organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

r-1,t-3-Bis[4-(di­methyl­amino)­phen­yl]-c-2,t-4-bis­­(pyridin-4-yl)cyclo­butane

aDepartment of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
*Correspondence e-mail: zhuangjp@mail.buct.edu.cn

(Received 9 May 2013; accepted 31 January 2014; online 15 February 2014)

The title compound, C30H32N4, was synthesized by the photodimerization of trans-4-{2-[4-(di­methyl­amino)­phen­yl]ethen­yl}pyridine in benzene upon irradiation with UV light. This photodimer has a puckered cyclo­butane ring with the four aryl substituents in an r-1,t-2,c-3,t conformation. The puckering angle of the cyclo­butane ring is 32.22 (7)°, which is the largest among reported tetra­aryl-substituted cyclo­butanes. In the crystal, the mol­ecules form a hollow, one-dimensional structure extending parallel to the c axis via two different pairs of C—H⋯π inter­actions.

Related literature

For the photodimerization of styrylpryidines, see: Horner & Hünig (1982[Horner, M. & Hünig, S. (1982). Liebigs Ann. Chem. 6, 1183-1192.]); Quina & Whitten (1975[Quina, F. H. & Whitten, D. G. (1975). J. Am. Chem. Soc. 97, 1602-1603.]); Zhang, Zhang, Zheng, Shen & Zhuang (2000[Zhang, W. Q., Zhang, X. H., Zheng, Y., Shen, G. & Zhuang, J. P. (2000). Photograph. Sci. Photochem. 18, 144-147.]). For the single-crystal structures of tetra­aryl cyclo­butanes and related mol­ecules, see: Busetti et al. (1980[Busetti, V., Valle, G., Zanotti, G. & Galiazzo, G. (1980). Acta Cryst. B36, 894-897.]); Coe et al. (2005[Coe, B. J., Hall, J. J., Harris, J. A., Brunschwig, B. S., Coles, S. J. & Hursthouse, M. B. (2005). Acta Cryst. E61, o464-o467.]); Li et al. (2007[Li, F.-Y., Wang, S.-T., Zhuang, J.-P., Jiang, L. & Song, Y.-L. (2007). Acta Cryst. E63, o1171-o1172.]); Zhang et al. (1998[Zhang, W. Q., Zhang, M. J., Wang, J. X., Yang, X. R., Wang, S. L., Jiang, Q. & An, Y. (1998). Acta Chim. Sin. 56, 612-617.]); Zhang, Zhang, Zheng, Wang & Zhao (2000[Zhang, W. Q., Zhang, Z. M., Zheng, Y., Wang, S. L. & Zhao, S. N. (2000). Acta Phys. Chim. Sin. 16, 207-213.]); Zhuang & Zheng (2002[Zhuang, J.-P. & Zheng, Y. (2002). Acta Cryst. E58, o1195-o1197.]). For the synthesis of the monomer, see: Wang et al. (2005[Wang, S. L., Gao, G. Y., Ho, T. I. & Yang, L. Y. (2005). Chem. Phys. Lett. 415, 217-222.]).

[Scheme 1]

Experimental

Crystal data
  • C30H32N4

  • Mr = 448.60

  • Monoclinic, C 2/c

  • a = 23.166 (5) Å

  • b = 11.003 (2) Å

  • c = 9.6330 (19) Å

  • β = 91.67 (3)°

  • V = 2454.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn 70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]) Tmin = 0.983, Tmax = 0.989

  • 14966 measured reflections

  • 2934 independent reflections

  • 2335 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.09

  • 2934 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and N1/C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15BCg1i 0.96 2.82 3.679 (2) 149
C12—H12⋯Cg2i 0.96 3.12 4.104 (2) 161
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The photodimerization of styrylpyridines has been studied extensively in the past few decades (Horner & Hünig, 1982; Quina & Whitten, 1975; Zhang, Zhang, Zheng, Shen & Zhuang, 2000). As the protonation of the pyridine ring increases the solubility and dipolar interactions of styrylpyridines in water, most photodimerization reactions were carried out in acidic aqueous solution. The main tetraaryl substituted cyclobutane photodimers usually have head-to-tail central symmetric structures. However, the photodimerization of trans-4-[2-(4-dimethylaminophenyl)ethenyl]pyridine (A) in acidic aqueous solution failed (Zhang, Zhang, Zheng, Shen & Zhuang, 2000). Herein, the photodimerization of A was carried out in benzene and the photodimer (2A, Fig. 1) was successfully synthesized in 37% yield.

The structure of 2A shows that the four aryl substituents adopt the r-1,t-2,c-3,t-4 conformation, whereas the styrylpyridine photodimers synthesized in acidic aqueous solution adopt the head-to-tail r-1,c-2,t-3,t-4 conformation. In addition, the photodimer of 2-[2-(4-dimethylaminophenyl)ethenyl]benzoxazole synthesized in acetonitrile also adopts the head-to-tail r-1,c-2,t-3,t-4 conformation (Li et al., 2007). This difference is ascribed to solvent effects. The steric hindrance of the dimethylamino groups prevents A to align in a parallel manner in the non-polar benzene solvent, resulting in the all trans conformation of the adjacent aryl groups in 2A.

Several styrylpyridine photodimers such as r-1,c-2,t-3,t-4–1,3-bis[2-(4-R-phenyl)]-2,4-di(pyridin-4-yl)cyclobutane (R=Cl, CH3 and C6H5) have been reported (Busetti et al., 1980; Zhang et al., 1998; Zhang, Zhang, Zheng, Wang & Zhao, 2000). The average dihedral angles of the cyclobutane rings are 19.2, 24.6 and 16.4°, respectively. In addition, the trans-head-to-head photodimer of 1-(4-methoxyphenyl)-2-(5-phenyl-1,3,4-oxadiazolyl)ethene also has a puckered cyclobutane ring with a dihedral angle of 30° (Zhuang & Zheng, 2002). Though the adjacent aryl groups of 2A adopt the all trans conformation, the dihedral angle of the cyclobutane ring is 32.22 (7)° which is the largest one among reported tetraaryl substituted cyclobutanes.

The C6—C7 and C6—C7A bond distances are 1.5594 (16) Å and 1.5519 (16) Å, and the C3—C6 and C7—C8 bond distances are 1.4962 (18) Å and 1.5011 (16) Å, which are similar to the corresponding bond distances in other tetraaryl substituted cyclobutanes (Zhang et al., 1998; Zhang, Zhang, Zheng, Wang & Zhao, 2000). The two phenyl rings (C8—C9—C10—C11—C12—C13 and C8A—C9A—C10A—C11A—C12A—C13A) are almost coplanar with the dihedral angle between them being only 1.78 (7)°.

The dimethylamino plane and the phenyl ring (C8—C9—C10—C11—C12—C13) are not coplanar, the torsion angle (C14—N2—C11—C10) is 17.48 (18)° which is larger than that in c-2, t-4-bis(2-benzoxazol-2-yl)-r-1,t-3-bis[4-(dimethylamino)phenyl]cyclobutane (Li et al., 2007). The distances of the two methyl groups (C14 and C15) from the mean plane of the phenyl ring are 0.2629 (22) and 0.2335 (22) Å respectively, indicating that the lone electron pair of the N atom is not completely conjugated with the phenyl ring. While the dimethylaminophenyl ring in trans-4-[(4-dimethylaminophenyl)ethenyl]-N-methylquinolinium p-toluenesulfonate monohydrate (Coe et al., 2005) is essentially planar because of the strong p-π conjugation between the dimethylamino group and the planar diarylethene molecule.

As shown in Figure 2, the molecules of 2A pack with each other to form a hollow, one-dimensional structure along the c axis. This arrangement appears to be directed by two sets of C—H···π interactions with that involving H15B stronger than that using H12 (Table 1).

Related literature top

For the photodimerization of styrylpryidines, see: Horner & Hünig (1982); Quina & Whitten (1975); Zhang, Zhang, Zheng, Shen & Zhuang (2000). For the single-crystal structures of tetraaryl cyclobutanes and related molecule, see: Busetti et al. (1980); Coe et al. (2005); Li et al. (2007); Zhang et al. (1998); Zhang, Zhang, Zheng, Wang & Zhao (2000); Zhuang & Zheng (2002). For the synthesis of the monomer, see: Wang et al. (2005).

Experimental top

A was synthesized according to the literature (Wang et al., 2005) and 1.97 g (8.78 mmol) was dissolved in 200 mL of benzene and irradiated with a water-cooled 125 W medium-pressure mercury lamp which was immersed in the solution. After irradiation for about 30 h, the solvent was evaporated to dryness and the crude product was separated by column chromatography (ethyl acetate: dichloromethane = 1: 1) to give 0.73 g of colorless crystals of 2 A. Yield, 37%; 1H NMR (CDCl3): δ 8.35 (d, 4H, J=4.8 Hz), 7.00 (d, 4H, J=4.8 Hz), 6.94 (d, 4H, J=6.4 Hz), 6.53 (d, 4H, J=6.4 Hz), 4.38 (d, 2H, J=9.0 Hz), 74.28 (d, 2H, J=9.0 Hz) p.p.m.. The single-crystal of 2A, suitable for X-ray analysis, was grown by slow evaporation of a methanol solution of 2A.

Refinement top

H atoms were placed in calculated positions [C—H = 0.93–0.97 Å] and allowed to ride on the parent atoms, with Uiso values constrained to be 1.2Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2A. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of 2A viewed along c axis.
[Figure 3] Fig. 3. Packing diagram of 2A viewed along b axis.
r-1,t-3-Bis[4-(dimethylamino)phenyl]-c-2,t-4-bis(pyridin-4-yl)cyclobutane top
Crystal data top
C30H32N4F(000) = 960
Mr = 448.60Dx = 1.214 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2660 reflections
a = 23.166 (5) Åθ = 1.8–27.9°
b = 11.003 (2) ŵ = 0.07 mm1
c = 9.6330 (19) ÅT = 113 K
β = 91.67 (3)°Block, colourless
V = 2454.4 (8) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Rigaku Saturn 70 CCD
diffractometer
2934 independent reflections
Radiation source: rotating anode2335 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.043
ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
h = 3030
Tmin = 0.983, Tmax = 0.989k = 1414
14966 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2934 reflectionsΔρmax = 0.24 e Å3
157 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (17)
Crystal data top
C30H32N4V = 2454.4 (8) Å3
Mr = 448.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.166 (5) ŵ = 0.07 mm1
b = 11.003 (2) ÅT = 113 K
c = 9.6330 (19) Å0.24 × 0.20 × 0.16 mm
β = 91.67 (3)°
Data collection top
Rigaku Saturn 70 CCD
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2335 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.989Rint = 0.043
14966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
2934 reflectionsΔρmin = 0.26 e Å3
157 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12781 (4)0.08386 (9)0.34546 (11)0.0261 (3)
N20.21597 (4)0.48468 (8)0.38134 (10)0.0201 (3)
C10.14278 (5)0.08343 (11)0.47858 (13)0.0215 (3)
H10.17580.04080.50170.026*
C20.11207 (5)0.14263 (10)0.58397 (12)0.0191 (3)
H20.12410.13750.67500.023*
C30.06316 (5)0.20975 (10)0.55322 (12)0.0166 (3)
C40.04739 (5)0.21074 (11)0.41486 (12)0.0233 (3)
H40.01510.25410.38840.028*
C50.08012 (6)0.14681 (12)0.31670 (13)0.0289 (3)
H50.06830.14770.22530.035*
C60.02904 (5)0.27871 (10)0.66140 (12)0.0170 (3)
H60.03420.36610.64560.020*
C70.03660 (4)0.25051 (10)0.68241 (11)0.0165 (3)
H70.04210.16270.67220.020*
C80.08169 (5)0.31420 (10)0.60052 (11)0.0165 (3)
C90.12213 (5)0.24764 (10)0.52824 (12)0.0191 (3)
H90.12000.16330.52980.023*
C100.16550 (5)0.30229 (10)0.45398 (12)0.0204 (3)
H100.19140.25410.40650.024*
C110.17092 (5)0.42906 (10)0.44948 (11)0.0172 (3)
C120.12953 (5)0.49722 (10)0.52068 (12)0.0196 (3)
H120.13120.58160.51860.023*
C130.08643 (5)0.44051 (11)0.59377 (12)0.0193 (3)
H130.05990.48810.63970.023*
C140.24760 (5)0.41298 (11)0.28156 (13)0.0240 (3)
H14A0.22130.38360.21030.036*
H14B0.26580.34530.32810.036*
H14C0.27660.46280.24050.036*
C150.21211 (5)0.61429 (10)0.35107 (13)0.0230 (3)
H15A0.20910.65880.43630.034*
H15B0.17860.62970.29270.034*
H15C0.24610.63980.30430.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (6)0.0315 (6)0.0226 (6)0.0049 (5)0.0012 (4)0.0045 (5)
N20.0177 (5)0.0189 (5)0.0240 (5)0.0004 (4)0.0060 (4)0.0021 (4)
C10.0181 (6)0.0226 (6)0.0239 (6)0.0010 (5)0.0020 (5)0.0015 (5)
C20.0185 (6)0.0205 (6)0.0185 (6)0.0006 (4)0.0026 (5)0.0006 (5)
C30.0156 (5)0.0155 (5)0.0186 (6)0.0037 (4)0.0004 (4)0.0003 (4)
C40.0193 (6)0.0292 (7)0.0215 (6)0.0045 (5)0.0033 (5)0.0011 (5)
C50.0278 (7)0.0404 (8)0.0185 (6)0.0058 (6)0.0036 (5)0.0033 (6)
C60.0144 (5)0.0190 (6)0.0176 (6)0.0004 (4)0.0009 (4)0.0006 (5)
C70.0155 (6)0.0158 (6)0.0181 (6)0.0014 (4)0.0015 (5)0.0004 (4)
C80.0137 (5)0.0204 (6)0.0154 (6)0.0003 (4)0.0006 (4)0.0003 (5)
C90.0201 (6)0.0158 (6)0.0215 (6)0.0002 (4)0.0023 (5)0.0004 (5)
C100.0193 (6)0.0198 (6)0.0224 (6)0.0019 (5)0.0057 (5)0.0020 (5)
C110.0146 (5)0.0199 (6)0.0173 (6)0.0006 (4)0.0000 (4)0.0019 (5)
C120.0193 (6)0.0159 (6)0.0234 (6)0.0009 (4)0.0005 (5)0.0012 (5)
C130.0157 (5)0.0187 (6)0.0237 (6)0.0027 (4)0.0031 (5)0.0002 (5)
C140.0210 (6)0.0267 (7)0.0247 (7)0.0009 (5)0.0076 (5)0.0015 (5)
C150.0213 (6)0.0214 (6)0.0264 (7)0.0023 (5)0.0034 (5)0.0047 (5)
Geometric parameters (Å, º) top
N1—C11.3381 (15)C7—C6i1.5512 (15)
N1—C51.3396 (16)C7—H70.9800
N2—C111.3908 (14)C8—C91.3918 (15)
N2—C141.4576 (15)C8—C131.3958 (16)
N2—C151.4579 (14)C9—C101.3874 (15)
C1—C21.3853 (17)C9—H90.9300
C1—H10.9300C10—C111.4013 (16)
C2—C31.3916 (15)C10—H100.9300
C2—H20.9300C11—C121.4109 (16)
C3—C41.3923 (16)C12—C131.3867 (16)
C3—C61.4961 (16)C12—H120.9300
C4—C51.3863 (17)C13—H130.9300
C4—H40.9300C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C7i1.5512 (15)C14—H14C0.9600
C6—C71.5593 (15)C15—H15A0.9600
C6—H60.9800C15—H15B0.9600
C7—C81.5008 (15)C15—H15C0.9600
C1—N1—C5116.00 (11)C9—C8—C13116.46 (10)
C11—N2—C14118.14 (10)C9—C8—C7120.41 (10)
C11—N2—C15118.84 (9)C13—C8—C7123.12 (10)
C14—N2—C15115.26 (9)C10—C9—C8122.55 (11)
N1—C1—C2123.96 (11)C10—C9—H9118.7
N1—C1—H1118.0C8—C9—H9118.7
C2—C1—H1118.0C9—C10—C11120.95 (10)
C1—C2—C3119.84 (11)C9—C10—H10119.5
C1—C2—H2120.1C11—C10—H10119.5
C3—C2—H2120.1N2—C11—C10121.45 (10)
C2—C3—C4116.48 (11)N2—C11—C12121.70 (10)
C2—C3—C6122.53 (10)C10—C11—C12116.83 (10)
C4—C3—C6120.99 (10)C13—C12—C11121.14 (11)
C5—C4—C3119.70 (11)C13—C12—H12119.4
C5—C4—H4120.2C11—C12—H12119.4
C3—C4—H4120.2C12—C13—C8122.04 (10)
N1—C5—C4124.00 (11)C12—C13—H13119.0
N1—C5—H5118.0C8—C13—H13119.0
C4—C5—H5118.0N2—C14—H14A109.5
C3—C6—C7i120.12 (9)N2—C14—H14B109.5
C3—C6—C7118.86 (9)H14A—C14—H14B109.5
C7i—C6—C788.36 (9)N2—C14—H14C109.5
C3—C6—H6109.3H14A—C14—H14C109.5
C7i—C6—H6109.3H14B—C14—H14C109.5
C7—C6—H6109.3N2—C15—H15A109.5
C8—C7—C6i121.09 (10)N2—C15—H15B109.5
C8—C7—C6121.99 (9)H15A—C15—H15B109.5
C6i—C7—C687.07 (9)N2—C15—H15C109.5
C8—C7—H7108.2H15A—C15—H15C109.5
C6i—C7—H7108.2H15B—C15—H15C109.5
C6—C7—H7108.2
C5—N1—C1—C20.30 (18)C6—C7—C8—C9126.96 (12)
N1—C1—C2—C31.49 (18)C6i—C7—C8—C1353.68 (15)
C1—C2—C3—C41.27 (16)C6—C7—C8—C1354.16 (16)
C1—C2—C3—C6178.20 (11)C13—C8—C9—C100.62 (18)
C2—C3—C4—C50.03 (17)C7—C8—C9—C10178.34 (10)
C6—C3—C4—C5179.44 (11)C8—C9—C10—C110.61 (19)
C1—N1—C5—C41.05 (19)C14—N2—C11—C1017.54 (17)
C3—C4—C5—N11.2 (2)C15—N2—C11—C10165.43 (11)
C2—C3—C6—C7i16.79 (16)C14—N2—C11—C12164.33 (11)
C4—C3—C6—C7i163.77 (10)C15—N2—C11—C1216.44 (17)
C2—C3—C6—C7123.18 (12)C9—C10—C11—N2176.66 (11)
C4—C3—C6—C757.38 (15)C9—C10—C11—C121.55 (17)
C3—C6—C7—C888.20 (13)N2—C11—C12—C13176.89 (11)
C7i—C6—C7—C8147.91 (9)C10—C11—C12—C131.32 (17)
C3—C6—C7—C6i146.52 (8)C11—C12—C13—C80.12 (18)
C7i—C6—C7—C6i22.63 (11)C9—C8—C13—C120.86 (17)
C6i—C7—C8—C9125.21 (12)C7—C8—C13—C12178.07 (11)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg1ii0.962.823.679 (2)149
C12—H12···Cg2ii0.963.124.104 (2)161
Symmetry code: (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg1i0.962.823.679 (2)149
C12—H12···Cg2i0.963.124.104 (2)161
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Youth Foundation of Beijing University of Chemical Technology.

References

First citationBusetti, V., Valle, G., Zanotti, G. & Galiazzo, G. (1980). Acta Cryst. B36, 894–897.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoe, B. J., Hall, J. J., Harris, J. A., Brunschwig, B. S., Coles, S. J. & Hursthouse, M. B. (2005). Acta Cryst. E61, o464–o467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorner, M. & Hünig, S. (1982). Liebigs Ann. Chem. 6, 1183–1192.  CrossRef Google Scholar
First citationLi, F.-Y., Wang, S.-T., Zhuang, J.-P., Jiang, L. & Song, Y.-L. (2007). Acta Cryst. E63, o1171–o1172.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuina, F. H. & Whitten, D. G. (1975). J. Am. Chem. Soc. 97, 1602–1603.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. L., Gao, G. Y., Ho, T. I. & Yang, L. Y. (2005). Chem. Phys. Lett. 415, 217–222.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W. Q., Zhang, M. J., Wang, J. X., Yang, X. R., Wang, S. L., Jiang, Q. & An, Y. (1998). Acta Chim. Sin. 56, 612–617.  CAS Google Scholar
First citationZhang, W. Q., Zhang, X. H., Zheng, Y., Shen, G. & Zhuang, J. P. (2000). Photograph. Sci. Photochem. 18, 144–147.  CAS Google Scholar
First citationZhang, W. Q., Zhang, Z. M., Zheng, Y., Wang, S. L. & Zhao, S. N. (2000). Acta Phys. Chim. Sin. 16, 207–213.  Google Scholar
First citationZhuang, J.-P. & Zheng, Y. (2002). Acta Cryst. E58, o1195–o1197.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds