access
S hydrogen bonds, which link the molecules into chains along [010]. Weak C-H
Cl interactions further link these chains into layers parallel to the ab plane.Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814011350/cv5457sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536814011350/cv5457Isup2.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814011350/cv5457Isup3.cml |
CCDC reference: 1003616
Recently, various thiourea derivatives have been synthesised and showed broad interesting properties (Maddani & Prabhu, 2010; Yahyazadeh & Ghasemi, 2013; Zhao et al., 2013). In a continuation of our research focused on new synthetic routes towards novel substituted urea derivatives (Smith et al., 1996, 1999, 2009, 2010, 2012, 2014) we have synthesized 3-(2-bromo-4-chlorophenyl)-1,1-dimethylthiourea (I) in a high yield (Smith et al., 1996). We have prepared the material again and crystallized it in high purity in order to obtain its crystal structure, which we present herein.
In (I) (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Zhao et al., 2008; Ramnathan et al., 1996). The non-hydrogen atoms in (I) fall into two planes with an interplaner angle of 54.38 (6)° between the bromo-chlorophenyl and dimethylthiourea groups. Each molecule is involved in N—H···S contacts (Table 1) with two neigbouring molecules, with one as an acceptor and the other as a donor, leading to the formation of zig-zag-chains in [010] (Fig 2). The bromo-chlorophenyl and dimethylthiourea groups of adjacent molecules are parallel in the stack forming chains of alternating S···Br···S groups with a separation of 4.07Å and 4.11Å between the atoms.
To a stirred solution of 2-bromo-4-chloro-1-isothiocyanatobenzene (12.43 g, 50.0 mmol) in anhydrous dioxane (120 ml) dimethylamine (7.10 g of 33% solution in ethanol, 52.0 mmol) was slowly added in a drop-wise manner over 5 min. The reaction mixture was stirred at room temperature for an extra 1 h. The solid obtained was collected by filtration and washed with dioxane (2 x 20 ml) and dried. Recrystallization from ethyl acetate gave 3-(2-bromo-4-chlorophenyl)-1,1-dimethylthiourea (13.80 g, 47.0 mmol; 94%) as yellow crystals, m.p. 193–194 °C [lit. 184–185 °C (ethyl acetate); Smith et al. (1996)]. 1H NMR (500 MHz, CDCl3, δ, p.p.m.) 7.97 (d, J = 8.8 Hz, 1 H, H-6), 7.59 (d, J = 2.3 Hz, 1 H, H-3), 7.32 (dd, J = 2.3, 8.8 Hz, 1 H, H-5), 7.17 (br, exch., 1 H, NH), 3.43 [s, 6 H, N(CH3)2]. 13C NMR (125 MHz, CDCl3, δ, p.p.m.) 181.2 (s, C=S), 136.6 (s, C-1), 131.8 (d, C-3), 131.0 (s, C-4), 127.8 (d, C-6), 127.7 (d, C-5), 118.1 (s, C-2), 41.3 [q, N(CH3)2]. AP+—MS (m/z, %): 297 ([MH81Br37Cl]+, 34), 295 ([MH81Br35Cl and MH79Br37Cl]+, 100), 293 ([MH79Br35Cl]+, 80), 263 (12), 215 (22), 213 (50). HRMS (AP+): Calculated for C9H1179Br35ClN2S [MH] 292.9515; found, 292.9515.
H atoms were positioned geometrically and refined using a riding model with Uĩso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond.
Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
| C9H10BrClN2S | F(000) = 584 |
| Mr = 293.61 | Dx = 1.693 Mg m−3 |
| Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
| a = 12.1369 (3) Å | Cell parameters from 2078 reflections |
| b = 7.9431 (2) Å | θ = 4.1–75.5° |
| c = 13.2230 (4) Å | µ = 8.40 mm−1 |
| β = 115.386 (3)° | T = 296 K |
| V = 1151.67 (6) Å3 | Plate, colourless |
| Z = 4 | 0.28 × 0.20 × 0.09 mm |
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2245 independent reflections |
| Radiation source: SuperNova (Cu) X-ray Source | 2078 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.015 |
| ω scans | θmax = 73.5°, θmin = 4.1° |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −13→14 |
| Tmin = 0.580, Tmax = 1.000 | k = −9→6 |
| 4291 measured reflections | l = −16→15 |
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.4682P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.077 | (Δ/σ)max = 0.002 |
| S = 1.04 | Δρmax = 0.33 e Å−3 |
| 2245 reflections | Δρmin = −0.39 e Å−3 |
| 130 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0048 (3) |
| C9H10BrClN2S | V = 1151.67 (6) Å3 |
| Mr = 293.61 | Z = 4 |
| Monoclinic, P21/n | Cu Kα radiation |
| a = 12.1369 (3) Å | µ = 8.40 mm−1 |
| b = 7.9431 (2) Å | T = 296 K |
| c = 13.2230 (4) Å | 0.28 × 0.20 × 0.09 mm |
| β = 115.386 (3)° |
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2245 independent reflections |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 2078 reflections with I > 2σ(I) |
| Tmin = 0.580, Tmax = 1.000 | Rint = 0.015 |
| 4291 measured reflections |
| R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
| wR(F2) = 0.077 | H-atom parameters constrained |
| S = 1.04 | Δρmax = 0.33 e Å−3 |
| 2245 reflections | Δρmin = −0.39 e Å−3 |
| 130 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.85876 (18) | 0.0661 (3) | 0.22866 (16) | 0.0377 (4) | |
| C2 | 0.85637 (19) | 0.1344 (3) | 0.13058 (16) | 0.0404 (4) | |
| C3 | 0.9605 (2) | 0.1405 (3) | 0.11271 (19) | 0.0495 (5) | |
| H3 | 0.9581 | 0.1851 | 0.0468 | 0.059* | |
| C4 | 1.0675 (2) | 0.0794 (3) | 0.1942 (2) | 0.0523 (5) | |
| C5 | 1.0726 (2) | 0.0087 (3) | 0.29241 (19) | 0.0497 (5) | |
| H5 | 1.1455 | −0.0334 | 0.3465 | 0.060* | |
| C6 | 0.96763 (19) | 0.0022 (3) | 0.30797 (17) | 0.0440 (5) | |
| H6 | 0.9699 | −0.0460 | 0.3729 | 0.053* | |
| C7 | 0.72784 (18) | 0.1177 (3) | 0.32603 (16) | 0.0379 (4) | |
| C8 | 0.5801 (3) | 0.1471 (4) | 0.4043 (2) | 0.0638 (7) | |
| H8A | 0.5786 | 0.0517 | 0.4483 | 0.096* | |
| H8B | 0.5006 | 0.1978 | 0.3710 | 0.096* | |
| H8C | 0.6383 | 0.2278 | 0.4515 | 0.096* | |
| C9 | 0.5176 (2) | 0.0190 (4) | 0.2169 (2) | 0.0569 (6) | |
| H9A | 0.5032 | 0.0890 | 0.1533 | 0.085* | |
| H9B | 0.4443 | 0.0110 | 0.2274 | 0.085* | |
| H9C | 0.5416 | −0.0913 | 0.2045 | 0.085* | |
| Br1 | 0.70976 (2) | 0.22178 (4) | 0.01974 (2) | 0.05768 (14) | |
| Cl1 | 1.19895 (7) | 0.08827 (15) | 0.17270 (8) | 0.0936 (3) | |
| N1 | 0.74917 (15) | 0.0536 (3) | 0.24110 (14) | 0.0442 (4) | |
| H1 | 0.6901 | −0.0001 | 0.1897 | 0.053* | |
| N2 | 0.61441 (17) | 0.0925 (3) | 0.31655 (16) | 0.0470 (4) | |
| S1 | 0.83592 (5) | 0.22395 (7) | 0.43366 (4) | 0.04637 (16) |
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0377 (9) | 0.0420 (10) | 0.0314 (9) | −0.0038 (8) | 0.0129 (7) | −0.0039 (8) |
| C2 | 0.0436 (10) | 0.0403 (10) | 0.0335 (9) | −0.0009 (8) | 0.0128 (8) | −0.0013 (8) |
| C3 | 0.0570 (13) | 0.0531 (13) | 0.0436 (11) | −0.0046 (10) | 0.0264 (10) | 0.0013 (10) |
| C4 | 0.0437 (11) | 0.0644 (15) | 0.0526 (12) | −0.0043 (10) | 0.0242 (10) | −0.0078 (11) |
| C5 | 0.0395 (10) | 0.0595 (14) | 0.0420 (11) | 0.0018 (9) | 0.0098 (9) | −0.0050 (10) |
| C6 | 0.0451 (10) | 0.0495 (12) | 0.0327 (9) | 0.0004 (9) | 0.0123 (8) | 0.0013 (8) |
| C7 | 0.0420 (10) | 0.0375 (10) | 0.0312 (9) | 0.0047 (8) | 0.0128 (8) | 0.0048 (7) |
| C8 | 0.0684 (15) | 0.0766 (18) | 0.0611 (15) | 0.0111 (14) | 0.0416 (13) | 0.0006 (13) |
| C9 | 0.0376 (10) | 0.0679 (16) | 0.0603 (14) | 0.0018 (10) | 0.0164 (10) | −0.0056 (12) |
| Br1 | 0.05856 (19) | 0.0600 (2) | 0.04035 (17) | 0.01302 (11) | 0.00771 (12) | 0.00683 (10) |
| Cl1 | 0.0558 (4) | 0.1432 (9) | 0.0976 (6) | −0.0020 (4) | 0.0480 (4) | −0.0011 (6) |
| N1 | 0.0376 (8) | 0.0595 (11) | 0.0339 (8) | −0.0088 (8) | 0.0138 (7) | −0.0088 (8) |
| N2 | 0.0435 (9) | 0.0547 (11) | 0.0451 (9) | 0.0054 (8) | 0.0213 (8) | −0.0008 (8) |
| S1 | 0.0545 (3) | 0.0447 (3) | 0.0308 (3) | 0.0000 (2) | 0.0096 (2) | −0.00197 (19) |
| C1—C6 | 1.384 (3) | C7—N2 | 1.343 (3) |
| C1—C2 | 1.395 (3) | C7—N1 | 1.355 (3) |
| C1—N1 | 1.412 (3) | C7—S1 | 1.690 (2) |
| C2—C3 | 1.383 (3) | C8—N2 | 1.457 (3) |
| C2—Br1 | 1.887 (2) | C8—H8A | 0.9600 |
| C3—C4 | 1.372 (3) | C8—H8B | 0.9600 |
| C3—H3 | 0.9300 | C8—H8C | 0.9600 |
| C4—C5 | 1.392 (3) | C9—N2 | 1.459 (3) |
| C4—Cl1 | 1.738 (2) | C9—H9A | 0.9600 |
| C5—C6 | 1.375 (3) | C9—H9B | 0.9600 |
| C5—H5 | 0.9300 | C9—H9C | 0.9600 |
| C6—H6 | 0.9300 | N1—H1 | 0.8600 |
| C6—C1—C2 | 118.68 (18) | N1—C7—S1 | 122.03 (16) |
| C6—C1—N1 | 121.79 (18) | N2—C8—H8A | 109.5 |
| C2—C1—N1 | 119.39 (18) | N2—C8—H8B | 109.5 |
| C3—C2—C1 | 121.09 (19) | H8A—C8—H8B | 109.5 |
| C3—C2—Br1 | 118.76 (16) | N2—C8—H8C | 109.5 |
| C1—C2—Br1 | 120.14 (15) | H8A—C8—H8C | 109.5 |
| C4—C3—C2 | 118.7 (2) | H8B—C8—H8C | 109.5 |
| C4—C3—H3 | 120.7 | N2—C9—H9A | 109.5 |
| C2—C3—H3 | 120.7 | N2—C9—H9B | 109.5 |
| C3—C4—C5 | 121.6 (2) | H9A—C9—H9B | 109.5 |
| C3—C4—Cl1 | 118.89 (19) | N2—C9—H9C | 109.5 |
| C5—C4—Cl1 | 119.51 (19) | H9A—C9—H9C | 109.5 |
| C6—C5—C4 | 118.8 (2) | H9B—C9—H9C | 109.5 |
| C6—C5—H5 | 120.6 | C7—N1—C1 | 126.45 (17) |
| C4—C5—H5 | 120.6 | C7—N1—H1 | 116.8 |
| C5—C6—C1 | 121.2 (2) | C1—N1—H1 | 116.8 |
| C5—C6—H6 | 119.4 | C7—N2—C8 | 120.9 (2) |
| C1—C6—H6 | 119.4 | C7—N2—C9 | 122.72 (18) |
| N2—C7—N1 | 114.77 (18) | C8—N2—C9 | 116.3 (2) |
| N2—C7—S1 | 123.19 (16) |
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···S1i | 0.86 | 2.67 | 3.3488 (19) | 137 |
| C9—H9B···Cl1ii | 0.96 | 2.81 | 3.696 (2) | 153 |
| Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1, y, z. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···S1i | 0.86 | 2.67 | 3.3488 (19) | 136.9 |
| C9—H9B···Cl1ii | 0.96 | 2.81 | 3.696 (2) | 153.2 |
| Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1, y, z. |


journal menu








Alert level A
Alert level C
Alert level G
![[Figure 1]](http://journals.iucr.org/e/issues/2014/06/00/cv5457/cv5457fig1thm.gif)
![[Figure 2]](http://journals.iucr.org/e/issues/2014/06/00/cv5457/cv5457fig2thm.gif)



