inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of [EuCl2(H2O)6]Cl

aLudwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany
*Correspondence e-mail: constantin.hoch@cup.uni-muenchen.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 March 2014; accepted 6 May 2014; online 10 May 2014)

The crystal structure of the title compound, hexa­aqua­dichlorido­europium(III) chloride, was redetermined with modern crystallographic methods. In comparison with the previous study [Lepert et al. (1983[Lepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 477-482.]). Aust. J. Chem. 36, 477–482], it could be shown that the atomic coordinates of some O atoms had been confused and now were corrected. Moreover, it was possible to freely refine the positions of the H atoms and thus to improve the accurracy of the crystal structure. [EuCl2(H2O)6]Cl crystallizes with the GdCl3·6H2O structure-type, exhibiting discrete [EuCl2(H2O)6]+ cations as the main building blocks. The main blocks are linked with isolated chloride anions via O—H⋯Cl hydrogen bonds into a three-dimensional framework. The Eu3+ cation is located on a twofold rotation axis and is coordinated in the form of a Cl2O6 square anti­prism. One chloride anion coordinates directly to Eu3+, whereas the other chloride anion, situated on a twofold rotation axis, is hydrogen bonded to six octa­hedrally arranged water mol­ecules.

Related literature

For previous structure determinations of the title compound, see: Lepert et al. (1983[Lepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 477-482.]); Bel'skii & Struchkov (1965[Bel'skii, N. K. & Struchkov, Yu. T. (1965). Kristallografiya, 10, 21-28.]). For the GdCl3·6H2O structure type and isotypic compounds, see: Marezio et al. (1961[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234-236.]); Bell & Smith (1990[Bell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960-962.]); Burns & Peterson (1971[Burns, J. H. & Peterson, J. R. (1971). Inorg. Chem. 10, 147-151.]); Graeber et al. (1966[Graeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst. 21, 1012-1013.]); Habenschuss & Spedding (1980[Habenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun. 9, 71-75.]); Hoch & Simon (2008[Hoch, C. & Simon, A. (2008). Acta Cryst. E64, i35.]); Junk et al. (1999[Junk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 531-538.]); Reuter et al. (1994[Reuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem. 620, 665-671.]). For related structures, see: Demyanets et al. (1974[Demyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Crystallogr. 18, 806-808.]); Reuter et al. (1994[Reuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem. 620, 665-671.]). For standardization of crystal data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • [EuCl2(H2O)6]Cl

  • Mr = 366.41

  • Monoclinic, P 2/n

  • a = 9.6438 (12) Å

  • b = 6.5322 (10) Å

  • c = 7.929 (3) Å

  • β = 93.653 (13)°

  • V = 498.4 (2) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 3.74 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Stoe IPDS I diffractometer

  • Absorption correction: multi-scan (MulScanAbs in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.425, Tmax = 0.510

  • 13401 measured reflections

  • 1762 independent reflections

  • 1653 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.032

  • S = 1.03

  • 1762 reflections

  • 66 parameters

  • All H-atom parameters refined

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O1 2.4618 (15)
Eu1—O2i 2.4620 (18)
Eu1—O3 2.3078 (16)
Eu1—Cl1ii 2.7690 (12)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.74 (4) 2.36 (4) 3.081 (2) 166.08
O2—H2⋯Cl1iii 0.81 (3) 2.54 (3) 3.351 (2) 174.97
O2—H3⋯Cl2iv 0.76 (4) 2.51 (4) 3.2234 (19) 157.37
O3—H4⋯Cl1i 0.72 (4) 2.35 (4) 3.036 (2) 160.44
O1—H5v⋯Cl1 0.74 (2) 2.36 (3) 3.095 (2) 173.89
O3—H6⋯Cl2vi 0.79 (4) 2.53 (4) 3.310 (2) 170.66
Symmetry codes: (i) x, y, z-1; (iii) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2007[Crystal Impact (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

[EuCl2(H2O)6]Cl crystallizes with the GdCl3.6H2O structure type (Marezio et al., 1961), like many metal trichloride hexahydrates MCl3.6H2O with M = Y (Bell & Smith, 1990), Ce (Reuter et al., 1994), Nd (Habenschuss & Spedding, 1980), Sm - Tm (Graeber et al., 1966), Am, Bk (Burns & Peterson, 1971), and three bromide hexahydrates MBr3.6H2O with M = Pr, Dy (Junk et al., 1999) and Eu (Hoch & Simon, 2008). The first structure determination of the title compound was performed on the basis of film data (Bel'skii & Struchkov, 1965) and without determination of the hydrogen atom positions. A first exact structure determination with all atomic positions was performed by Lepert et al. (1983). However, the published data contain errors in the atomic coordinates. We have thus redetermined the structure on the basis of modern area detector data.

The Eu3+ cation in [EuCl2(H2O)6]Cl is located on a twofold rotation axis and is coordinated in form of a distorted square antiprism defined by six water molecules and two chloride anions (Fig. 1, Table 1). Hydrogen bonds O—H···Cl connect the [EuCl2(H2O)6]+ cations with the Cl- counter-anions to a three-dimensional framework (Fig 2). The complexing chloride anion Cl1 is surrounded by three, the isolated chloride anion Cl2 by six H atoms (Figs. 3, 4), forming hydrogen bonds with Cl···H distances between 2.36 (4) and 2.54 (3) Å (Table 2) and are in good agreement with those in other chloride hydrates. The EuIII—O distances in [EuCl2(H2O)6]Cl range from 2.3078 (16) to 2.4620 (18) Å and are comparable with those in EuCl3.3H2O (2.39–2.40 Å; Reuter et al., 1994), EuCl3.6H2O (2.39–2.43 Å; Graeber et al., 1966), or EuCl(OH)2 (2.35–2.44 Å; Demyanets et al., 1974) and also with those in EuBr3.6H2O (Hoch & Simon, 2008).

Related literature top

For previous structure determinations of the title compound, see: Lepert et al. (1983); Bel'skii & Struchkov (1965). For the GdCl3.6H2O structure type and isotypic compounds, see: Marezio et al. (1961); Bell & Smith (1990); Burns & Peterson (1971); Graeber et al. (1966); Habenschuss & Spedding (1980); Hoch & Simon (2008); Junk et al. (1999); Reuter et al. (1994). For related structures, see: Demyanets et al. (1974); Reuter et al. (1994). For standardization of crystal data, see: Gelato & Parthé (1987).

Experimental top

The title compound was obtained by adding small portions of commercially available Eu2O3 (Alfa Aesar, 99.99%) into concentrated aqueous HCl solution at 353 K until only minor amounts of undissolved Eu2O3 remained visible for several minutes. The surplus Eu2O3 finally was dissolved by dropwise addition of concentrated HCl to the solution until a clear colourless solution was obtained. The solution was allowed to cool to 293 K, yielding colourless single-crystal blocks of [EuCl2(H2O)6]Cl.

Refinement top

The positions of all hydrogen atoms were identified from the difference Fourier map and were freely refined, applying one common isotropic displacement parameter to all six H atoms.

For better comparability of our structure model with the previous model by Lepert et al. (1983) we haved used the same setting in space group P2/n. In the crystal structure description given by Lepert et al. (1983) several misspellings of the atomic positions were adopted into the databases. The published model leads to diverging refinements if taken as starting values. We have analysed the misspellings and give a conclusive assignment of the atomic positions. If standardized by the program STRUCTURE-TIDY (Gelato & Parthé, 1987), the comparison of our model with the one given by Lepert et al. (1983) shows, in addition to an origin shift of (0, 1/2, 0), that the y and z coordinates of atoms O1, O2 and O3 were permutated. In fact, y(O1) and z(O1) belong to y(O3) and z(O3), y(O2) and z(O2) belong to y(O1) and z(O1), and finally y(O3) and z(O3) belong to y(O2) and z(O2). If re-ordered in the given way, the refinement based on starting values from Lepert et al. (1983) lead to convergence in few cycles with satisfying results.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-AREA (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cationic [Eu(H2O)6Cl2]+ unit in [Eu(H2O)6Cl2]Cl. Ellipsoids are drawn at 75% probability level. Hydrogen atoms are drawn as small black spheres with arbitrary radius. [Symmetry code: (i) 3/2 - x, y, 1/2 - z; (ii) x, y, -1 + z; (iii) 3/2 - x, y, 3/2 - z; (iv) 1 - x, -y, 1 - z; (v) 1/2 + x, -y, -1/2 + z.]
[Figure 2] Fig. 2. View along [010] on the crystal structure of [Eu(H2O)6Cl2]Cl. Small black spheres represent H atoms, blue ellipsoids represent Eu atoms, olive ellipsoids represent Cl atoms, turquoise ellipsoids represent O atoms. Grey polyhedra represent the coordination of H atoms around Cl atoms.
[Figure 3] Fig. 3. The coordination sphere of the coordinating Cl1 atom is a distorted tetrahedron built from three water molecules and one europium atom. The water molecules coordinate via hydrogen bonds. [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1/2 + x, 1 - y, 1/2 + z; (iii) 3/2 - x, y 3/2 - z; (iv) x, y, 1 + z.]
[Figure 4] Fig. 4. The coordination sphere of the anionic Cl2 atom consists of six water molecules coordinating via their hydrogen atoms forming a distorted octahedron. [Symmetry codes: (i) 3/2 - x, y, 1/2 - z; (ii) x, y, 1 + z; (iii) 3/2 - x, 1 + y, 3/2 - z; (iv) x, 1 + y, z; (v) 1 - x, 1 - y, 1 - z; (vi) 1/2 + x, 1 - y, 1/2 + z.]
Hexaaquadichloridoeuropium(III) chloride top
Crystal data top
[EuCl2(H2O)6]ClZ = 2
Mr = 366.41F(000) = 348
Monoclinic, P2/nDx = 2.441 Mg m3
Hall symbol: -P 2yacAg Kα radiation, λ = 0.56083 Å
a = 9.6438 (12) ÅCell parameters from 13548 reflections
b = 6.5322 (10) ŵ = 3.74 mm1
c = 7.929 (3) ÅT = 293 K
β = 93.653 (13)°Stretched cuboid, clear colourless
V = 498.4 (2) Å30.23 × 0.20 × 0.18 mm
Data collection top
Stoe IPDS I
diffractometer
1762 independent reflections
Radiation source: fine-focus sealed tube1653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ scanθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(MulScanAbs in PLATON; Spek, 2009)
h = 1414
Tmin = 0.425, Tmax = 0.510k = 1010
13401 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.032All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
1762 reflections(Δ/σ)max < 0.001
66 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[EuCl2(H2O)6]ClV = 498.4 (2) Å3
Mr = 366.41Z = 2
Monoclinic, P2/nAg Kα radiation, λ = 0.56083 Å
a = 9.6438 (12) ŵ = 3.74 mm1
b = 6.5322 (10) ÅT = 293 K
c = 7.929 (3) Å0.23 × 0.20 × 0.18 mm
β = 93.653 (13)°
Data collection top
Stoe IPDS I
diffractometer
1762 independent reflections
Absorption correction: multi-scan
(MulScanAbs in PLATON; Spek, 2009)
1653 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.510Rint = 0.043
13401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.032All H-atom parameters refined
S = 1.03Δρmax = 0.63 e Å3
1762 reflectionsΔρmin = 0.77 e Å3
66 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.75000.150918 (18)0.25000.01345 (3)
Cl10.44156 (5)0.16532 (7)0.76010 (6)0.02588 (9)
Cl20.75000.62387 (11)0.75000.02813 (13)
O10.85427 (18)0.4256 (2)0.0872 (2)0.0275 (3)
O20.78164 (18)0.0484 (2)0.9561 (2)0.0263 (3)
O30.56055 (17)0.3002 (2)0.1060 (2)0.0278 (3)
H10.827 (4)0.454 (6)0.001 (5)0.051 (4)*
H20.846 (3)0.084 (5)0.902 (4)0.035 (3)*
H30.766 (4)0.063 (7)0.933 (5)0.058 (5)*
H40.551 (4)0.265 (6)0.020 (5)0.052 (5)*
H50.881 (4)0.520 (5)0.129 (5)0.040 (3)*
H60.491 (4)0.319 (6)0.152 (5)0.044 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01398 (5)0.01346 (5)0.01244 (6)0.0000.00293 (3)0.000
Cl10.02417 (18)0.02396 (18)0.0286 (2)0.00652 (16)0.00541 (16)0.00198 (17)
Cl20.0297 (3)0.0305 (3)0.0235 (3)0.0000.0033 (2)0.000
O10.0368 (8)0.0229 (6)0.0214 (8)0.0100 (6)0.0085 (6)0.0038 (5)
O20.0336 (7)0.0277 (7)0.0175 (7)0.0047 (6)0.0001 (6)0.0039 (5)
O30.0250 (6)0.0317 (7)0.0250 (8)0.0067 (5)0.0113 (6)0.0028 (5)
Geometric parameters (Å, º) top
Eu1—O12.4618 (15)O2—H30.76 (4)
Eu1—O1i2.4618 (16)O2—H20.81 (3)
Eu1—O2ii2.4620 (18)O3—H40.72 (4)
Eu1—O2iii2.4620 (18)O3—H60.79 (4)
Eu1—O32.3078 (16)Cl1—H22.535 (4)
Eu1—O3i2.3078 (15)Cl1—H42.3535 (4)
Eu1—Cl1iv2.7690 (12)Cl1—H5vi2.36 (3)
Eu1—Cl1v2.7690 (12)Cl2—H1i2.36 (4)
O1—H10.74 (4)Cl2—H3vii2.5071 (4)
O1—H50.74 (4)Cl2—H6viii2.53 (4)
Eu1—O1—H1122 (3)O1—Eu1—O2ii67.83 (6)
Eu1—O1—H1122 (3)O1i—Eu1—Cl1iv105.35 (5)
Eu1—O1—H5121 (3)O1—Eu1—Cl1iv145.35 (4)
Eu1—O1—H5121 (3)O2ii—Eu1—O2iii148.45 (8)
Eu1ix—O2—H2124 (3)O2ii—Eu1—Cl1iv83.83 (4)
Eu1ix—O2—H2124 (3)O2iii—Eu1—Cl1iv72.65 (4)
Eu1ix—O2—H3117 (3)O3i—Eu1—O1i76.70 (6)
Eu1ix—O2—H3117 (3)O3—Eu1—O1i67.31 (6)
Eu1—O3—H4112 (3)O3i—Eu1—O2ii116.15 (7)
Eu1—O3—H4112 (3)O3—Eu1—O2ii77.82 (6)
Eu1—O3—H6120 (3)O3i—Eu1—O3130.01 (8)
Eu1—O3—H6120 (3)O3i—Eu1—Cl1iv146.64 (4)
O1i—Eu1—O186.43 (9)O3—Eu1—Cl1iv78.18 (5)
O1i—Eu1—O2ii140.68 (5)Cl1iv—Eu1—Cl1v83.51 (2)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x, y, z1; (iii) x+3/2, y, z+3/2; (iv) x+1, y, z+1; (v) x+1/2, y, z1/2; (vi) x1/2, y+1, z+1/2; (vii) x, y+1, z; (viii) x+1, y+1, z+1; (ix) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2ii0.74 (4)2.36 (4)3.081 (2)166.08
O2—H2···Cl1iii0.81 (3)2.54 (3)3.351 (2)174.97
O2—H3···Cl2x0.76 (4)2.51 (4)3.2234 (19)157.37
O3—H4···Cl1ii0.72 (4)2.35 (4)3.036 (2)160.44
O1—H5vi···Cl10.74 (2)2.36 (3)3.095 (2)173.89
O3—H6···Cl2viii0.79 (4)2.53 (4)3.310 (2)170.66
Symmetry codes: (ii) x, y, z1; (iii) x+3/2, y, z+3/2; (vi) x1/2, y+1, z+1/2; (viii) x+1, y+1, z+1; (x) x, y1, z.
Selected bond lengths (Å) top
Eu1—O12.4618 (15)Eu1—O32.3078 (16)
Eu1—O2i2.4620 (18)Eu1—Cl1ii2.7690 (12)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.74 (4)2.36 (4)3.081 (2)166.08
O2—H2···Cl1iii0.81 (3)2.54 (3)3.351 (2)174.97
O2—H3···Cl2iv0.76 (4)2.51 (4)3.2234 (19)157.37
O3—H4···Cl1i0.72 (4)2.35 (4)3.036 (2)160.44
O1—H5v···Cl10.74 (2)2.36 (3)3.095 (2)173.89
O3—H6···Cl2vi0.79 (4)2.53 (4)3.310 (2)170.66
Symmetry codes: (i) x, y, z1; (iii) x+3/2, y, z+3/2; (iv) x, y1, z; (v) x1/2, y+1, z+1/2; (vi) x+1, y+1, z+1.
 

References

First citationBell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960–962.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBel'skii, N. K. & Struchkov, Yu. T. (1965). Kristallografiya, 10, 21–28.  CAS Google Scholar
First citationBurns, J. H. & Peterson, J. R. (1971). Inorg. Chem. 10, 147–151.  CrossRef CAS Web of Science Google Scholar
First citationCrystal Impact (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDemyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Crystallogr. 18, 806–808.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGraeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst. 21, 1012–1013.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun. 9, 71–75.  CAS Google Scholar
First citationHoch, C. & Simon, A. (2008). Acta Cryst. E64, i35.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJunk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 531–538.  CrossRef CAS Google Scholar
First citationLepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 477–482.  Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234–236.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationReuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem. 620, 665–671.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds