organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o421-o422

Tri­phenyl­tellurium chloride

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: sksrivas7@yahoo.com

(Received 13 February 2014; accepted 4 March 2014; online 12 March 2014)

The asymmetric unit of the title compound, C18H15ClTe, contains two mol­ecules which are in inverted orientations. The compound displays a tetra­hedral geometry around the Te atom in spite of there being five electron domains. This is attributed to the fact that the lone pair is not sterically active. The dihedral angles between the three phenyl rings are 76.51 (16)/73.75 (16)/71.06 (17) and 78.60 (17)/77.67 (16)/79.11 (16)° in the two mol­ecules. The crystal packing features eight C—H⋯π inter­actions.

Related literature

For the first synthesis of the title compound, see: Günther et al. (1974[Günther, W. H. H., Nepywoda, J. & Chu, J. Y. C. (1974). J. Organomet. Chem. 74, 79-84.]). For related compounds, see: Klapötke et al. (2001[Klapötke, T. M., Krumm, B., Mayer, P., Polborn, K. & Ruscitti, O. P. (2001). J. Fluorine Chem. 112, 207-212.]); Naumann et al. (2002[Naumann, D., Tyrra, W., Herrmann, R., Pantenburg, I. & Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 833-842.]). For chalcogen-bearing compounds, see: Srivastava et al. (2010[Srivastava, S. K., Rastogi, R., Rajaram, P., Butcher, R. J. & Jasinski, J. P. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 455-462.], 2011[Srivastava, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011). Organometallics, 30, 534-546.]); Rastogi et al. (2011[Rastogi, R., Srivastava, S. K., Butcher, R. J. & Jasinski, J. P. (2011). J. Chem. Crystallogr. 41, 391-400.]). For organotellurium(IV) derivatives that form metal complexes and supra­molecular aggregations, see: Santos et al. (2007[Santos, S. S., Lang, E. S. & Oliveira, G. M. (2007). J. Organomet. Chem. 692, 3081-3088.]); Teikink & Zukerman-Schpector (2010[Teikink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46-76.]). For their applications as anti­leishmanial and anti­bacterial agents, see: Lima et al. (2009[Lima, C. B. C., Silva, W. W. A., Oliveira, R. L., Cunha, R. & Criorgio, S. (2009). Korean J. Parasitol. 47, 213-218.]); Soni et al. (2005[Soni, D., Gupta, P. K., Kumar, Y. & Chandrashekhar, T. G. (2005). Indian J. Biochem. Biophys. 42, 398-400.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClTe

  • Mr = 394.35

  • Monoclinic, P 21 /c

  • a = 18.7514 (3) Å

  • b = 9.60800 (15) Å

  • c = 18.4367 (3) Å

  • β = 105.2453 (16)°

  • V = 3204.74 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 16.07 mm−1

  • T = 123 K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.215, Tmax = 1.000

  • 12435 measured reflections

  • 6446 independent reflections

  • 5854 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.04

  • 6446 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AACg2i 0.95 2.96 3.587 (4) 125
C5A—H5AACg4 0.95 2.65 3.497 (4) 149
C10A—H10ACg1ii 0.95 2.83 3.580 (4) 137
C5B—H5BACg5iii 0.95 2.76 3.532 (4) 139
C11A—H11ACg3iv 0.95 2.91 3.601 (4) 131
C12B—H12BCg6v 0.95 2.95 3.671 (3) 134
C14B—H14BCg4vi 0.95 2.86 3.589 (4) 134
C17B—H17BCg2 0.95 2.78 3.679 (4) 158
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

In recent years organotellurium compounds have been widely used as ligands forming complexes with supra­molecular behaviour (Santos et al., 2007; Teikink et al., 2010; Srivastava et al., 2011). These compounds have inter­esting applications as anti­leishmanial and anti­bacterial agents (Lima et al., 2009; Soni et al., 2005). The crystal structures of related compounds, tris­(penta­fluoro­phenyl)­tellurium chloride, (C6H5)3TeCl and tris­(penta­fluoro­phenyl)­tellurium bromide, (C6H5)3TeBr have been reported earlier (Klapötke et al., 2001; Naumann et al., 2002). As part of our investigations on the chalcogen bearing compounds (Srivastava et al. 2010; Rastogi et al. 2011), we herein report the synthesis and X-ray crystal structure analysis of the title compound, tri­phenyl­tellurium chloride.

Experimental top

Synthesis and crystallization top

The title compound was prepared by the modified procedure described earlier (Günther et al.,1974). A mixture of TeCl4 (26.8 g, 0.1 mol) and AlCl3 (39.9 g, 0.3 mol) in 300 mL dry benzene was placed into a 500 mL two-necked, round-bottom flask equipped with a magnetic stirring bar, a nitro­gen inlet and a reflux condenser. The reflux condenser was connected with Tygon tubing to a gas dispersion tube immersed in water containing phenolphthalein indicator. The reaction mixture was heated to reflux under nitro­gen. Vigorous hydrogen chloride evolution occurred immediately. The hydrogen chloride was swept through the condenser into phenolphthalein solution by nitro­gen and titrated with NaOH solution. The reaction mixture was poured into 400 mL of ice and water, when three equivalents of HCl had evolved. A dark colored solid was separated by filtration of the quenched reaction mixture and dissolved in minimum amount of boiling water. The hot mixture was then quickly filtered to give a clear colorless solution. On cooling the filtrate, a white crystalline solid of tri­phenyl­tellurium chloride separated out. The compound was crystallized in ethanol and chloro­form mixture (60:40) to give white crystals suitable for X-ray analysis in 72% yield. M.P. 249-250 °C. Anal. calc. for C18H15ClTe(%): C,54.82; H,3.83; Cl,8.99; Te,32.35. Found: C,54.88; H,3.86; Cl,9.16; Te,32.30.

Refinement top

H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95 Å, with Uiso (H) = 1.20 Ueq (C) atoms.

Results and discussion top

The molecular structure of the title compound, C18H15ClTe, is shown in Fig.1. The asymmetric unit of the structure contains two molecules which are in inverted orientations. The molecule displays a tetra­hedral geometry around the Te atom (sum of bond angles, 436.56°) in spite of being five electron domains. This attributes the fact that the lone pair is not sterically active. This is in contrast with the reported structure of distorted o­cta­hedral geometry for (C6F5)3TeCl (Klapotke et al., 2001) and trigonal bipyramidal geometry for (C6F5)3TeBr (Naumann et al., 2002). This clearly indicates that there is no effect of free electron pair at Te in the present structure. The dihedral angles between the mean planes of the three phenyl rings C7A–C12A, C1A–C6A, C13A–C18A in molecule A and C7B–C12B, C1B–C6B, C13B–C18B in molecule B are 76.51 (16)/73.75 (16) and 78.60 (17)/77.67 (16)°, respectively, in the two molecules indicating that there is no conjugation between three aromatic rings. The two phenyl rings at C7 and C13 are inclined at an angle of 71.06 (17)° in molecule A and 79.11 (16)° in molecule B. The crystal packing is stabilized by eight C—H···π inter­molecular inter­actions (Table 1, Fig.2).

Related literature top

For the first synthesis of the ionic title compound, see: Günther et al. (1974). For related compounds, see: Klapötke et al. (2001); Naumann et al. (2002). For chalcogen-bearing compounds, see: Srivastava et al. (2010, 2011); Rastogi et al. (2011). For organotellurium(IV) derivatives that form metal complexes and supramolecular aggregations, see: Santos et al. (2007); Teikink & Zukerman-Schpector (2010). For their applications as antileishmanial and antibacterial agents, see: Lima et al. (2009); Soni et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of C18H15ClTe viewed along b axis.
Triphenyltellurium chloride top
Crystal data top
C18H15ClTeF(000) = 1536
Mr = 394.35Dx = 1.635 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 18.7514 (3) ÅCell parameters from 8646 reflections
b = 9.60800 (15) Åθ = 3.0–75.3°
c = 18.4367 (3) ŵ = 16.07 mm1
β = 105.2453 (16)°T = 123 K
V = 3204.74 (9) Å3Prism, colorless
Z = 80.25 × 0.12 × 0.08 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6446 independent reflections
Radiation source: Enhance(Cu)X-ray Source5854 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.051
ω scansθmax = 75.5°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 2322
Tmin = 0.215, Tmax = 1.000k = 1111
12435 measured reflectionsl = 1522
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
6446 reflectionsΔρmax = 0.98 e Å3
361 parametersΔρmin = 1.24 e Å3
Crystal data top
C18H15ClTeV = 3204.74 (9) Å3
Mr = 394.35Z = 8
Monoclinic, P21/cCu Kα radiation
a = 18.7514 (3) ŵ = 16.07 mm1
b = 9.60800 (15) ÅT = 123 K
c = 18.4367 (3) Å0.25 × 0.12 × 0.08 mm
β = 105.2453 (16)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6446 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5854 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 1.000Rint = 0.051
12435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.98 e Å3
6446 reflectionsΔρmin = 1.24 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.94906 (2)0.68564 (2)0.31239 (2)0.01281 (7)
Cl1A0.89902 (5)0.50007 (10)0.36822 (5)0.02617 (18)
C1A0.90760 (17)0.8720 (3)0.34765 (15)0.0117 (5)
C2A0.95451 (18)0.9705 (4)0.39152 (17)0.0174 (6)
H2AA1.00600.95200.40890.021*
C3A0.9264 (2)1.0956 (4)0.40997 (19)0.0221 (7)
H3AA0.95861.16250.43950.027*
C4A0.8510 (2)1.1227 (4)0.38521 (19)0.0203 (7)
H4AA0.83181.20840.39760.024*
C5A0.80402 (18)1.0247 (4)0.34240 (17)0.0177 (6)
H5AA0.75251.04270.32600.021*
C6A0.83215 (17)0.9001 (4)0.32338 (16)0.0136 (6)
H6AA0.79970.83370.29360.016*
C7A0.90531 (16)0.6542 (4)0.19509 (16)0.0132 (6)
C8A0.9106 (2)0.7593 (4)0.14490 (18)0.0192 (6)
H8AA0.93370.84490.16320.023*
C9A0.8819 (2)0.7394 (4)0.06757 (18)0.0241 (7)
H9AA0.88600.81120.03340.029*
C10A0.8474 (2)0.6147 (4)0.04067 (18)0.0253 (8)
H10A0.82770.60150.01190.030*
C11A0.84169 (19)0.5095 (4)0.0903 (2)0.0217 (7)
H11A0.81820.42430.07170.026*
C12A0.87045 (18)0.5289 (4)0.16747 (19)0.0175 (6)
H12A0.86640.45690.20140.021*
C13A1.06448 (16)0.6564 (3)0.35559 (16)0.0113 (5)
C14A1.11265 (18)0.6647 (4)0.30923 (16)0.0157 (6)
H14A1.09360.68210.25700.019*
C15A1.18813 (18)0.6477 (4)0.33918 (18)0.0183 (6)
H15A1.22060.65470.30760.022*
C16A1.21641 (18)0.6202 (4)0.41587 (19)0.0196 (7)
H16A1.26810.60820.43630.023*
C17A1.16919 (19)0.6103 (4)0.46211 (17)0.0175 (6)
H17A1.18840.59110.51410.021*
C18A1.09335 (18)0.6286 (3)0.43220 (16)0.0143 (6)
H18A1.06110.62200.46410.017*
Te20.45436 (2)0.55648 (2)0.33256 (2)0.01326 (7)
Cl1B0.40664 (5)0.72841 (10)0.39883 (5)0.02692 (18)
C1B0.40378 (16)0.5962 (4)0.21742 (16)0.0139 (6)
C2B0.4015 (2)0.4914 (4)0.16450 (18)0.0191 (6)
H2BA0.42240.40300.18060.023*
C3B0.3690 (2)0.5145 (4)0.08827 (18)0.0216 (7)
H3BA0.36800.44240.05280.026*
C4B0.33825 (19)0.6434 (4)0.06456 (18)0.0207 (7)
H4BA0.31590.65930.01270.025*
C5B0.33996 (18)0.7490 (4)0.11611 (18)0.0186 (6)
H5BA0.31910.83730.09950.022*
C6B0.37254 (17)0.7257 (3)0.19282 (17)0.0146 (6)
H6BA0.37340.79800.22820.017*
C7B0.56983 (16)0.5920 (3)0.36148 (16)0.0110 (5)
C8B0.60684 (17)0.5895 (4)0.30504 (15)0.0138 (6)
H8BA0.58000.57170.25460.017*
C9B0.68260 (19)0.6128 (4)0.32186 (17)0.0182 (6)
H9BA0.70730.61080.28300.022*
C10B0.72222 (18)0.6392 (4)0.39582 (18)0.0188 (6)
H10B0.77400.65500.40750.023*
C11B0.68595 (18)0.6424 (4)0.45235 (17)0.0164 (6)
H11B0.71300.66110.50270.020*
C12B0.60982 (18)0.6181 (4)0.43578 (16)0.0148 (6)
H12B0.58530.61940.47480.018*
C13B0.41530 (17)0.3643 (3)0.36394 (15)0.0121 (6)
C14B0.46223 (18)0.2532 (4)0.39384 (17)0.0173 (6)
H14B0.51430.26450.40440.021*
C15B0.4328 (2)0.1266 (4)0.40814 (19)0.0229 (7)
H15B0.46490.05140.42810.027*
C16B0.3565 (2)0.1092 (4)0.39335 (18)0.0219 (7)
H16B0.33650.02220.40270.026*
C17B0.30978 (19)0.2199 (4)0.36487 (18)0.0205 (7)
H17B0.25780.20900.35570.025*
C18B0.33869 (17)0.3461 (4)0.34975 (16)0.0145 (6)
H18B0.30630.42080.32960.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01195 (10)0.01092 (11)0.01414 (9)0.00276 (7)0.00093 (7)0.00010 (6)
Cl1A0.0262 (4)0.0210 (4)0.0342 (4)0.0001 (3)0.0131 (3)0.0099 (3)
C1A0.0140 (14)0.0102 (14)0.0114 (11)0.0027 (11)0.0043 (10)0.0017 (10)
C2A0.0125 (14)0.0214 (18)0.0168 (13)0.0011 (13)0.0010 (11)0.0029 (12)
C3A0.0222 (17)0.0186 (18)0.0268 (16)0.0052 (14)0.0085 (13)0.0093 (14)
C4A0.0259 (17)0.0130 (16)0.0254 (15)0.0060 (13)0.0131 (13)0.0020 (12)
C5A0.0143 (15)0.0195 (17)0.0197 (13)0.0084 (13)0.0051 (11)0.0036 (12)
C6A0.0124 (14)0.0135 (15)0.0131 (12)0.0006 (12)0.0004 (10)0.0001 (11)
C7A0.0080 (13)0.0125 (15)0.0176 (13)0.0057 (11)0.0008 (10)0.0012 (11)
C8A0.0234 (17)0.0118 (16)0.0191 (14)0.0002 (13)0.0001 (12)0.0017 (12)
C9A0.0317 (19)0.0200 (18)0.0170 (14)0.0076 (15)0.0002 (13)0.0034 (13)
C10A0.0245 (17)0.029 (2)0.0171 (14)0.0161 (16)0.0045 (12)0.0083 (14)
C11A0.0174 (16)0.0165 (17)0.0271 (16)0.0042 (13)0.0014 (12)0.0115 (13)
C12A0.0133 (14)0.0129 (16)0.0249 (15)0.0009 (12)0.0026 (12)0.0050 (12)
C13A0.0082 (12)0.0096 (14)0.0134 (12)0.0003 (11)0.0019 (10)0.0023 (10)
C14A0.0189 (15)0.0152 (16)0.0122 (12)0.0010 (12)0.0027 (11)0.0017 (11)
C15A0.0134 (14)0.0190 (17)0.0240 (15)0.0018 (13)0.0071 (12)0.0047 (13)
C16A0.0110 (14)0.0183 (17)0.0250 (15)0.0030 (13)0.0030 (12)0.0043 (13)
C17A0.0177 (15)0.0157 (16)0.0136 (12)0.0049 (13)0.0057 (11)0.0012 (11)
C18A0.0165 (15)0.0129 (15)0.0130 (12)0.0007 (12)0.0031 (11)0.0015 (11)
Te20.01147 (10)0.01182 (11)0.01491 (10)0.00067 (7)0.00070 (7)0.00025 (6)
Cl1B0.0253 (4)0.0222 (4)0.0349 (4)0.0029 (3)0.0109 (3)0.0098 (3)
C1B0.0070 (13)0.0157 (16)0.0165 (13)0.0049 (12)0.0012 (10)0.0002 (12)
C2B0.0233 (17)0.0115 (16)0.0204 (14)0.0034 (13)0.0020 (12)0.0003 (12)
C3B0.0301 (18)0.0161 (17)0.0172 (14)0.0052 (14)0.0038 (13)0.0037 (12)
C4B0.0191 (16)0.0219 (18)0.0175 (14)0.0076 (14)0.0019 (12)0.0066 (13)
C5B0.0135 (15)0.0165 (17)0.0224 (15)0.0028 (12)0.0012 (12)0.0078 (13)
C6B0.0111 (13)0.0098 (15)0.0203 (14)0.0022 (12)0.0004 (11)0.0013 (11)
C7B0.0076 (12)0.0088 (14)0.0144 (12)0.0018 (11)0.0011 (10)0.0018 (10)
C8B0.0166 (15)0.0140 (15)0.0091 (11)0.0023 (12)0.0003 (10)0.0027 (10)
C9B0.0186 (15)0.0202 (18)0.0171 (14)0.0020 (13)0.0070 (11)0.0059 (12)
C10B0.0139 (14)0.0168 (17)0.0228 (15)0.0017 (13)0.0002 (12)0.0007 (12)
C11B0.0138 (14)0.0162 (16)0.0157 (13)0.0014 (12)0.0024 (11)0.0029 (11)
C12B0.0166 (15)0.0159 (16)0.0119 (12)0.0028 (12)0.0035 (11)0.0021 (11)
C13B0.0152 (14)0.0121 (15)0.0081 (11)0.0024 (12)0.0016 (10)0.0029 (10)
C14B0.0152 (15)0.0185 (17)0.0187 (13)0.0029 (13)0.0052 (11)0.0033 (12)
C15B0.0334 (19)0.0160 (17)0.0208 (14)0.0064 (15)0.0100 (13)0.0056 (12)
C16B0.0321 (19)0.0182 (17)0.0181 (14)0.0100 (14)0.0116 (13)0.0001 (12)
C17B0.0178 (16)0.0253 (19)0.0187 (13)0.0090 (14)0.0056 (12)0.0025 (13)
C18B0.0116 (14)0.0165 (16)0.0143 (12)0.0000 (12)0.0017 (10)0.0006 (11)
Geometric parameters (Å, º) top
Te1—C13A2.119 (3)Te2—C7B2.117 (3)
Te1—C1A2.121 (3)Te2—C1B2.120 (3)
Te1—C7A2.123 (3)Te2—C13B2.122 (3)
Te1—Cl1A2.3720 (9)Te2—Cl1B2.3659 (9)
C1A—C6A1.394 (4)C1B—C2B1.395 (5)
C1A—C2A1.396 (4)C1B—C6B1.399 (5)
C2A—C3A1.390 (5)C2B—C3B1.395 (5)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.390 (5)C3B—C4B1.387 (5)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.386 (5)C4B—C5B1.385 (5)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.390 (5)C5B—C6B1.403 (4)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—C8A1.390 (5)C7B—C8B1.395 (4)
C7A—C12A1.400 (5)C7B—C12B1.401 (4)
C8A—C9A1.398 (4)C8B—C9B1.390 (5)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C10A1.390 (6)C9B—C10B1.394 (5)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.386 (6)C10B—C11B1.387 (5)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.396 (5)C11B—C12B1.398 (5)
C11A—H11A0.9500C11B—H11B0.9500
C12A—H12A0.9500C12B—H12B0.9500
C13A—C18A1.399 (4)C13B—C14B1.401 (5)
C13A—C14A1.400 (4)C13B—C18B1.402 (4)
C14A—C15A1.387 (5)C14B—C15B1.389 (5)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.399 (5)C15B—C16B1.395 (6)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.384 (5)C16B—C17B1.390 (6)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.395 (5)C17B—C18B1.386 (5)
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9500C18B—H18B0.9500
C13A—Te1—C1A114.64 (12)C7B—Te2—C1B112.45 (11)
C13A—Te1—C7A116.54 (11)C7B—Te2—C13B118.37 (12)
C1A—Te1—C7A110.95 (11)C1B—Te2—C13B109.51 (11)
C13A—Te1—Cl1A102.64 (9)C7B—Te2—Cl1B104.96 (9)
C1A—Te1—Cl1A106.43 (9)C1B—Te2—Cl1B105.13 (10)
C7A—Te1—Cl1A104.14 (10)C13B—Te2—Cl1B105.20 (9)
C6A—C1A—C2A119.1 (3)C2B—C1B—C6B118.8 (3)
C6A—C1A—Te1119.2 (2)C2B—C1B—Te2119.6 (2)
C2A—C1A—Te1121.6 (2)C6B—C1B—Te2121.6 (2)
C3A—C2A—C1A120.4 (3)C1B—C2B—C3B121.0 (3)
C3A—C2A—H2AA119.8C1B—C2B—H2BA119.5
C1A—C2A—H2AA119.8C3B—C2B—H2BA119.5
C2A—C3A—C4A120.0 (3)C4B—C3B—C2B119.7 (3)
C2A—C3A—H3AA120.0C4B—C3B—H3BA120.2
C4A—C3A—H3AA120.0C2B—C3B—H3BA120.2
C5A—C4A—C3A119.9 (3)C5B—C4B—C3B120.3 (3)
C5A—C4A—H4AA120.0C5B—C4B—H4BA119.8
C3A—C4A—H4AA120.0C3B—C4B—H4BA119.8
C4A—C5A—C6A120.1 (3)C4B—C5B—C6B120.0 (3)
C4A—C5A—H5AA119.9C4B—C5B—H5BA120.0
C6A—C5A—H5AA119.9C6B—C5B—H5BA120.0
C5A—C6A—C1A120.4 (3)C1B—C6B—C5B120.2 (3)
C5A—C6A—H6AA119.8C1B—C6B—H6BA119.9
C1A—C6A—H6AA119.8C5B—C6B—H6BA119.9
C8A—C7A—C12A119.3 (3)C8B—C7B—C12B119.3 (3)
C8A—C7A—Te1119.9 (2)C8B—C7B—Te2119.1 (2)
C12A—C7A—Te1120.7 (2)C12B—C7B—Te2121.6 (2)
C7A—C8A—C9A120.3 (3)C9B—C8B—C7B120.7 (3)
C7A—C8A—H8AA119.9C9B—C8B—H8BA119.6
C9A—C8A—H8AA119.9C7B—C8B—H8BA119.6
C10A—C9A—C8A120.0 (3)C8B—C9B—C10B119.9 (3)
C10A—C9A—H9AA120.0C8B—C9B—H9BA120.1
C8A—C9A—H9AA120.0C10B—C9B—H9BA120.1
C11A—C10A—C9A120.2 (3)C11B—C10B—C9B119.9 (3)
C11A—C10A—H10A119.9C11B—C10B—H10B120.0
C9A—C10A—H10A119.9C9B—C10B—H10B120.0
C10A—C11A—C12A119.9 (3)C10B—C11B—C12B120.4 (3)
C10A—C11A—H11A120.0C10B—C11B—H11B119.8
C12A—C11A—H11A120.0C12B—C11B—H11B119.8
C11A—C12A—C7A120.3 (3)C11B—C12B—C7B119.8 (3)
C11A—C12A—H12A119.9C11B—C12B—H12B120.1
C7A—C12A—H12A119.9C7B—C12B—H12B120.1
C18A—C13A—C14A119.1 (3)C14B—C13B—C18B119.0 (3)
C18A—C13A—Te1119.4 (2)C14B—C13B—Te2123.0 (2)
C14A—C13A—Te1121.5 (2)C18B—C13B—Te2117.9 (2)
C15A—C14A—C13A120.3 (3)C15B—C14B—C13B120.2 (3)
C15A—C14A—H14A119.8C15B—C14B—H14B119.9
C13A—C14A—H14A119.8C13B—C14B—H14B119.9
C14A—C15A—C16A120.1 (3)C14B—C15B—C16B120.4 (3)
C14A—C15A—H15A120.0C14B—C15B—H15B119.8
C16A—C15A—H15A120.0C16B—C15B—H15B119.8
C17A—C16A—C15A120.1 (3)C17B—C16B—C15B119.6 (3)
C17A—C16A—H16A119.9C17B—C16B—H16B120.2
C15A—C16A—H16A119.9C15B—C16B—H16B120.2
C16A—C17A—C18A119.9 (3)C18B—C17B—C16B120.3 (3)
C16A—C17A—H17A120.0C18B—C17B—H17B119.9
C18A—C17A—H17A120.0C16B—C17B—H17B119.9
C17A—C18A—C13A120.5 (3)C17B—C18B—C13B120.5 (3)
C17A—C18A—H18A119.8C17B—C18B—H18B119.7
C13A—C18A—H18A119.8C13B—C18B—H18B119.7
C6A—C1A—C2A—C3A0.7 (5)C6B—C1B—C2B—C3B0.2 (5)
Te1—C1A—C2A—C3A176.0 (3)Te2—C1B—C2B—C3B179.6 (3)
C1A—C2A—C3A—C4A0.5 (5)C1B—C2B—C3B—C4B0.2 (6)
C2A—C3A—C4A—C5A0.3 (5)C2B—C3B—C4B—C5B0.3 (5)
C3A—C4A—C5A—C6A0.8 (5)C3B—C4B—C5B—C6B0.4 (5)
C4A—C5A—C6A—C1A0.6 (5)C2B—C1B—C6B—C5B0.3 (5)
C2A—C1A—C6A—C5A0.2 (5)Te2—C1B—C6B—C5B179.5 (2)
Te1—C1A—C6A—C5A176.6 (2)C4B—C5B—C6B—C1B0.4 (5)
C12A—C7A—C8A—C9A0.6 (5)C12B—C7B—C8B—C9B0.1 (5)
Te1—C7A—C8A—C9A180.0 (3)Te2—C7B—C8B—C9B179.8 (3)
C7A—C8A—C9A—C10A0.6 (6)C7B—C8B—C9B—C10B0.1 (5)
C8A—C9A—C10A—C11A0.4 (6)C8B—C9B—C10B—C11B0.1 (6)
C9A—C10A—C11A—C12A0.2 (5)C9B—C10B—C11B—C12B0.5 (6)
C10A—C11A—C12A—C7A0.2 (5)C10B—C11B—C12B—C7B0.7 (5)
C8A—C7A—C12A—C11A0.4 (5)C8B—C7B—C12B—C11B0.5 (5)
Te1—C7A—C12A—C11A179.8 (2)Te2—C7B—C12B—C11B179.4 (3)
C18A—C13A—C14A—C15A1.0 (5)C18B—C13B—C14B—C15B0.8 (4)
Te1—C13A—C14A—C15A178.8 (3)Te2—C13B—C14B—C15B175.3 (2)
C13A—C14A—C15A—C16A0.9 (5)C13B—C14B—C15B—C16B0.4 (5)
C14A—C15A—C16A—C17A0.2 (6)C14B—C15B—C16B—C17B0.7 (5)
C15A—C16A—C17A—C18A0.3 (6)C15B—C16B—C17B—C18B1.3 (5)
C16A—C17A—C18A—C13A0.2 (5)C16B—C17B—C18B—C13B0.9 (5)
C14A—C13A—C18A—C17A0.5 (5)C14B—C13B—C18B—C17B0.2 (4)
Te1—C13A—C18A—C17A179.4 (3)Te2—C13B—C18B—C17B176.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···Cg2i0.952.963.587 (4)125
C5A—H5AA···Cg40.952.653.497 (4)149
C10A—H10A···Cg1ii0.952.833.580 (4)137
C5B—H5BA···Cg5iii0.952.763.532 (4)139
C11A—H11A···Cg3iv0.952.913.601 (4)131
C12B—H12B···Cg6v0.952.953.671 (3)134
C14B—H14B···Cg4vi0.952.863.589 (4)134
C17B—H17B···Cg20.952.783.679 (4)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···Cg2i0.952.963.587 (4)125
C5A—H5AA···Cg40.952.653.497 (4)149
C10A—H10A···Cg1ii0.952.833.580 (4)137
C5B—H5BA···Cg5iii0.952.763.532 (4)139
C11A—H11A···Cg3iv0.952.913.601 (4)131
C12B—H12B···Cg6v0.952.953.671 (3)134
C14B—H14B···Cg4vi0.952.863.589 (4)134
C17B—H17B···Cg20.952.783.679 (4)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+1/2.
 

Acknowledgements

AC and SJ thank the JUG for the award of a University Fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationGünther, W. H. H., Nepywoda, J. & Chu, J. Y. C. (1974). J. Organomet. Chem. 74, 79–84.  Google Scholar
First citationKlapötke, T. M., Krumm, B., Mayer, P., Polborn, K. & Ruscitti, O. P. (2001). J. Fluorine Chem. 112, 207–212.  Google Scholar
First citationLima, C. B. C., Silva, W. W. A., Oliveira, R. L., Cunha, R. & Criorgio, S. (2009). Korean J. Parasitol. 47, 213–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaumann, D., Tyrra, W., Herrmann, R., Pantenburg, I. & Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 833–842.  Web of Science CSD CrossRef CAS Google Scholar
First citationRastogi, R., Srivastava, S. K., Butcher, R. J. & Jasinski, J. P. (2011). J. Chem. Crystallogr. 41, 391–400.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantos, S. S., Lang, E. S. & Oliveira, G. M. (2007). J. Organomet. Chem. 692, 3081–3088.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoni, D., Gupta, P. K., Kumar, Y. & Chandrashekhar, T. G. (2005). Indian J. Biochem. Biophys. 42, 398–400.  Web of Science PubMed CAS Google Scholar
First citationSrivastava, S. K., Rastogi, R., Rajaram, P., Butcher, R. J. & Jasinski, J. P. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 455–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSrivastava, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011). Organometallics, 30, 534–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationTeikink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o421-o422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds