access
O contact. Hydrogen bonding (N-H
O) between amide groups forms chains parallel to the b axis. Pairs of methylpyridine groups from molecules in adjacent chains are parallel but there is minimal
-
interaction.Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814003729/mw2120sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536814003729/mw2120Isup2.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814003729/mw2120Isup3.cml |
CCDC reference: 987696
Synthetic and naturally occurring pyridine derivatives have a broad range of biological activities (Thorat et al., 2013) including anticancer and antimicrobial (Abdel-Megeed et al., 2012) and anticoagulant (de Candia et al., 2013) properties. Hence, pyridine derivatives are important compounds (Joule and Mills, 2000) and some synthetic approaches involve lithiation of 2-acylaminopyridines (Smith et al., 1995; Turner, 1983). The structures of a number of 2-acylaminopyridines have been determined (Mazik & Sicking, 2004; Mazik et al., 2004; Hodorowicz et al., 2007; Koch et al., 2008; Liang et al., 2008; Seidler et al., 2011). During research focused on new synthetic routes towards novel substituted pyridine derivatives (Smith et al., 1994; Smith et al., 1995; Smith et al., 1999; El-Hiti, 2003; Smith et al., 2012; Smith et al., 2013) we have synthesized the title compound in high yield. In the 4-methyl-2-pivaloylaminopyridine molecule (Figure 1), the least squares plane through the 4-methypyridine group makes a dihedral angle of 16.7 (1)° with the plane through the amide link and a short intramolecular C5—H5···O1 contact is observed (Table 1). In the crystal structure (Figure 2) N—H···O hydrogen bonding between amide groups forms chains parallel to the b axis. Pairs of methyl-pyridine groups in molecules from adjacent chains are parallel but there is minimal π-π interaction. The ring nitrogen is not involved in strong hydrogen bonding.
To a cooled solution (0 °C) of 2-amino-4-methylpyridine (5.41 g, 50.0 mmol) and triethylamine (10 ml) in dichloromethane (DCM, 80 ml) pivaloyl chloride (6.63 g, 55.0 mmol) was slowly added in a drop-wise manner over 10 min. The reaction mixture was stirred at 0 °C for an extra 1 h. The mixture was poured into H2O (100 ml) and the organic layer was separated, washed with H2O (2 × 50 ml), dried (MgSO4) and evaporated under reduced pressure to remove the solvent. The solid obtained was purified by crystallization from Et2O–hexane (2:1) to give 4-methyl-2-pivaloylaminopyridine (9.04 g, 47.0 mmol; 94%) as colourless crystals, m.p. 103–104 °C [lit. 96–98 °C (hexane); Turner (1983)]. 1H NMR (500 MHz, CDCl3, δ, p.p.m.) 8.11–8.10 (br, 2 H, H-3 and H-6), 8.05 (br, exch., 1 H, NH), 6.85 (m, 1 H, H-5), 2.34 (s, 3 H, CH3), 1.31 [s, 9 H, C(CH3)3]. 13CNMR (125 MHz, CDCl3, δ, p.p.m.) 177.2 (s, C=O), 151.5 (s, C-4), 149.9 (s, C-2), 147.2 (d, C-6), 120.9 (d, C-5), 114.5 (d, C-3), 39.8 [s, C(CH3)3], 27.5 [q, C(CH3)3]), 21.4 (q, CH3). EI+–MS (m/z, %): 192 (M+, 43), 177 (5), 149 (11), 135 (25), 108 (100), 92 (15), 81 (15), 57 (25). HRMS (EI+): Calculated for C11H16N2O [M] 192.1263; found, 192.1260.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond.
Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).
| C11H16N2O | Dx = 1.115 Mg m−3 |
| Mr = 192.26 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, Pbca | Cell parameters from 1808 reflections |
| a = 10.7954 (3) Å | θ = 4.2–74.0° |
| b = 10.1809 (2) Å | µ = 0.58 mm−1 |
| c = 20.8390 (5) Å | T = 296 K |
| V = 2290.35 (10) Å3 | Block, colourless |
| Z = 8 | 0.27 × 0.19 × 0.14 mm |
| F(000) = 832 |
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1808 reflections with I > 2σ(I) |
| Radiation source: sealed X-ray tube | Rint = 0.017 |
| ω scans | θmax = 74.0°, θmin = 4.2° |
| Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | h = −7→13 |
| Tmin = 0.930, Tmax = 0.957 | k = −12→8 |
| 5219 measured reflections | l = −25→20 |
| 2253 independent reflections |
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0734P)2 + 0.4299P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.154 | (Δ/σ)max < 0.001 |
| S = 1.08 | Δρmax = 0.16 e Å−3 |
| 2253 reflections | Δρmin = −0.14 e Å−3 |
| 132 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0037 (5) |
| C11H16N2O | V = 2290.35 (10) Å3 |
| Mr = 192.26 | Z = 8 |
| Orthorhombic, Pbca | Cu Kα radiation |
| a = 10.7954 (3) Å | µ = 0.58 mm−1 |
| b = 10.1809 (2) Å | T = 296 K |
| c = 20.8390 (5) Å | 0.27 × 0.19 × 0.14 mm |
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2253 independent reflections |
| Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 1808 reflections with I > 2σ(I) |
| Tmin = 0.930, Tmax = 0.957 | Rint = 0.017 |
| 5219 measured reflections |
| R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
| wR(F2) = 0.154 | H-atom parameters constrained |
| S = 1.08 | Δρmax = 0.16 e Å−3 |
| 2253 reflections | Δρmin = −0.14 e Å−3 |
| 132 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.90730 (14) | 0.81479 (14) | 0.59591 (7) | 0.0489 (4) | |
| C2 | 1.0228 (2) | 0.6963 (2) | 0.52600 (11) | 0.0816 (6) | |
| H2 | 1.0345 | 0.6201 | 0.5021 | 0.098* | |
| C3 | 1.1102 (2) | 0.7922 (2) | 0.52141 (11) | 0.0792 (6) | |
| H3 | 1.1786 | 0.7811 | 0.4948 | 0.095* | |
| C4 | 1.09637 (16) | 0.90571 (19) | 0.55651 (9) | 0.0632 (5) | |
| C5 | 0.99149 (14) | 0.91744 (16) | 0.59451 (8) | 0.0552 (4) | |
| H5 | 0.9779 | 0.9929 | 0.6186 | 0.066* | |
| C6 | 1.1912 (2) | 1.0138 (3) | 0.55444 (12) | 0.0922 (7) | |
| H6A | 1.2409 | 1.0107 | 0.5926 | 0.138* | |
| H6B | 1.1499 | 1.0972 | 0.5520 | 0.138* | |
| H6C | 1.2431 | 1.0025 | 0.5175 | 0.138* | |
| C7 | 0.74226 (15) | 0.91931 (14) | 0.66136 (8) | 0.0515 (4) | |
| C8 | 0.62472 (16) | 0.88824 (16) | 0.69967 (9) | 0.0606 (5) | |
| C9 | 0.6598 (2) | 0.8017 (2) | 0.75696 (11) | 0.0851 (7) | |
| H9A | 0.7235 | 0.8442 | 0.7815 | 0.128* | |
| H9B | 0.6895 | 0.7185 | 0.7418 | 0.128* | |
| H9C | 0.5882 | 0.7883 | 0.7835 | 0.128* | |
| C10 | 0.5677 (2) | 1.0158 (2) | 0.72312 (13) | 0.0997 (9) | |
| H10A | 0.6251 | 1.0600 | 0.7509 | 0.149* | |
| H10B | 0.4929 | 0.9970 | 0.7463 | 0.149* | |
| H10C | 0.5490 | 1.0709 | 0.6870 | 0.149* | |
| C11 | 0.53133 (19) | 0.8146 (3) | 0.65810 (13) | 0.0933 (8) | |
| H11A | 0.4578 | 0.7976 | 0.6826 | 0.140* | |
| H11B | 0.5668 | 0.7329 | 0.6442 | 0.140* | |
| H11C | 0.5107 | 0.8670 | 0.6213 | 0.140* | |
| N1 | 0.92138 (14) | 0.70437 (14) | 0.56251 (8) | 0.0654 (4) | |
| N2 | 0.79937 (12) | 0.81473 (12) | 0.63366 (7) | 0.0554 (4) | |
| H2A | 0.7654 | 0.7394 | 0.6400 | 0.067* | |
| O1 | 0.78283 (12) | 1.03049 (11) | 0.65664 (7) | 0.0699 (4) |
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0475 (8) | 0.0469 (8) | 0.0523 (8) | 0.0056 (6) | 0.0003 (6) | 0.0012 (6) |
| C2 | 0.0788 (13) | 0.0735 (12) | 0.0924 (14) | 0.0131 (10) | 0.0224 (11) | −0.0152 (11) |
| C3 | 0.0626 (11) | 0.0889 (14) | 0.0861 (13) | 0.0180 (10) | 0.0226 (10) | 0.0029 (11) |
| C4 | 0.0481 (9) | 0.0720 (11) | 0.0694 (10) | 0.0027 (8) | 0.0020 (7) | 0.0171 (9) |
| C5 | 0.0518 (9) | 0.0531 (9) | 0.0607 (9) | 0.0001 (7) | 0.0028 (7) | 0.0032 (7) |
| C6 | 0.0587 (11) | 0.1052 (17) | 0.1126 (18) | −0.0166 (11) | 0.0083 (11) | 0.0244 (15) |
| C7 | 0.0533 (8) | 0.0390 (7) | 0.0622 (8) | 0.0022 (6) | 0.0061 (7) | −0.0009 (6) |
| C8 | 0.0592 (10) | 0.0478 (8) | 0.0749 (10) | 0.0016 (7) | 0.0190 (8) | −0.0021 (7) |
| C9 | 0.0969 (16) | 0.0788 (13) | 0.0798 (13) | 0.0035 (12) | 0.0275 (12) | 0.0104 (10) |
| C10 | 0.1026 (17) | 0.0605 (12) | 0.136 (2) | 0.0135 (11) | 0.0640 (16) | −0.0025 (12) |
| C11 | 0.0548 (11) | 0.1121 (19) | 0.1129 (18) | −0.0056 (11) | 0.0126 (12) | −0.0159 (15) |
| N1 | 0.0646 (9) | 0.0546 (8) | 0.0770 (9) | 0.0056 (7) | 0.0107 (7) | −0.0124 (7) |
| N2 | 0.0551 (8) | 0.0401 (7) | 0.0711 (8) | −0.0038 (5) | 0.0153 (6) | −0.0040 (6) |
| O1 | 0.0673 (8) | 0.0389 (6) | 0.1034 (10) | −0.0010 (5) | 0.0213 (7) | −0.0030 (6) |
| C1—N1 | 1.3310 (19) | C7—N2 | 1.3590 (19) |
| C1—C5 | 1.385 (2) | C7—C8 | 1.532 (2) |
| C1—N2 | 1.406 (2) | C8—C10 | 1.518 (2) |
| C2—N1 | 1.336 (3) | C8—C11 | 1.526 (3) |
| C2—C3 | 1.361 (3) | C8—C9 | 1.531 (3) |
| C2—H2 | 0.9300 | C9—H9A | 0.9600 |
| C3—C4 | 1.376 (3) | C9—H9B | 0.9600 |
| C3—H3 | 0.9300 | C9—H9C | 0.9600 |
| C4—C5 | 1.387 (2) | C10—H10A | 0.9600 |
| C4—C6 | 1.503 (3) | C10—H10B | 0.9600 |
| C5—H5 | 0.9300 | C10—H10C | 0.9600 |
| C6—H6A | 0.9600 | C11—H11A | 0.9600 |
| C6—H6B | 0.9600 | C11—H11B | 0.9600 |
| C6—H6C | 0.9600 | C11—H11C | 0.9600 |
| C7—O1 | 1.2177 (18) | N2—H2A | 0.8600 |
| N1—C1—C5 | 123.45 (15) | C11—C8—C9 | 108.85 (18) |
| N1—C1—N2 | 112.76 (13) | C10—C8—C7 | 109.09 (14) |
| C5—C1—N2 | 123.78 (14) | C11—C8—C7 | 110.66 (15) |
| N1—C2—C3 | 124.35 (19) | C9—C8—C7 | 108.69 (15) |
| N1—C2—H2 | 117.8 | C8—C9—H9A | 109.5 |
| C3—C2—H2 | 117.8 | C8—C9—H9B | 109.5 |
| C2—C3—C4 | 119.33 (18) | H9A—C9—H9B | 109.5 |
| C2—C3—H3 | 120.3 | C8—C9—H9C | 109.5 |
| C4—C3—H3 | 120.3 | H9A—C9—H9C | 109.5 |
| C3—C4—C5 | 117.68 (17) | H9B—C9—H9C | 109.5 |
| C3—C4—C6 | 121.72 (19) | C8—C10—H10A | 109.5 |
| C5—C4—C6 | 120.60 (19) | C8—C10—H10B | 109.5 |
| C1—C5—C4 | 118.87 (16) | H10A—C10—H10B | 109.5 |
| C1—C5—H5 | 120.6 | C8—C10—H10C | 109.5 |
| C4—C5—H5 | 120.6 | H10A—C10—H10C | 109.5 |
| C4—C6—H6A | 109.5 | H10B—C10—H10C | 109.5 |
| C4—C6—H6B | 109.5 | C8—C11—H11A | 109.5 |
| H6A—C6—H6B | 109.5 | C8—C11—H11B | 109.5 |
| C4—C6—H6C | 109.5 | H11A—C11—H11B | 109.5 |
| H6A—C6—H6C | 109.5 | C8—C11—H11C | 109.5 |
| H6B—C6—H6C | 109.5 | H11A—C11—H11C | 109.5 |
| O1—C7—N2 | 122.06 (15) | H11B—C11—H11C | 109.5 |
| O1—C7—C8 | 122.14 (14) | C1—N1—C2 | 116.32 (16) |
| N2—C7—C8 | 115.80 (13) | C7—N2—C1 | 127.83 (13) |
| C10—C8—C11 | 109.58 (19) | C7—N2—H2A | 116.1 |
| C10—C8—C9 | 109.95 (18) | C1—N2—H2A | 116.1 |
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O1i | 0.86 | 2.22 | 3.0644 (17) | 168 |
| C5—H5···O1 | 0.93 | 2.28 | 2.842 (2) | 118 |
| Symmetry code: (i) −x+3/2, y−1/2, z. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O1i | 0.86 | 2.22 | 3.0644 (17) | 168 |
| C5—H5···O1 | 0.93 | 2.28 | 2.842 (2) | 118 |
| Symmetry code: (i) −x+3/2, y−1/2, z. |


journal menu








Alert level A
Alert level C
Alert level G
![[Figure 1]](http://journals.iucr.org/e/issues/2014/03/00/mw2120/mw2120fig1thm.gif)
![[Figure 2]](http://journals.iucr.org/e/issues/2014/03/00/mw2120/mw2120fig2thm.gif)



