv3.396 (6)H3···C4ii3.3323
C10···C5iv3.599 (6)H3···C7iv3.4983
C11···O3viii3.306 (5)H3···C8ii3.4446
C11···C11viii3.581 (5)H3···C9iv3.5296
Cl1···H22.7736H3···H2ii2.9969
Cl1···H5B3.0008H3···H2iii3.0807
Cl1···H6C2.9039H4A···Cl1ii3.3558
O1···H32.5156H4A···C4ii3.1405
O2···H22.6042H4A···C4iii3.4637
O2···H72.6084H4A···C5ii3.4169
O3···H12.4980H4A···C6iv3.4668
C1···H73.2820H4A···C10iv3.4653
C3···H13.2957H4A···H2ii2.8020
C3···H22.6739H4A···H2iii2.5702
C3···H72.6867H4A···H5Biv2.7486
C5···H33.2635H5B···Cl1ii3.2097
C5···H4A3.3351H5B···Cl1xi3.3310
C5···H5B2.8070H5B···Cl1xii3.5195
C5···H6C2.7698H5B···C4ii3.5800
C6···H23.2984H5B···C10vii3.0874
C7···H4A2.5561H5B···H2ii2.9247
C7···H5B3.1190H5B···H4Avii2.7486
C7···H6C3.1491H5B···H6Cvii2.5591
C8···H33.2892H5B···H6Cxii3.0471
C9···H13.1874H6C···Cl1iv2.8645
C9···H23.2616H6C···Cl1xii3.1901
C10···H32.6736H6C···C5iv3.0939
C11···H12.5574H6C···C6iv3.3186
H1···H73.4925H6C···C10iv3.3170
H3···H4A2.3514H6C···C10xii3.4850
H3···H5B3.3096H6C···H5Biv2.5591
H3···H6C3.3584H6C···H5Bxii3.0471
Cl1···H4Avi3.3558H6C···H6Cxii3.0105
Cl1···H5Bvi3.2097H7···O1vi3.4049
Cl1···H5Bxi3.3310H7···O3vii3.3646
Cl1···H5Bxii3.5195H7···O3viii2.5400
Cl1···H6Cvii2.8645H7···C1vi3.5865
Cl1···H6Cxii3.1901H7···C2vii3.5942
O1···H7ii3.4049H7···C11vii3.4101
O2···H3v2.4107H7···C11viii3.0703
O2···H3vi2.9512H7···H1vi3.3381
O3···H1ix2.8065H7···H7viii2.7996
O3···H1x2.3848
C1—O1—C9118.32 (15)O1—C9—C7116.26 (16)
O1—C1—C2124.81 (17)O1—C9—C8121.84 (15)
C1—C2—C3120.85 (15)C7—C9—C8121.90 (17)
C1—C2—C11119.27 (17)O3—C11—C2123.93 (18)
C3—C2—C11119.87 (17)O1—C1—H1117.595
O2—C3—C2123.93 (15)C2—C1—H1117.592
O2—C3—C8122.62 (17)C5—C4—H2120.213
C2—C3—C8113.45 (16)C8—C4—H2120.226
C5—C4—C8119.56 (17)C6—C7—H3120.052
Cl1—C5—C4118.24 (15)C9—C7—H3120.055
Cl1—C5—C6119.54 (13)C6—C10—H4A109.463
C4—C5—C6122.22 (17)C6—C10—H5B109.471
C5—C6—C7117.93 (15)C6—C10—H6C109.471
C5—C6—C10121.19 (17)H4A—C10—H5B109.473
C7—C6—C10120.87 (16)H4A—C10—H6C109.475
C6—C7—C9119.89 (17)H5B—C10—H6C109.474
C3—C8—C4121.00 (16)O3—C11—H7118.044
C3—C8—C9120.54 (16)C2—C11—H7118.029
C4—C8—C9118.46 (15)
C1—O1—C9—C7178.36 (12)H2—C4—C5—C6178.9
C1—O1—C9—C81.3 (2)H2—C4—C8—C30.6
C9—O1—C1—C21.9 (3)H2—C4—C8—C9179.6
C9—O1—C1—H1178.1Cl1—C5—C6—C7178.56 (10)
O1—C1—C2—C31.1 (3)Cl1—C5—C6—C101.2 (2)
O1—C1—C2—C11179.01 (13)C4—C5—C6—C71.3 (3)
H1—C1—C2—C3178.9C4—C5—C6—C10178.89 (13)
H1—C1—C2—C111.0C5—C6—C7—C90.1 (3)
C1—C2—C3—O2174.55 (15)C5—C6—C7—H3179.9
C1—C2—C3—C84.3 (2)C5—C6—C10—H4A176.9
C1—C2—C11—O34.2 (3)C5—C6—C10—H5B63.1
C1—C2—C11—H7175.8C5—C6—C10—H6C56.9
C3—C2—C11—O3175.88 (15)C7—C6—C10—H4A2.8
C3—C2—C11—H74.1C7—C6—C10—H5B117.1
C11—C2—C3—O25.3 (3)C7—C6—C10—H6C122.8
C11—C2—C3—C8175.85 (13)C10—C6—C7—C9179.90 (13)
O2—C3—C8—C45.7 (3)C10—C6—C7—H30.1
O2—C3—C8—C9174.08 (14)C6—C7—C9—O1178.34 (13)
C2—C3—C8—C4175.51 (13)C6—C7—C9—C81.3 (3)
C2—C3—C8—C94.8 (2)H3—C7—C9—O11.7
C5—C4—C8—C3179.37 (13)H3—C7—C9—C8178.7
C5—C4—C8—C90.4 (3)C3—C8—C9—O12.2 (3)
C8—C4—C5—Cl1178.80 (12)C3—C8—C9—C7178.17 (13)
C8—C4—C5—C61.1 (3)C4—C8—C9—O1178.08 (13)
H2—C4—C5—Cl11.2C4—C8—C9—C71.6 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x1, y1, z; (vi) x, y1, z; (vii) x1, y, z; (viii) x, y1, z+1; (ix) x, y, z+1; (x) x+1, y, z+1; (xi) x, y+1, z; (xii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H7ClO3
Mr222.63
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)3.824 (6), 6.111 (9), 19.962 (10)
α, β, γ (°)81.83 (7), 88.82 (7), 87.04 (12)
V3)461.1 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.45 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC-7R
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2677, 2092, 1784
Rint0.076
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.08
No. of reflections2092
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.44

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds