organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o663-o664

9-(3-Bromo-5-chloro-2-hy­dr­oxy­phen­yl)-10-(2-hy­dr­oxy­eth­yl)-3,6-di­phenyl-3,4,9,10-tetra­hydro­acridine-1,8(2H,5H)-dione

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, eDepartment of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 7 May 2014; accepted 8 May 2014; online 17 May 2014)

In the title compound, C33H27BrClNO4, the di­hydro­pyridine ring adopts a flattened boat conformation. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, with an S(8) ring motif. In the crystal, O—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds, and C—H⋯π inter­actions link the mol­ecules, forming a three-dimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5):0.217 (5) and 0.526 (18):0.474 (18), respectively.

Related literature

For different industrial applications of acridine-1,8-diones, see: Murugan et al. (1998[Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.]); Srividya et al. (1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.], 1998[Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245-253.]). For various pharmaceutical properties of acridine-containing compounds, see: Girault et al. (2000[Girault, S., Grellier, P., Berecibar, A., Maes, L., Mouray, E., Lemiere, P., Debreu, M., Charvet, E. & Sergheraet, C. (2000). J. Med. Chem. 43, 2646-2654.]); Sánchez et al. (2006[Sánchez, I., Reches, R., Henry, D., Pierre, C., Maria, R. & Pujol, D. (2006). Eur. J. Med. Chem. 41, 340-352.]); Astelbauer et al. (2011[Astelbauer, F., Obwaller, A., Raninger, A., Brem, B., Greger, H., Duchêne, M., Wernsdorfer, W. & Walochnik, J. (2011). Vector Borne Zoonotic Dis. 11, 793-798.]); Yang et al. (2006[Yang, P., Yang, Q., Qian, X., Tong, L. & Li, X. (2006). J. Photochem. Photobiol. B, 84, 221-226.]); Shaikh et al. (2010[Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawan, B. S. (2010). Der Pharma Chem. 2, 25-29.]); Gunduz et al. (2009[Gunduz, M. G., Dogan, A. E., Simsek, R., Erol, K. & Safak, C. (2009). Med. Chem. Res. 18, 317-325.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Mohamed et al. (2013[Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85-o86.]); Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]); Yogavel et al. (2005[Yogavel, M., Velmurugan, D., Murugan, P., Shanmuga Sundara Raj, S. & Fun, H.-K. (2005). Acta Cryst. E61, o2761-o2763.]).

[Scheme 1]

Experimental

Crystal data
  • C33H27BrClNO4

  • Mr = 616.91

  • Monoclinic, P 21 /c

  • a = 14.7307 (3) Å

  • b = 15.4874 (3) Å

  • c = 13.6541 (3) Å

  • β = 107.110 (2)°

  • V = 2977.18 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 293 K

  • 0.20 × 0.09 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.631, Tmax = 0.791

  • 45181 measured reflections

  • 9225 independent reflections

  • 4420 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 0.92

  • 9225 reflections

  • 347 parameters

  • 107 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6, Cg7 and Cg9 are the centroids of the C28B_B–C33B_B, C14–C19 and C28A_A–C33A_A phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.87 (2) 1.93 (2) 2.782 (3) 167 (5)
O4—H4O⋯O1 0.83 (3) 1.84 (3) 2.632 (2) 161 (3)
C10—H10A⋯O3ii 0.97 (2) 2.54 (2) 3.211 (3) 126 (2)
C31B_b—H31B_b⋯Cl1iii 0.93 2.76 3.530 (7) 141
C26—H26B⋯O3ii 0.97 2.57 3.537 (3) 173
C16—H16⋯Cg6iv 0.93 2.89 3.713 (4) 149
C16—H16⋯Cg9iv 0.93 2.86 3.718 (4) 154
C27—H27BCg7v 0.97 2.71 3.574 (3) 149
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted acridinediones are an interested class of heterocyclic compounds due to their wide industrial and medicinal applications. Acridinones considered to be one of earlist antibiotics. Acridinone scakffold compounds exhibit various bioactivities such as, anti-malerial (Girault et al., 2000), anti-tumor (Sánchez et al., 2006), anti-leishmanial activities (Astelbauer et al., 2011), DNA-binding and DNA photo-damaging ability (Yang et al., 2006), antimicrobial activity (Shaikh et al., 2010) and potassium channel blockers (Gunduz et al., 2009). Certain acridine-1,8-diones showed fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information.

In the title compound (I, Fig. 1), the dihydropyridine ring (N1/C1/C6–C9) is nearly planar with a maximum deviation of 0.225 (2) Å for C7. The C14–C19 phenyl and C20–C25 benzene rings form dihedral angles of 73.40 (10) and 83.32 (11)°, respectively, with the dihydropyridine mean plane. The dihedral angle between the C28A–C33A and C28B and C33B disordered phenyl rings is 16.3 (4) °.

In (I), all bond lengths and angles are within normal ranges and and comparable with those in related similar compounds (Mohamed et al., 2013; Sughanya & Sureshbabu, 2012; Yogavel et al., 2005). The ethanol group attached to the 1,4-dihydropyridine ring has a N1—C26—C27—O2 torsion angle of -76.8 (3)°.

The molecular conformation of (I) is stabilized by an intramolecular O—H···O hydrogen bond (Table 1), which forms a pseudo-eight-membered ring with graph set S(8) (Bernstein et al., 1995).

In the crystal, molecules are linked by O—H···O, C—H···O and C—H···Cl hydrogen bonds, forming three dimensional network (Table 1, Fig. 2). Furthermore, C—H···π interactions (Table 1) contribute to the stabilization of the molecular packing.

Related literature top

For different industrial applications of acridine-1,8-diones see: Murugan et al. (1998); Srividya et al. (1998); Srividya et al. (1996). For various pharmaceutical properties of acridine containing compounds see: Girault et al. (2000); Sánchez et al. (2006); Astelbauer et al. (2011); Yang et al. (2006); Shaikh et al. (2010); Gunduz et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Mohamed et al. (2013); Sughanya & Sureshbabu (2012); Yogavel et al. (2005).

Experimental top

A mixture of 1 mmol (235 mg) of 3-bromo-5-chloro-2-hydroxybenzaldehyde, 2 mmol (372 mg) of 5-phenylcyclohexane-1,3-dione and 1 mmol (61 mg) of 2-aminoethanol in 30 ml e thanol was refluxed for 2 h at 350 K. The reaction mixture was cooled at ambient temperature and the precipitated product was filtered off, washed with cold ethanol and recrystallized from ethanol. Suitable crystals for X-ray diffractions were obtained by slow evaporation method of an ethanolic solution of (I) at room temperature over two days.

Refinement top

The hydroxyl H atoms were found from a difference Fourier map [O2—H2O = 0.873 (19) Å and O4—H4O = 0.826 (17) Å]. Their coordinates were freely refined and Uiso(H) were set to 1.5Ueq(O). The H atoms attached to C2 and C12 were located in a difference map and refined freely. The other H-atoms were placed in calculated positions and refined by using a riding model with C—H = 0.93 – 0.98 Å [Uiso(H) = 1.2 Ueq(C)].

In the 3,4,9,10-tetrahydroacridine-1,8(2H,5H)-dione ring system, the two ring C atoms (C3 and C4) at the 2 and 3-poisitions are disordered over two positions with the site occupancy factors of 0.783 (5) and 0.217 (5). For the C4A and C4B atoms of disorder, the EXYZ instruction was used in the refinement.

The C atom (C11) at the 6-positions of the mentioned ring system and the atoms of the phenyl ring (C28–C33) attached to the C11 atom are disordered over two positions; the site occupancy factors are 0.526 (18) and 0.474 (18).

The atoms of disorder were set to equal each other by an EADP. The disordered phenyl ring (C28A/B–C33A/B) was constrained to a rigid hexagon with the AFIX 66 instruction, and the SIMU and DELU instructions were used in the refinement procedure.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with 30% probability displacement ellipsoids. Only the major components of the disorders are shown.
[Figure 2] Fig. 2. Perspective view of the hydrogen bonding and packing of the title compound. Only the major components of the disorders are shown.
9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C33H27BrClNO4F(000) = 1264
Mr = 616.91Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7307 (3) ÅCell parameters from 729 reflections
b = 15.4874 (3) Åθ = 4–45°
c = 13.6541 (3) ŵ = 1.51 mm1
β = 107.110 (2)°T = 293 K
V = 2977.18 (11) Å3Prism, colourless
Z = 40.20 × 0.09 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
9225 independent reflections
Radiation source: fine-focus sealed tube4420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 31.5°, θmin = 3.8°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
h = 2121
Tmin = 0.631, Tmax = 0.791k = 2022
45181 measured reflectionsl = 1919
Refinement top
Refinement on F2107 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
9225 reflectionsΔρmax = 0.60 e Å3
347 parametersΔρmin = 0.40 e Å3
Crystal data top
C33H27BrClNO4V = 2977.18 (11) Å3
Mr = 616.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7307 (3) ŵ = 1.51 mm1
b = 15.4874 (3) ÅT = 293 K
c = 13.6541 (3) Å0.20 × 0.09 × 0.09 mm
β = 107.110 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
9225 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
4420 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.791Rint = 0.037
45181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050107 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.60 e Å3
9225 reflectionsΔρmin = 0.40 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.01625 (15)0.34409 (13)0.18821 (16)0.0299 (5)
C20.07136 (16)0.37567 (16)0.10912 (18)0.0343 (5)
H2A0.0682 (14)0.3633 (13)0.0439 (14)0.053 (7)*
H2B0.0689 (17)0.4362 (10)0.0999 (18)0.041 (7)*
C3A_a0.1607 (2)0.3643 (2)0.1427 (2)0.0379 (8)0.783 (5)
H3A_a0.16030.40870.19390.045*0.783 (5)
C4A_a0.1630 (2)0.2785 (2)0.1905 (2)0.0665 (9)0.783 (5)
H4A1_a0.16550.23330.14060.080*0.783 (5)
H4A2_a0.21930.27400.21320.080*0.783 (5)
C3B_b0.1547 (7)0.3181 (8)0.1084 (9)0.0379 (8)0.217 (5)
H3B_b0.15370.27180.05980.045*0.217 (5)
C4B_b0.1630 (2)0.2785 (2)0.1905 (2)0.0665 (9)0.217 (5)
H4B1_b0.18890.22150.16990.080*0.217 (5)
H4B2_b0.20960.30980.21410.080*0.217 (5)
C50.07640 (18)0.26775 (16)0.27956 (19)0.0430 (6)
C60.01216 (15)0.30127 (13)0.27458 (16)0.0316 (5)
C70.10177 (15)0.28391 (13)0.36056 (16)0.0316 (5)
H70.09220.23100.39570.038*
C80.18040 (16)0.26804 (14)0.31428 (16)0.0338 (5)
C90.18093 (15)0.30655 (13)0.22528 (16)0.0321 (5)
C100.26051 (17)0.29515 (18)0.17851 (19)0.0423 (6)
H10A0.2387 (19)0.2681 (16)0.1118 (15)0.061 (8)*
H10B0.288 (2)0.3509 (15)0.174 (3)0.109 (13)*
C11A_a0.3291 (9)0.2237 (11)0.2214 (11)0.1126 (18)0.474 (18)
C11B_b0.3472 (8)0.2539 (10)0.2571 (10)0.1126 (18)0.526 (18)
C120.3348 (3)0.1940 (3)0.3190 (3)0.1126 (18)
H120.3804 (19)0.1599 (18)0.357 (2)0.092 (11)*
C130.25648 (19)0.20872 (17)0.36687 (19)0.0486 (6)
C140.24811 (12)0.38033 (14)0.04824 (15)0.0603 (8)
C150.28188 (15)0.32740 (11)0.03696 (18)0.0739 (9)
H150.25220.27500.04040.089*
C160.35997 (16)0.35285 (15)0.11694 (15)0.0804 (10)
H160.38260.31740.17390.096*
C170.40429 (13)0.43123 (16)0.11173 (15)0.0801 (11)
H170.45650.44830.16530.096*
C180.37052 (15)0.48416 (13)0.02654 (18)0.0781 (10)
H180.40020.53660.02310.094*
C190.29243 (14)0.45871 (14)0.05344 (14)0.0694 (9)
H190.26980.49410.11040.083*
C200.12371 (16)0.35813 (14)0.43954 (17)0.0347 (5)
C210.07775 (17)0.36271 (14)0.51549 (17)0.0371 (5)
C220.09776 (19)0.43067 (15)0.58480 (19)0.0449 (6)
C230.1604 (2)0.49502 (18)0.5784 (2)0.0600 (8)
H230.17230.54100.62430.072*
C240.2049 (2)0.49020 (17)0.5035 (2)0.0587 (7)
C250.18721 (19)0.42243 (16)0.4347 (2)0.0476 (6)
H250.21840.42010.38470.057*
C260.11376 (17)0.41559 (15)0.09010 (18)0.0393 (6)
H26A0.05260.42370.03920.047*
H26B0.15670.39030.05620.047*
C270.1515 (2)0.50082 (18)0.1339 (2)0.0592 (8)
H27A0.20280.49290.19680.071*
H27B0.17590.53250.08570.071*
C28A_a0.4156 (5)0.2360 (6)0.1926 (6)0.103 (2)0.474 (18)
C29A_a0.4818 (5)0.3021 (6)0.2049 (9)0.103 (2)0.474 (18)
H29A_a0.48170.34760.24940.124*0.474 (18)
C30A_a0.5482 (5)0.3004 (6)0.1507 (9)0.103 (2)0.474 (18)
H30A_a0.59250.34460.15890.124*0.474 (18)
C31A_a0.5484 (4)0.2325 (8)0.0842 (6)0.103 (2)0.474 (18)
H31A_a0.59280.23130.04790.124*0.474 (18)
C32A_a0.4822 (5)0.1664 (9)0.0718 (6)0.103 (2)0.474 (18)
H32A_a0.48230.12090.02730.124*0.474 (18)
C33A_a0.4157 (4)0.1681 (7)0.1261 (6)0.103 (2)0.474 (18)
H33A_a0.37140.12390.11780.124*0.474 (18)
C28B_b0.4134 (4)0.2230 (5)0.1810 (5)0.0843 (16)0.526 (18)
C29B_b0.4696 (5)0.2920 (4)0.1691 (7)0.0843 (16)0.526 (18)
H29B_b0.46230.34580.19620.101*0.526 (18)
C30B_b0.5366 (5)0.2807 (5)0.1168 (7)0.0843 (16)0.526 (18)
H30B_b0.57420.32690.10890.101*0.526 (18)
C31B_b0.5475 (4)0.2003 (6)0.0764 (4)0.0843 (16)0.526 (18)
H31B_b0.59240.19270.04140.101*0.526 (18)
C32B_b0.4914 (5)0.1313 (6)0.0882 (6)0.0843 (16)0.526 (18)
H32B_b0.49870.07750.06120.101*0.526 (18)
C33B_b0.4243 (5)0.1426 (5)0.1406 (6)0.0843 (16)0.526 (18)
H33B_b0.38680.09640.14850.101*0.526 (18)
N10.10280 (12)0.35608 (11)0.17027 (13)0.0311 (4)
O10.08277 (13)0.22579 (12)0.35667 (13)0.0538 (5)
O20.0767 (2)0.54656 (14)0.1538 (2)0.0989 (9)
H2O0.080 (3)0.6015 (12)0.141 (4)0.148*
O30.25495 (15)0.17139 (14)0.44472 (14)0.0661 (6)
O40.01542 (13)0.30233 (11)0.52701 (13)0.0504 (5)
H4O0.006 (2)0.2696 (17)0.4779 (19)0.076*
Cl10.28416 (9)0.57108 (6)0.49363 (10)0.1102 (4)
Br10.03561 (2)0.43737 (2)0.68766 (2)0.06519 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (12)0.0253 (11)0.0332 (11)0.0002 (9)0.0127 (10)0.0004 (9)
C20.0320 (12)0.0377 (13)0.0357 (12)0.0023 (10)0.0140 (10)0.0058 (10)
C3A_a0.0337 (15)0.0334 (18)0.0492 (19)0.0019 (14)0.0163 (14)0.0012 (14)
C4A_a0.0506 (17)0.087 (2)0.0586 (18)0.0269 (16)0.0103 (14)0.0211 (16)
C3B_b0.0337 (15)0.0334 (18)0.0492 (19)0.0019 (14)0.0163 (14)0.0012 (14)
C4B_b0.0506 (17)0.087 (2)0.0586 (18)0.0269 (16)0.0103 (14)0.0211 (16)
C50.0484 (15)0.0432 (14)0.0422 (13)0.0068 (12)0.0206 (12)0.0019 (11)
C60.0379 (12)0.0287 (11)0.0322 (12)0.0004 (10)0.0165 (10)0.0009 (9)
C70.0409 (13)0.0276 (11)0.0309 (11)0.0020 (10)0.0177 (10)0.0046 (9)
C80.0375 (13)0.0347 (12)0.0323 (11)0.0046 (10)0.0150 (10)0.0018 (9)
C90.0338 (12)0.0314 (12)0.0333 (11)0.0027 (9)0.0131 (10)0.0020 (9)
C100.0365 (13)0.0557 (16)0.0390 (14)0.0121 (12)0.0177 (11)0.0113 (12)
C11A_a0.091 (2)0.181 (4)0.095 (3)0.103 (3)0.072 (2)0.096 (3)
C11B_b0.091 (2)0.181 (4)0.095 (3)0.103 (3)0.072 (2)0.096 (3)
C120.091 (2)0.181 (4)0.095 (3)0.103 (3)0.072 (2)0.096 (3)
C130.0544 (16)0.0581 (16)0.0371 (13)0.0196 (13)0.0193 (12)0.0136 (12)
C140.0332 (14)0.076 (2)0.0701 (19)0.0117 (15)0.0125 (14)0.0273 (17)
C150.0568 (19)0.0585 (19)0.109 (3)0.0041 (16)0.028 (2)0.016 (2)
C160.070 (2)0.082 (2)0.078 (2)0.032 (2)0.0037 (19)0.0097 (19)
C170.0467 (18)0.094 (3)0.082 (3)0.0083 (18)0.0080 (17)0.019 (2)
C180.059 (2)0.079 (2)0.089 (2)0.0096 (18)0.0099 (19)0.008 (2)
C190.0482 (18)0.088 (2)0.068 (2)0.0023 (17)0.0101 (16)0.0021 (17)
C200.0379 (13)0.0334 (12)0.0334 (12)0.0043 (10)0.0114 (10)0.0031 (9)
C210.0423 (13)0.0342 (12)0.0353 (12)0.0043 (11)0.0124 (11)0.0024 (10)
C220.0547 (16)0.0429 (15)0.0407 (13)0.0053 (12)0.0196 (12)0.0043 (11)
C230.073 (2)0.0482 (17)0.0587 (18)0.0042 (15)0.0200 (16)0.0182 (14)
C240.0642 (19)0.0440 (16)0.0725 (19)0.0157 (14)0.0271 (16)0.0104 (14)
C250.0560 (16)0.0444 (15)0.0479 (15)0.0057 (12)0.0237 (13)0.0008 (11)
C260.0393 (13)0.0472 (14)0.0365 (12)0.0096 (11)0.0189 (11)0.0170 (10)
C270.0572 (18)0.0572 (17)0.0693 (19)0.0030 (14)0.0278 (15)0.0220 (15)
C28A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C29A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C30A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C31A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C32A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C33A_a0.067 (3)0.135 (4)0.123 (3)0.048 (3)0.053 (3)0.076 (3)
C28B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
C29B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
C30B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
C31B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
C32B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
C33B_b0.077 (3)0.102 (3)0.090 (3)0.034 (2)0.049 (2)0.027 (2)
N10.0319 (10)0.0332 (10)0.0311 (9)0.0044 (8)0.0137 (8)0.0078 (8)
O10.0595 (11)0.0605 (11)0.0455 (10)0.0196 (9)0.0217 (9)0.0091 (9)
O20.129 (2)0.0555 (14)0.147 (3)0.0043 (15)0.094 (2)0.0106 (15)
O30.0770 (14)0.0816 (14)0.0477 (11)0.0355 (11)0.0306 (10)0.0313 (10)
O40.0666 (12)0.0495 (11)0.0456 (11)0.0122 (9)0.0328 (10)0.0060 (8)
Cl10.1282 (9)0.0771 (6)0.1453 (10)0.0597 (6)0.0716 (8)0.0339 (6)
Br10.0877 (3)0.0640 (2)0.05536 (19)0.00543 (16)0.03890 (17)0.01486 (14)
Geometric parameters (Å, º) top
C1—C61.370 (3)C18—H180.9300
C1—N11.380 (3)C19—H190.9300
C1—C21.500 (3)C20—C251.381 (3)
C2—C3B_b1.515 (10)C20—C211.397 (3)
C2—C3A_a1.525 (4)C21—O41.352 (3)
C2—H2A0.925 (16)C21—C221.388 (3)
C2—H2B0.948 (15)C22—C231.378 (4)
C3A_a—C4A_a1.485 (4)C22—Br11.891 (2)
C3A_a—C141.551 (3)C23—C241.370 (4)
C3A_a—H3A_a0.9800C23—H230.9300
C4A_a—C51.490 (4)C24—C251.381 (4)
C4A_a—H4A1_a0.9700C24—Cl11.744 (3)
C4A_a—H4A2_a0.9700C25—H250.9300
C3B_b—C141.684 (11)C26—N11.476 (3)
C3B_b—H3B_b0.9800C26—C271.488 (4)
C5—O11.264 (3)C26—H26A0.9700
C5—C61.424 (3)C26—H26B0.9700
C6—C71.510 (3)C27—O21.402 (4)
C7—C81.494 (3)C27—H27A0.9700
C7—C201.544 (3)C27—H27B0.9700
C7—H70.9800C28A_a—C29A_a1.3900
C8—C91.356 (3)C28A_a—C33A_a1.3900
C8—C131.464 (3)C29A_a—C30A_a1.3900
C9—N11.403 (3)C29A_a—H29A_a0.9300
C9—C101.501 (3)C30A_a—C31A_a1.3900
C10—C11A_a1.497 (10)C30A_a—H30A_a0.9300
C10—C11B_b1.544 (10)C31A_a—C32A_a1.3900
C10—H10A0.968 (17)C31A_a—H31A_a0.9300
C10—H10B0.964 (18)C32A_a—C33A_a1.3900
C11A_a—C121.388 (11)C32A_a—H32A_a0.9300
C11A_a—C28A_a1.452 (12)C33A_a—H33A_a0.9300
C11B_b—C121.303 (11)C28B_b—C29B_b1.3900
C11B_b—C28B_b1.690 (12)C28B_b—C33B_b1.3900
C12—C131.502 (4)C29B_b—C30B_b1.3900
C12—H120.889 (18)C29B_b—H29B_b0.9300
C13—O31.216 (3)C30B_b—C31B_b1.3900
C14—C151.3900C30B_b—H30B_b0.9300
C14—C191.3900C31B_b—C32B_b1.3900
C15—C161.3900C31B_b—H31B_b0.9300
C15—H150.9300C32B_b—C33B_b1.3900
C16—C171.3900C32B_b—H32B_b0.9300
C16—H160.9300C33B_b—H33B_b0.9300
C17—C181.3900O2—H2O0.873 (19)
C17—H170.9300O4—H4O0.826 (17)
C18—C191.3900
C6—C1—N1119.67 (19)C18—C17—H17120.0
C6—C1—C2122.09 (19)C16—C17—H17120.0
N1—C1—C2118.19 (18)C17—C18—C19120.0
C1—C2—C3B_b109.6 (4)C17—C18—H18120.0
C1—C2—C3A_a112.4 (2)C19—C18—H18120.0
C1—C2—H2A110.5 (15)C18—C19—C14120.0
C3B_b—C2—H2A98.2 (10)C18—C19—H19120.0
C3A_a—C2—H2A123.8 (11)C14—C19—H19120.0
C1—C2—H2B111.0 (15)C25—C20—C21118.8 (2)
C3B_b—C2—H2B130.1 (15)C25—C20—C7120.6 (2)
C3A_a—C2—H2B103.0 (15)C21—C20—C7120.6 (2)
H2A—C2—H2B93.6 (19)O4—C21—C22117.4 (2)
C4A_a—C3A_a—C2111.7 (2)O4—C21—C20123.0 (2)
C4A_a—C3A_a—C14112.8 (2)C22—C21—C20119.5 (2)
C2—C3A_a—C14108.1 (2)C23—C22—C21121.1 (2)
C4A_a—C3A_a—H3A_a108.0C23—C22—Br1119.11 (19)
C2—C3A_a—H3A_a108.0C21—C22—Br1119.73 (19)
C14—C3A_a—H3A_a108.0C24—C23—C22119.0 (2)
C3A_a—C4A_a—C5109.5 (2)C24—C23—H23120.5
C3A_a—C4A_a—H4A1_a109.8C22—C23—H23120.5
C5—C4A_a—H4A1_a109.8C23—C24—C25120.9 (3)
C3A_a—C4A_a—H4A2_a109.8C23—C24—Cl1119.8 (2)
C5—C4A_a—H4A2_a109.8C25—C24—Cl1119.3 (2)
H4A1_a—C4A_a—H4A2_a108.2C20—C25—C24120.7 (2)
C2—C3B_b—C14102.1 (6)C20—C25—H25119.6
C2—C3B_b—H3B_b105.1C24—C25—H25119.6
C14—C3B_b—H3B_b105.1N1—C26—C27111.4 (2)
O1—C5—C6121.4 (2)N1—C26—H26A109.3
O1—C5—C4A_a118.8 (2)C27—C26—H26A109.3
C6—C5—C4A_a119.8 (2)N1—C26—H26B109.3
C1—C6—C5119.4 (2)C27—C26—H26B109.3
C1—C6—C7120.38 (19)H26A—C26—H26B108.0
C5—C6—C7120.09 (18)O2—C27—C26107.7 (2)
C8—C7—C6108.03 (17)O2—C27—H27A110.2
C8—C7—C20112.89 (18)C26—C27—H27A110.2
C6—C7—C20111.46 (17)O2—C27—H27B110.2
C8—C7—H7108.1C26—C27—H27B110.2
C6—C7—H7108.1H27A—C27—H27B108.5
C20—C7—H7108.1C29A_a—C28A_a—C33A_a120.0
C9—C8—C13120.7 (2)C29A_a—C28A_a—C11A_a134.8 (10)
C9—C8—C7121.09 (19)C33A_a—C28A_a—C11A_a104.4 (10)
C13—C8—C7118.21 (19)C30A_a—C29A_a—C28A_a120.0
C8—C9—N1120.02 (19)C30A_a—C29A_a—H29A_a120.0
C8—C9—C10122.7 (2)C28A_a—C29A_a—H29A_a120.0
N1—C9—C10117.18 (18)C31A_a—C30A_a—C29A_a120.0
C11A_a—C10—C9116.2 (4)C31A_a—C30A_a—H30A_a120.0
C9—C10—C11B_b110.0 (4)C29A_a—C30A_a—H30A_a120.0
C11A_a—C10—H10A92.7 (18)C30A_a—C31A_a—C32A_a120.0
C9—C10—H10A111.5 (17)C30A_a—C31A_a—H31A_a120.0
C11B_b—C10—H10A117.0 (17)C32A_a—C31A_a—H31A_a120.0
C11A_a—C10—H10B116 (2)C33A_a—C32A_a—C31A_a120.0
C9—C10—H10B109 (2)C33A_a—C32A_a—H32A_a120.0
C11B_b—C10—H10B98 (2)C31A_a—C32A_a—H32A_a120.0
H10A—C10—H10B111 (3)C32A_a—C33A_a—C28A_a120.0
C12—C11A_a—C28A_a119.6 (10)C32A_a—C33A_a—H33A_a120.0
C12—C11A_a—C10117.6 (8)C28A_a—C33A_a—H33A_a120.0
C28A_a—C11A_a—C10110.0 (8)C29B_b—C28B_b—C33B_b120.0
C12—C11B_b—C10120.0 (9)C29B_b—C28B_b—C11B_b108.9 (7)
C12—C11B_b—C28B_b114.4 (9)C33B_b—C28B_b—C11B_b130.8 (7)
C10—C11B_b—C28B_b101.5 (7)C28B_b—C29B_b—C30B_b120.0
C11B_b—C12—C13116.5 (5)C28B_b—C29B_b—H29B_b120.0
C11A_a—C12—C13122.0 (4)C30B_b—C29B_b—H29B_b120.0
C11B_b—C12—H12125 (2)C31B_b—C30B_b—C29B_b120.0
C11A_a—C12—H12125 (2)C31B_b—C30B_b—H30B_b120.0
C13—C12—H12113 (2)C29B_b—C30B_b—H30B_b120.0
O3—C13—C8121.3 (2)C32B_b—C31B_b—C30B_b120.0
O3—C13—C12121.5 (2)C32B_b—C31B_b—H31B_b120.0
C8—C13—C12117.2 (2)C30B_b—C31B_b—H31B_b120.0
C15—C14—C19120.0C33B_b—C32B_b—C31B_b120.0
C15—C14—C3A_a127.33 (19)C33B_b—C32B_b—H32B_b120.0
C19—C14—C3A_a112.64 (19)C31B_b—C32B_b—H32B_b120.0
C15—C14—C3B_b96.4 (5)C32B_b—C33B_b—C28B_b120.0
C19—C14—C3B_b143.5 (5)C32B_b—C33B_b—H33B_b120.0
C16—C15—C14120.0C28B_b—C33B_b—H33B_b120.0
C16—C15—H15120.0C1—N1—C9119.12 (17)
C14—C15—H15120.0C1—N1—C26121.61 (17)
C15—C16—C17120.0C9—N1—C26119.15 (17)
C15—C16—H16120.0C27—O2—H2O111.2 (15)
C17—C16—H16120.0C21—O4—H4O116 (2)
C18—C17—C16120.0
C6—C1—C2—C3B_b28.8 (6)C2—C3B_b—C14—C15115.5 (6)
N1—C1—C2—C3B_b148.6 (6)C2—C3B_b—C14—C1959.9 (10)
C6—C1—C2—C3A_a6.9 (3)C2—C3B_b—C14—C3A_a66.1 (7)
N1—C1—C2—C3A_a175.7 (2)C19—C14—C15—C160.0
C1—C2—C3A_a—C4A_a43.6 (3)C3A_a—C14—C15—C16177.9 (2)
C3B_b—C2—C3A_a—C4A_a48.4 (7)C3B_b—C14—C15—C16176.9 (4)
C1—C2—C3A_a—C14168.2 (2)C14—C15—C16—C170.0
C3B_b—C2—C3A_a—C1476.2 (8)C15—C16—C17—C180.0
C2—C3A_a—C4A_a—C557.4 (3)C16—C17—C18—C190.0
C14—C3A_a—C4A_a—C5179.4 (2)C17—C18—C19—C140.0
C1—C2—C3B_b—C14161.7 (4)C15—C14—C19—C180.0
C3A_a—C2—C3B_b—C1460.5 (7)C3A_a—C14—C19—C18178.23 (18)
C3A_a—C4A_a—C5—O1145.7 (3)C3B_b—C14—C19—C18174.7 (6)
C3A_a—C4A_a—C5—C637.1 (4)C8—C7—C20—C2524.8 (3)
N1—C1—C6—C5162.5 (2)C6—C7—C20—C2597.0 (2)
C2—C1—C6—C514.9 (3)C8—C7—C20—C21156.9 (2)
N1—C1—C6—C713.0 (3)C6—C7—C20—C2181.3 (2)
C2—C1—C6—C7169.60 (19)C25—C20—C21—O4179.2 (2)
O1—C5—C6—C1178.0 (2)C7—C20—C21—O42.5 (3)
C4A_a—C5—C6—C10.9 (3)C25—C20—C21—C220.9 (3)
O1—C5—C6—C72.5 (3)C7—C20—C21—C22179.2 (2)
C4A_a—C5—C6—C7174.6 (2)O4—C21—C22—C23179.9 (2)
C1—C6—C7—C834.4 (3)C20—C21—C22—C231.7 (4)
C5—C6—C7—C8141.1 (2)O4—C21—C22—Br11.7 (3)
C1—C6—C7—C2090.2 (2)C20—C21—C22—Br1179.89 (17)
C5—C6—C7—C2094.3 (2)C21—C22—C23—C241.5 (4)
C6—C7—C8—C930.6 (3)Br1—C22—C23—C24179.7 (2)
C20—C7—C8—C993.1 (3)C22—C23—C24—C250.4 (5)
C6—C7—C8—C13148.5 (2)C22—C23—C24—Cl1179.8 (2)
C20—C7—C8—C1387.8 (2)C21—C20—C25—C240.2 (4)
C13—C8—C9—N1173.4 (2)C7—C20—C25—C24178.2 (2)
C7—C8—C9—N15.8 (3)C23—C24—C25—C200.4 (4)
C13—C8—C9—C103.4 (4)Cl1—C24—C25—C20179.0 (2)
C7—C8—C9—C10177.5 (2)N1—C26—C27—O276.8 (3)
C8—C9—C10—C11A_a13.4 (9)C12—C11A_a—C28A_a—C29A_a84.2 (16)
N1—C9—C10—C11A_a163.4 (9)C10—C11A_a—C28A_a—C29A_a56.4 (14)
C8—C9—C10—C11B_b13.5 (8)C12—C11A_a—C28A_a—C33A_a106.7 (17)
N1—C9—C10—C11B_b169.7 (7)C10—C11A_a—C28A_a—C33A_a112.6 (9)
C9—C10—C11A_a—C1221.4 (17)C33A_a—C28A_a—C29A_a—C30A_a0.0
C11B_b—C10—C11A_a—C1260.2 (15)C11A_a—C28A_a—C29A_a—C30A_a167.7 (9)
C9—C10—C11A_a—C28A_a162.9 (10)C28A_a—C29A_a—C30A_a—C31A_a0.0
C11B_b—C10—C11A_a—C28A_a81 (2)C29A_a—C30A_a—C31A_a—C32A_a0.0
C11A_a—C10—C11B_b—C1271 (2)C30A_a—C31A_a—C32A_a—C33A_a0.0
C9—C10—C11B_b—C1238.3 (14)C31A_a—C32A_a—C33A_a—C28A_a0.0
C11A_a—C10—C11B_b—C28B_b56.2 (14)C29A_a—C28A_a—C33A_a—C32A_a0.0
C9—C10—C11B_b—C28B_b165.4 (6)C11A_a—C28A_a—C33A_a—C32A_a171.0 (6)
C10—C11B_b—C12—C11A_a65.9 (18)C12—C11B_b—C28B_b—C29B_b143.3 (12)
C28B_b—C11B_b—C12—C11A_a54.9 (14)C10—C11B_b—C28B_b—C29B_b86.0 (8)
C10—C11B_b—C12—C1343.0 (15)C12—C11B_b—C28B_b—C33B_b30.3 (17)
C28B_b—C11B_b—C12—C13163.8 (7)C10—C11B_b—C28B_b—C33B_b100.3 (7)
C28A_a—C11A_a—C12—C11B_b71 (2)C33B_b—C28B_b—C29B_b—C30B_b0.0
C10—C11A_a—C12—C11B_b67.0 (16)C11B_b—C28B_b—C29B_b—C30B_b174.5 (6)
C28A_a—C11A_a—C12—C13158.0 (11)C28B_b—C29B_b—C30B_b—C31B_b0.0
C10—C11A_a—C12—C1320.3 (19)C29B_b—C30B_b—C31B_b—C32B_b0.0
C9—C8—C13—O3177.3 (3)C30B_b—C31B_b—C32B_b—C33B_b0.0
C7—C8—C13—O31.9 (4)C31B_b—C32B_b—C33B_b—C28B_b0.0
C9—C8—C13—C121.0 (4)C29B_b—C28B_b—C33B_b—C32B_b0.0
C7—C8—C13—C12179.9 (3)C11B_b—C28B_b—C33B_b—C32B_b173.1 (8)
C11B_b—C12—C13—O3159.3 (9)C6—C1—N1—C916.0 (3)
C11A_a—C12—C13—O3168.3 (11)C2—C1—N1—C9161.48 (19)
C11B_b—C12—C13—C822.4 (10)C6—C1—N1—C26168.0 (2)
C11A_a—C12—C13—C810.0 (12)C2—C1—N1—C2614.6 (3)
C4A_a—C3A_a—C14—C1552.8 (3)C8—C9—N1—C119.9 (3)
C2—C3A_a—C14—C1571.2 (3)C10—C9—N1—C1157.0 (2)
C4A_a—C3A_a—C14—C19129.2 (2)C8—C9—N1—C26163.9 (2)
C2—C3A_a—C14—C19106.9 (2)C10—C9—N1—C2619.1 (3)
C4A_a—C3A_a—C14—C3B_b54.9 (7)C27—C26—N1—C198.1 (2)
C2—C3A_a—C14—C3B_b69.1 (7)C27—C26—N1—C985.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg6, Cg7 and Cg9 are the centroids of the C28B_B–C33B_B, C14–C19 and C28A_A–C33A_A phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.87 (2)1.93 (2)2.782 (3)167 (5)
O4—H4O···O10.83 (3)1.84 (3)2.632 (2)161 (3)
C10—H10A···O3ii0.97 (2)2.54 (2)3.211 (3)126 (2)
C31B_b—H31B_b···Cl1iii0.932.763.530 (7)141
C26—H26B···O3ii0.972.573.537 (3)173
C16—H16···Cg6iv0.932.893.713 (4)149
C16—H16···Cg9iv0.932.863.718 (4)154
C27—H27B···Cg7v0.972.713.574 (3)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg6, Cg7 and Cg9 are the centroids of the C28B_B–C33B_B, C14–C19 and C28A_A–C33A_A phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.87 (2)1.925 (19)2.782 (3)167 (5)
O4—H4O···O10.83 (3)1.84 (3)2.632 (2)161 (3)
C10—H10A···O3ii0.97 (2)2.54 (2)3.211 (3)126.3 (19)
C31B_b—H31B_b···Cl1iii0.932.763.530 (7)141
C26—H26B···O3ii0.972.573.537 (3)173
C16—H16···Cg6iv0.932.893.713 (4)149
C16—H16···Cg9iv0.932.863.718 (4)154
C27—H27B···Cg7v0.972.713.574 (3)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y+1, z.
 

Acknowledgements

Manchester Metropolitan University and Erciyes University are acknowledged for supporting this study. We also thank Professor Dominik Cinčić at the Department of Chemistry, University of Zagreb, for collecting the single-crystal X-ray diffraction data.

References

First citationAstelbauer, F., Obwaller, A., Raninger, A., Brem, B., Greger, H., Duchêne, M., Wernsdorfer, W. & Walochnik, J. (2011). Vector Borne Zoonotic Dis. 11, 793–798.  Web of Science CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirault, S., Grellier, P., Berecibar, A., Maes, L., Mouray, E., Lemiere, P., Debreu, M., Charvet, E. & Sergheraet, C. (2000). J. Med. Chem. 43, 2646–2654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGunduz, M. G., Dogan, A. E., Simsek, R., Erol, K. & Safak, C. (2009). Med. Chem. Res. 18, 317–325.  Google Scholar
First citationMohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85–o86.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSánchez, I., Reches, R., Henry, D., Pierre, C., Maria, R. & Pujol, D. (2006). Eur. J. Med. Chem. 41, 340–352.  Web of Science PubMed Google Scholar
First citationShaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawan, B. S. (2010). Der Pharma Chem. 2, 25–29.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.  Web of Science CrossRef Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, P., Yang, Q., Qian, X., Tong, L. & Li, X. (2006). J. Photochem. Photobiol. B, 84, 221–226.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYogavel, M., Velmurugan, D., Murugan, P., Shanmuga Sundara Raj, S. & Fun, H.-K. (2005). Acta Cryst. E61, o2761–o2763.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o663-o664
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds