organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl-4-chloro­aniline thio­semi­carbazone

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

(Received 22 April 2014; accepted 13 May 2014; online 17 May 2014)

In the title compound, C14H13ClN4S, obtained from a reaction of 2-benzoyl-4-chloro­aniline with thio­semicarbazide in ethanol, the dihedral angle between the aromatic rings is 81.31 (13)°. In the crystal, the mol­ecules are linked by three N—H⋯S hydrogen bonds, forming centrosymmetric rings with set-graph motif R22(8) and R22(18), and resulting in the formation of a two-dimensional network lying parallel to (010).

Related literature

For the coordination chemistry of thio­semicarbazone compounds, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For one of the first reports of the synthesis of a thio­semicarbazone derivative, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN4S

  • Mr = 304.79

  • Monoclinic, C 2/c

  • a = 22.46 (5) Å

  • b = 6.773 (14) Å

  • c = 19.28 (4) Å

  • β = 102.22 (6)°

  • V = 2866 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 1.14 × 0.31 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.937

  • 40582 measured reflections

  • 4016 independent reflections

  • 3348 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.10

  • 4016 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯S1i 0.87 (3) 2.75 (3) 3.534 (6) 150 (2)
N4—H2⋯S1ii 0.86 (3) 2.62 (3) 3.438 (5) 160 (2)
N3—H3A⋯S1iii 0.88 (3) 2.74 (3) 3.552 (5) 154 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives are well know as N,S-donors with a wide range of coordination modes (Lobana et al., 2009). As part of our interest on the coordination chemistry of thiosemicarbazone ligands, we report herein the synthesis and the crystal structure of a new ligand with N- and Cl-donor atoms.

The title compound (Fig. 1) is not planar and the dihedral angle between the two aromatic rings amount to 81.31 (13)°. The thiosemicarbazone fragment is almost planar, showing the torsion angle of 178.37 (12)° for the N1/N2/C14/S1 atoms. Additionally, the molecule shows a trans conformation for the atoms about the N1—N2 bond.

The mean deviations from the least squares plane for the aromatic ring with -NH2 and -Cl fragments amount to 0.0371 (12) Å for N4 which implies on a planar geommetry. The N- and Cl-donor atoms can increase the number of coordination modes and the dimensionality of the coordination polymers.

In the title compound, C14H13ClN4S, the molecule is not planar, the dihedral angle between the two aromatic rings amount to 81.31 (13)°. In the crystal structure the molecules are linked by three N—H···S hydrogen bonds (Table 1) interactions forming centrosymmetric rings with set-graph motif R22 (8) and R22 (18) (Bernstein, et al., 1995) and resulting in the formation of a two-dimensional network lying parallel to (010), Fig. 2. (Dolomanov et al., 2009).

Related literature top

For the coordination chemistry of thiosemicarbazone compounds, see: Lobana et al. (2009). For one of the first reports of the synthesis of a thiosemicarbazone derivative, see: Freund & Schander (1902). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Freund & Schander, 1902). The hydrochloric acid catalyzed reaction of 4-chloro-2-benzoylaniline (8,83 mmol) and thiosemicarbazide (8,83 mmol) in ethanol (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction of 4-chloro-2-benzoylaniline thiosemicarbazone were obtained in ethanol by the slow evaporation of the solvent.

Refinement top

All aromatic H atoms were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2 Ueq using a riding model with C—H = 0.93 Å. The amine and hydrazine H atoms were located in difference map but were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2 Ueq using a riding model with N2—H2A = 0.87 (2), N3—H3A = 0.88 (3), N3—H3B = 0.85 (3), N4—H1 = 0.87 (3) and N4—H2 = 0.86 (3) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with view along the b-axis. The hydrogen interactions are shown as dashed lines.
2-Benzoyl-4-chloroaniline thiosemicarbazone top
Crystal data top
C14H13ClN4SF(000) = 1264
Mr = 304.79Dx = 1.413 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4016 reflections
a = 22.46 (5) Åθ = 2.2–29.8°
b = 6.773 (14) ŵ = 0.41 mm1
c = 19.28 (4) ÅT = 298 K
β = 102.22 (6)°Needle, yellow
V = 2866 (10) Å31.14 × 0.31 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4016 independent reflections
Radiation source: fine-focus sealed tube, Bruker APEX-II CCD3348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 29.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3030
Tmin = 0.654, Tmax = 0.937k = 99
40582 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0481P)2 + 5.8502P]
where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H13ClN4SV = 2866 (10) Å3
Mr = 304.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.46 (5) ŵ = 0.41 mm1
b = 6.773 (14) ÅT = 298 K
c = 19.28 (4) Å1.14 × 0.31 × 0.16 mm
β = 102.22 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4016 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3348 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.937Rint = 0.049
40582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.54 e Å3
4016 reflectionsΔρmin = 0.34 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16609 (2)0.46293 (7)0.09583 (3)0.02355 (12)
S10.01214 (2)0.54784 (6)0.14910 (2)0.01662 (11)
N10.11537 (7)0.0755 (2)0.15219 (8)0.0157 (3)
N20.07789 (7)0.2359 (2)0.12998 (8)0.0170 (3)
N30.08055 (7)0.3151 (3)0.24678 (9)0.0193 (3)
N40.05109 (8)0.2589 (2)0.00573 (9)0.0207 (3)
C110.25090 (9)0.5202 (3)0.16607 (11)0.0215 (4)
H110.27740.62510.18020.026*
C120.21147 (8)0.4588 (3)0.20907 (10)0.0199 (4)
H120.21160.52380.25160.024*
C130.17195 (8)0.3005 (3)0.18844 (10)0.0168 (3)
H130.14560.26060.21710.020*
C80.17192 (7)0.2011 (2)0.12438 (9)0.0145 (3)
C70.13232 (7)0.0255 (3)0.10233 (9)0.0146 (3)
C10.11700 (7)0.0301 (3)0.02510 (9)0.0144 (3)
C60.14226 (8)0.2037 (3)0.00290 (10)0.0164 (3)
H60.16550.28710.03640.020*
C50.13252 (8)0.2503 (2)0.06868 (10)0.0165 (3)
C40.09716 (8)0.1273 (3)0.11973 (10)0.0171 (3)
H40.09100.15870.16770.020*
C140.05977 (7)0.3555 (2)0.17820 (9)0.0147 (3)
C30.07136 (8)0.0420 (3)0.09813 (10)0.0167 (3)
H30.04780.12300.13210.020*
C20.08014 (8)0.0942 (3)0.02549 (10)0.0155 (3)
C90.21096 (8)0.2656 (3)0.08098 (10)0.0178 (3)
H90.21050.20240.03800.021*
C100.25047 (9)0.4241 (3)0.10199 (11)0.0215 (4)
H100.27650.46550.07320.026*
H10.0563 (12)0.290 (4)0.0392 (15)0.032*
H20.0420 (12)0.354 (4)0.0359 (14)0.032*
H3A0.0697 (11)0.390 (4)0.2792 (13)0.024 (6)*
H3B0.1039 (12)0.216 (4)0.2583 (14)0.031 (7)*
H2A0.0635 (11)0.259 (4)0.0853 (13)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0263 (2)0.0203 (2)0.0249 (2)0.00393 (17)0.00743 (18)0.00452 (17)
S10.0159 (2)0.0157 (2)0.0191 (2)0.00251 (15)0.00555 (16)0.00047 (15)
N10.0126 (6)0.0153 (7)0.0191 (7)0.0019 (5)0.0032 (5)0.0004 (5)
N20.0165 (7)0.0182 (7)0.0156 (7)0.0046 (6)0.0021 (6)0.0005 (6)
N30.0207 (8)0.0208 (7)0.0171 (8)0.0050 (6)0.0056 (6)0.0007 (6)
N40.0255 (8)0.0197 (7)0.0174 (8)0.0075 (6)0.0052 (6)0.0016 (6)
C110.0165 (8)0.0225 (9)0.0247 (10)0.0053 (7)0.0026 (7)0.0028 (7)
C120.0188 (8)0.0222 (9)0.0186 (9)0.0016 (7)0.0037 (7)0.0046 (7)
C130.0121 (7)0.0201 (8)0.0183 (8)0.0001 (6)0.0038 (6)0.0007 (7)
C80.0112 (7)0.0141 (7)0.0177 (8)0.0010 (6)0.0021 (6)0.0018 (6)
C70.0111 (7)0.0161 (7)0.0169 (8)0.0014 (6)0.0033 (6)0.0002 (6)
C10.0114 (7)0.0157 (7)0.0167 (8)0.0028 (6)0.0045 (6)0.0001 (6)
C60.0139 (7)0.0153 (8)0.0199 (9)0.0004 (6)0.0034 (6)0.0012 (6)
C50.0142 (7)0.0131 (7)0.0232 (9)0.0011 (6)0.0066 (6)0.0027 (6)
C40.0148 (7)0.0200 (8)0.0169 (8)0.0038 (6)0.0047 (6)0.0012 (7)
C140.0116 (7)0.0151 (7)0.0181 (8)0.0019 (6)0.0049 (6)0.0011 (6)
C30.0135 (7)0.0200 (8)0.0167 (8)0.0009 (6)0.0030 (6)0.0018 (6)
C20.0124 (7)0.0156 (7)0.0194 (8)0.0008 (6)0.0057 (6)0.0003 (6)
C90.0163 (8)0.0190 (8)0.0193 (9)0.0034 (6)0.0061 (6)0.0029 (7)
C100.0185 (8)0.0239 (9)0.0239 (9)0.0068 (7)0.0081 (7)0.0024 (7)
Geometric parameters (Å, º) top
Cl1—C51.756 (3)C13—C81.406 (3)
S1—C141.704 (3)C13—H130.9300
N1—C71.301 (3)C8—C91.404 (3)
N1—N21.386 (3)C8—C71.492 (3)
N2—C141.359 (3)C7—C11.503 (4)
N2—H2A0.87 (2)C1—C61.411 (3)
N3—C141.334 (3)C1—C21.415 (3)
N3—H3A0.88 (3)C6—C51.387 (4)
N3—H3B0.85 (3)C6—H60.9300
N4—C21.386 (3)C5—C41.401 (3)
N4—H10.87 (3)C4—C31.387 (3)
N4—H20.86 (3)C4—H40.9300
C11—C101.395 (4)C3—C21.417 (4)
C11—C121.398 (3)C3—H30.9300
C11—H110.9300C9—C101.397 (3)
C12—C131.395 (3)C9—H90.9300
C12—H120.9300C10—H100.9300
C7—N1—N2115.96 (19)C6—C1—C7119.12 (16)
C14—N2—N1120.42 (19)C2—C1—C7120.74 (19)
C14—N2—H2A118.2 (16)C5—C6—C1120.16 (16)
N1—N2—H2A121.3 (16)C5—C6—H6119.9
C14—N3—H3A119.8 (16)C1—C6—H6119.9
C14—N3—H3B119.1 (18)C6—C5—C4120.66 (19)
H3A—N3—H3B121 (2)C6—C5—Cl1119.73 (14)
C2—N4—H1119.6 (18)C4—C5—Cl1119.60 (18)
C2—N4—H2118.1 (18)C3—C4—C5119.4 (2)
H1—N4—H2117 (3)C3—C4—H4120.3
C10—C11—C12120.0 (2)C5—C4—H4120.3
C10—C11—H11120.0N3—C14—N2117.6 (2)
C12—C11—H11120.0N3—C14—S1123.13 (14)
C13—C12—C11120.3 (2)N2—C14—S1119.26 (18)
C13—C12—H12119.9C4—C3—C2121.54 (17)
C11—C12—H12119.9C4—C3—H3119.2
C12—C13—C8119.99 (18)C2—C3—H3119.2
C12—C13—H13120.0N4—C2—C1122.0 (2)
C8—C13—H13120.0N4—C2—C3119.82 (17)
C9—C8—C13119.38 (19)C1—C2—C3118.11 (19)
C9—C8—C7119.21 (18)C10—C9—C8120.3 (2)
C13—C8—C7121.40 (17)C10—C9—H9119.8
N1—C7—C8117.31 (19)C8—C9—H9119.8
N1—C7—C1123.96 (19)C11—C10—C9120.03 (19)
C8—C7—C1118.65 (15)C11—C10—H10120.0
C6—C1—C2120.1 (2)C9—C10—H10120.0
C7—N1—N2—C14177.28 (15)C1—C6—C5—C40.6 (3)
C10—C11—C12—C130.5 (3)C1—C6—C5—Cl1178.09 (13)
C11—C12—C13—C80.4 (3)C6—C5—C4—C30.5 (3)
C12—C13—C8—C91.4 (3)Cl1—C5—C4—C3179.16 (13)
C12—C13—C8—C7177.14 (16)N1—N2—C14—N31.6 (2)
N2—N1—C7—C8179.05 (14)N1—N2—C14—S1178.37 (12)
N2—N1—C7—C14.1 (2)C5—C4—C3—C20.3 (3)
C9—C8—C7—N1154.10 (17)C6—C1—C2—N4175.60 (16)
C13—C8—C7—N124.4 (2)C7—C1—C2—N47.5 (3)
C9—C8—C7—C122.9 (2)C6—C1—C2—C32.0 (2)
C13—C8—C7—C1158.57 (17)C7—C1—C2—C3174.95 (15)
N1—C7—C1—C666.7 (3)C4—C3—C2—N4176.71 (16)
C8—C7—C1—C6110.1 (2)C4—C3—C2—C10.9 (3)
N1—C7—C1—C2116.3 (2)C13—C8—C9—C101.4 (3)
C8—C7—C1—C266.8 (3)C7—C8—C9—C10177.10 (16)
C2—C1—C6—C51.8 (3)C12—C11—C10—C90.4 (3)
C7—C1—C6—C5175.14 (15)C8—C9—C10—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.87 (3)2.75 (3)3.534 (6)150 (2)
N4—H2···S1ii0.86 (3)2.62 (3)3.438 (5)160 (2)
N3—H3A···S1iii0.88 (3)2.74 (3)3.552 (5)154 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.87 (3)2.75 (3)3.534 (6)150 (2)
N4—H2···S1ii0.86 (3)2.62 (3)3.438 (5)160 (2)
N3—H3A···S1iii0.88 (3)2.74 (3)3.552 (5)154 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y, z+1/2.
 

Acknowledgements

We gratefully thank Professor Dr Manfredo Hörner (Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds