organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(E)-2-(5-tert-Butyl-2-hy­dr­oxy­phen­yl)diazen-1-yl]naphthalen-2-ol

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université Mentouri de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bougueriahassiba@gmail.com

(Received 15 January 2014; accepted 23 January 2014; online 29 January 2014)

The non-H atoms of the title compound, C20H20N2O2, is located on a mirror plane except two methyl groups of the tert-butyl group. Intra­molecular N—H⋯O hydrogen bonds exist between the hy­droxy and diazenyl groups. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains running along the a-axis direction.

Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]). For related azo compounds, see: Yazıcı et al. (2010[Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2010). Acta Cryst. E66, o559-o560.]); Karadayı et al. (2006[Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3695-o3696.]); Oakes (2002[Oakes, J. (2002). Rev. Prog. Color. pp. 32-63.]); Olivieri et al. (1989[Olivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525-5532.]). For the synthesis, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77-86.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O2

  • Mr = 320.38

  • Monoclinic, P 21 /m

  • a = 9.696 (5) Å

  • b = 6.606 (5) Å

  • c = 13.385 (5) Å

  • β = 110.249 (5)°

  • V = 804.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.55 × 0.22 × 0.11 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.991

  • 8889 measured reflections

  • 2642 independent reflections

  • 1767 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 0.89

  • 2642 reflections

  • 142 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.83 2.538 (3) 143
O2—H2⋯N1 0.82 1.93 2.630 (3) 142
C9—H9⋯O1i 0.93 2.52 3.338 (4) 146
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Azo compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004). Azo dyes are synthetic colours that contain an azo group, as part of the structure. We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–). However, some types of azo pigments are also known to possess the hydrazone structure (=N–NH–), often leading to the formation of intramolecular hydrogen bonds. The azo– hydrazone tautomerism in azo dyes has been known for more than a hundred years and is directly connected with the presence of at least one protic donor group in conjugation to the azo bridge (i.e. 2-naphthol) (Olivieri et al.., 1989). In particular, azo dyes that contain a naphtholic hydroxy group conjugated with the azo linkage exist in aqueous solution as an equilibrium mixture of two chemically distinct tautomers, the azo or hydrazone forms (Oakes, 2002). It is suggested that in a real azo compound the N=N double bond should have a length of 1.20–1.28 Å and the bond length of N–N single bonds, as in hydrazone tautomers, should be more than 1.4 Å. In the title compound, N–N bond lengths are 1.287 Å for N1–N2 , between the suggested N=N double bond and N–N single bond lengths. In the molecule, all bond lengths are in good agreement with those reported for other azo compounds (Yazıcı et al., 2010; Karadayı et al., 2006). We report here in the crystal structure of the title compound, obtained through the diazotization of 4-tert-butyl-2-hydroxy aniline followed by a coupling reaction with 2-naphthol.

The molecule of the title compound, with the atom numbering scheme, is shown in Fig. 1, crystallizes in the monoclinic space group P21/m. The molecular structure C20H20N2O2 is shown in Figure 1 The molecule adopts an anti–configuration with the two aryl groups reside on the opposite side of azo–group. The intramolecular N—H···O hydrogen bond is found (Table 1). In the crystal molecules are linked by the weak C—H···O interactions into chains.

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004). For related azo compounds, see: Yazıcı et al. (2010); Karadayı et al. (2006); Oakes (2002); Olivieri et al. (1989). For the synthesis, see: Wang et al. (2003).

Experimental top

The title compound was obtained through the diazotization of 4-tert-butyl-2-hydroxyaniline followed by a coupling reaction with 2-naphthol, according to the literature procedure used to synthesize other aromatic azo-compounds (Wang et al., 2003). Single crystals of the title compound were obtained by slow evaporation at room temperature of a solution in DMSO.

Refinement top

H atoms, attached to carbon atoms have been placed in geometrically idealized positions and refined as riding, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). hydroxy H atoms were introduced in calculated positions and treated as riding on their parent atoms with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Azo compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004). Azo dyes are synthetic colours that contain an azo group, as part of the structure. We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–). However, some types of azo pigments are also known to possess the hydrazone structure (=N–NH–), often leading to the formation of intramolecular hydrogen bonds. The azo– hydrazone tautomerism in azo dyes has been known for more than a hundred years and is directly connected with the presence of at least one protic donor group in conjugation to the azo bridge (i.e. 2-naphthol) (Olivieri et al.., 1989). In particular, azo dyes that contain a naphtholic hydroxy group conjugated with the azo linkage exist in aqueous solution as an equilibrium mixture of two chemically distinct tautomers, the azo or hydrazone forms (Oakes, 2002). It is suggested that in a real azo compound the N=N double bond should have a length of 1.20–1.28 Å and the bond length of N–N single bonds, as in hydrazone tautomers, should be more than 1.4 Å. In the title compound, N–N bond lengths are 1.287 Å for N1–N2 , between the suggested N=N double bond and N–N single bond lengths. In the molecule, all bond lengths are in good agreement with those reported for other azo compounds (Yazıcı et al., 2010; Karadayı et al., 2006). We report here in the crystal structure of the title compound, obtained through the diazotization of 4-tert-butyl-2-hydroxy aniline followed by a coupling reaction with 2-naphthol.

The molecule of the title compound, with the atom numbering scheme, is shown in Fig. 1, crystallizes in the monoclinic space group P21/m. The molecular structure C20H20N2O2 is shown in Figure 1 The molecule adopts an anti–configuration with the two aryl groups reside on the opposite side of azo–group. The intramolecular N—H···O hydrogen bond is found (Table 1). In the crystal molecules are linked by the weak C—H···O interactions into chains.

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004). For related azo compounds, see: Yazıcı et al. (2010); Karadayı et al. (2006); Oakes (2002); Olivieri et al. (1989). For the synthesis, see: Wang et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at 50% probability level.
1-[(E)-2-(5-tert-Butyl-2-hydroxyphenyl)diazen-1-yl]naphthalen-2-ol top
Crystal data top
C20H20N2O2F(000) = 340
Mr = 320.38Dx = 1.323 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2015 reflections
a = 9.696 (5) Åθ = 3.2–30.4°
b = 6.606 (5) ŵ = 0.09 mm1
c = 13.385 (5) ÅT = 293 K
β = 110.249 (5)°Prism, red
V = 804.3 (8) Å30.55 × 0.22 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2642 independent reflections
Radiation source: fine-focus sealed tube1767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
CCD rotation images, thin slices scansθmax = 30.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.978, Tmax = 0.991k = 79
8889 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.359P]
where P = (Fo2 + 2Fc2)/3
2642 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H20N2O2V = 804.3 (8) Å3
Mr = 320.38Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.696 (5) ŵ = 0.09 mm1
b = 6.606 (5) ÅT = 293 K
c = 13.385 (5) Å0.55 × 0.22 × 0.11 mm
β = 110.249 (5)°
Data collection top
Bruker APEXII
diffractometer
2642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1767 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.025
8889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04812 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.89Δρmax = 0.43 e Å3
2642 reflectionsΔρmin = 0.23 e Å3
142 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77215 (13)0.750000.56321 (10)0.0270 (4)
O20.31274 (13)0.750000.19510 (10)0.0277 (4)
N10.48377 (15)0.750000.39638 (11)0.0180 (4)
N20.60014 (15)0.750000.37081 (11)0.0194 (4)
C10.50711 (18)0.750000.50553 (13)0.0164 (4)
C20.64717 (17)0.750000.58490 (14)0.0195 (4)
C30.66094 (19)0.750000.69373 (14)0.0242 (5)
C40.53890 (19)0.750000.72205 (14)0.0240 (5)
C50.39521 (18)0.750000.64529 (14)0.0191 (5)
C60.37768 (17)0.750000.53520 (13)0.0172 (4)
C70.23305 (19)0.750000.46054 (15)0.0258 (5)
C80.1138 (2)0.750000.49354 (16)0.0326 (6)
C90.1312 (2)0.750000.60179 (16)0.0300 (6)
C100.2695 (2)0.750000.67614 (15)0.0246 (5)
C110.57989 (18)0.750000.26191 (13)0.0190 (4)
C120.44281 (18)0.750000.17815 (14)0.0209 (5)
C130.44203 (19)0.750000.07401 (14)0.0259 (5)
C140.5727 (2)0.750000.05311 (14)0.0254 (5)
C150.71035 (18)0.750000.13444 (13)0.0195 (5)
C160.70929 (18)0.750000.23809 (14)0.0203 (5)
C170.85759 (19)0.750000.11508 (14)0.0220 (5)
C180.94634 (15)0.5609 (2)0.16604 (12)0.0300 (4)
C190.8368 (2)0.750000.00394 (16)0.0327 (6)
H10.752700.750000.498500.0410*
H20.327900.750000.259300.0420*
H30.753800.750000.746100.0290*
H40.550300.750000.793900.0290*
H70.218400.750000.388100.0310*
H80.019700.750000.442900.0390*
H90.049300.750000.622900.0360*
H100.281300.750000.748100.0300*
H130.352900.750000.017700.0310*
H140.568500.750000.017300.0310*
H160.798800.750000.294100.0240*
H18A0.892500.441600.134200.0360*
H18B0.963700.560200.241200.0360*
H18C1.038700.562800.154500.0360*
H19A0.784500.631200.036100.0390*
H19B0.931100.750000.012500.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (6)0.0410 (8)0.0236 (6)0.00000.0091 (5)0.0000
O20.0191 (6)0.0418 (8)0.0233 (6)0.00000.0088 (5)0.0000
N10.0201 (6)0.0172 (7)0.0188 (7)0.00000.0096 (5)0.0000
N20.0208 (6)0.0220 (7)0.0178 (7)0.00000.0096 (5)0.0000
C10.0192 (7)0.0150 (7)0.0162 (7)0.00000.0078 (6)0.0000
C20.0174 (7)0.0202 (8)0.0219 (8)0.00000.0082 (6)0.0000
C30.0207 (8)0.0303 (10)0.0193 (8)0.00000.0040 (6)0.0000
C40.0272 (8)0.0282 (10)0.0169 (8)0.00000.0080 (7)0.0000
C50.0224 (8)0.0173 (8)0.0198 (8)0.00000.0100 (6)0.0000
C60.0201 (7)0.0146 (8)0.0185 (8)0.00000.0086 (6)0.0000
C70.0208 (8)0.0371 (11)0.0194 (8)0.00000.0070 (7)0.0000
C80.0188 (8)0.0494 (13)0.0298 (10)0.00000.0085 (7)0.0000
C90.0238 (8)0.0384 (11)0.0331 (10)0.00000.0165 (8)0.0000
C100.0298 (9)0.0260 (9)0.0232 (9)0.00000.0159 (7)0.0000
C110.0212 (7)0.0197 (8)0.0177 (8)0.00000.0087 (6)0.0000
C120.0191 (7)0.0217 (9)0.0233 (8)0.00000.0093 (6)0.0000
C130.0213 (8)0.0357 (11)0.0187 (8)0.00000.0044 (6)0.0000
C140.0296 (9)0.0324 (10)0.0160 (8)0.00000.0102 (7)0.0000
C150.0232 (8)0.0183 (8)0.0204 (8)0.00000.0117 (7)0.0000
C160.0196 (7)0.0238 (9)0.0193 (8)0.00000.0089 (6)0.0000
C170.0248 (8)0.0242 (9)0.0218 (8)0.00000.0142 (7)0.0000
C180.0306 (6)0.0293 (7)0.0356 (7)0.0053 (6)0.0185 (5)0.0029 (6)
C190.0347 (10)0.0448 (13)0.0256 (9)0.00000.0194 (8)0.0000
Geometric parameters (Å, º) top
O1—C21.340 (2)C14—C151.400 (3)
O2—C121.357 (3)C15—C171.537 (3)
O1—H10.8200C15—C161.391 (3)
O2—H20.8200C17—C18i1.536 (2)
N1—C11.399 (2)C17—C181.536 (2)
N1—N21.288 (2)C17—C191.535 (3)
N2—C111.402 (2)C3—H30.9300
C1—C61.441 (3)C4—H40.9300
C1—C21.405 (3)C7—H70.9300
C2—C31.416 (3)C8—H80.9300
C3—C41.362 (3)C9—H90.9300
C4—C51.416 (3)C10—H100.9300
C5—C61.424 (3)C13—H130.9300
C5—C101.416 (3)C14—H140.9300
C6—C71.413 (3)C16—H160.9300
C7—C81.373 (3)C18—H18A0.9600
C8—C91.400 (3)C18—H18B0.9600
C9—C101.366 (3)C18—H18C0.9600
C11—C121.411 (3)C19—H19A0.9500
C11—C161.397 (3)C19—H19B0.9600
C12—C131.391 (3)C19—H19Ai0.9500
C13—C141.389 (3)
O1···N12.913 (3)C11···C4iii3.529 (3)
O1···N22.538 (3)C11···C4iv3.529 (3)
O1···C9ii3.338 (4)C11···C4v3.529 (3)
O1···C7iii3.317 (3)C11···C5iv3.508 (3)
O1···C7iv3.317 (3)C11···C5v3.508 (3)
O1···C7v3.317 (3)C11···C10iv3.591 (3)
O1···C7vi3.317 (3)C11···C10v3.591 (3)
O1···C9vii3.338 (4)C11···C5vi3.508 (3)
O2···N12.630 (3)C11···C4vi3.529 (3)
O2···N22.960 (3)C11···C5iii3.508 (3)
O1···H9vii2.5200C11···C10iii3.591 (3)
O1···H9ii2.5200C11···C10vi3.591 (3)
O2···H18Cviii2.8100C12···C4iii3.544 (3)
O2···H18Cix2.8100C12···C4iv3.544 (3)
N1···O12.913 (3)C12···C4v3.544 (3)
N1···O22.630 (3)C12···C4vi3.544 (3)
N2···C5iv3.311 (3)C16···C10iii3.480 (3)
N2···C5v3.311 (3)C16···C10iv3.480 (3)
N2···C5iii3.311 (3)C16···C10v3.480 (3)
N2···O12.538 (3)C16···C10vi3.480 (3)
N2···O22.960 (3)C11···H13.0300
N2···C5vi3.311 (3)C14···H19Ai2.8200
N1···H21.9300C14···H19A2.8200
N1···H72.5400C16···H18B2.7500
N1···H12.4900C16···H18Bi2.7500
N2···H11.8300C18···H162.8700
N2···H22.5400C19···H142.5500
C1···C1iv3.307 (3)H1···N12.4900
C1···C1v3.307 (3)H1···N21.8300
C1···C6iv3.588 (3)H1···C113.0300
C1···C6v3.588 (3)H2···N11.9300
C1···C1iii3.307 (3)H2···N22.5400
C1···C1vi3.307 (3)H2···H72.3200
C1···C6iii3.588 (3)H4···H102.4600
C1···C6vi3.588 (3)H4···H14x2.4700
C4···C11iv3.529 (3)H4···H14xi2.4700
C4···C11v3.529 (3)H7···N12.5400
C4···C12iv3.544 (3)H7···H22.3200
C4···C12v3.544 (3)H8···H16viii2.3700
C4···C11iii3.529 (3)H8···H16ix2.3700
C4···C11vi3.529 (3)H9···O1viii2.5200
C4···C12iii3.544 (3)H9···O1ix2.5200
C4···C12vi3.544 (3)H10···H42.4600
C5···N2iv3.311 (3)H14···C192.5500
C5···N2v3.311 (3)H14···H4xii2.4700
C5···C11iv3.508 (3)H14···H19A2.3300
C5···C11v3.508 (3)H14···H4xiii2.4700
C5···N2iii3.311 (3)H14···H19Ai2.3300
C5···N2vi3.311 (3)H16···C182.8700
C5···C11iii3.508 (3)H16···H8ii2.3700
C5···C11vi3.508 (3)H16···H18B2.3300
C6···C1iv3.588 (3)H16···C18i2.8700
C6···C1v3.588 (3)H16···H8vii2.3700
C6···C1iii3.588 (3)H16···H18Bi2.3300
C6···C1vi3.588 (3)H18A···H19A2.4900
C7···O1iv3.317 (3)H18A···H18Axiv2.5300
C7···O1v3.317 (3)H18B···C162.7500
C7···O1iii3.317 (3)H18B···H162.3300
C7···O1vi3.317 (3)H18B···H18Bi2.5100
C9···O1viii3.338 (4)H18C···O2ii2.8100
C9···O1ix3.338 (4)H18C···H19B2.4500
C10···C11iv3.591 (3)H18C···O2vii2.8100
C10···C11v3.591 (3)H18C···H18Ci2.4700
C10···C16iv3.480 (3)H19A···C142.8200
C10···C16v3.480 (3)H19A···H142.3300
C10···C11iii3.591 (3)H19A···H18A2.4900
C10···C11vi3.591 (3)H19B···H18C2.4500
C10···C16iii3.480 (3)H19B···H18Ci2.4500
C10···C16vi3.480 (3)
C2—O1—H1110.00C15—C17—C18i109.60 (10)
C12—O2—H2110.00C18—C17—C18i108.81 (14)
N2—N1—C1115.96 (14)C18i—C17—C19108.24 (11)
N1—N2—C11117.14 (14)C18—C17—C19108.24 (11)
N1—C1—C6116.50 (15)C15—C17—C18109.60 (10)
N1—C1—C2123.67 (16)C2—C3—H3120.00
C2—C1—C6119.84 (15)C4—C3—H3120.00
O1—C2—C3116.90 (16)C3—C4—H4119.00
O1—C2—C1123.09 (16)C5—C4—H4119.00
C1—C2—C3120.01 (16)C6—C7—H7120.00
C2—C3—C4120.31 (17)C8—C7—H7120.00
C3—C4—C5121.97 (16)C7—C8—H8119.00
C4—C5—C10121.23 (16)C9—C8—H8119.00
C6—C5—C10119.70 (16)C8—C9—H9120.00
C4—C5—C6119.07 (16)C10—C9—H9120.00
C5—C6—C7117.77 (16)C5—C10—H10119.00
C1—C6—C5118.80 (15)C9—C10—H10120.00
C1—C6—C7123.43 (15)C12—C13—H13120.00
C6—C7—C8120.85 (17)C14—C13—H13120.00
C7—C8—C9121.32 (19)C13—C14—H14119.00
C8—C9—C10119.38 (19)C15—C14—H14119.00
C5—C10—C9120.99 (18)C11—C16—H16119.00
C12—C11—C16119.46 (16)C15—C16—H16118.00
N2—C11—C12125.48 (16)C17—C18—H18A110.00
N2—C11—C16115.06 (15)C17—C18—H18B110.00
C11—C12—C13118.22 (17)C17—C18—H18C109.00
O2—C12—C13118.99 (16)H18A—C18—H18B109.00
O2—C12—C11122.79 (16)H18A—C18—H18C109.00
C12—C13—C14120.85 (17)H18B—C18—H18C109.00
C13—C14—C15122.27 (16)C17—C19—H19A109.00
C16—C15—C17119.75 (15)C17—C19—H19B110.00
C14—C15—C16116.19 (17)C17—C19—H19Ai109.00
C14—C15—C17124.06 (15)H19A—C19—H19B109.00
C11—C16—C15123.01 (16)H19A—C19—H19Ai111.00
C15—C17—C19112.28 (15)H19Ai—C19—H19B109.00
C1—N1—N2—C11180.00 (1)C6—C5—C10—C90.00 (1)
N2—N1—C1—C20.00 (1)C1—C6—C7—C8180.00 (1)
N2—N1—C1—C6180.00 (1)C5—C6—C7—C80.00 (1)
N1—N2—C11—C120.00 (1)C6—C7—C8—C90.00 (1)
N1—N2—C11—C16180.00 (1)C7—C8—C9—C100.00 (1)
N1—C1—C2—O10.00 (1)C8—C9—C10—C50.00 (1)
N1—C1—C2—C3180.00 (1)N2—C11—C12—O20.00 (1)
C6—C1—C2—O1180.00 (1)N2—C11—C12—C13180.00 (1)
C6—C1—C2—C30.00 (1)C16—C11—C12—O2180.00 (1)
N1—C1—C6—C5180.00 (1)C16—C11—C12—C130.00 (1)
N1—C1—C6—C70.00 (1)N2—C11—C16—C15180.00 (1)
C2—C1—C6—C50.00 (1)C12—C11—C16—C150.00 (1)
C2—C1—C6—C7180.00 (1)O2—C12—C13—C14180.00 (1)
O1—C2—C3—C4180.00 (1)C11—C12—C13—C140.00 (1)
C1—C2—C3—C40.00 (1)C12—C13—C14—C150.00 (1)
C2—C3—C4—C50.00 (1)C13—C14—C15—C160.00 (1)
C3—C4—C5—C60.00 (1)C13—C14—C15—C17180.00 (1)
C3—C4—C5—C10180.00 (1)C14—C15—C16—C110.00 (1)
C4—C5—C6—C10.00 (1)C17—C15—C16—C11180.00 (1)
C4—C5—C6—C7180.00 (1)C14—C15—C17—C18120.32 (10)
C10—C5—C6—C1180.00 (1)C14—C15—C17—C190.00 (1)
C10—C5—C6—C70.00 (1)C16—C15—C17—C1859.68 (10)
C4—C5—C10—C9180.00 (1)C16—C15—C17—C19180.00 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1; (v) x+1, y+1/2, z+1; (vi) x+1, y+2, z+1; (vii) x+1, y+3/2, z; (viii) x1, y, z; (ix) x1, y+3/2, z; (x) x, y, z+1; (xi) x, y+3/2, z+1; (xii) x, y, z1; (xiii) x, y+3/2, z1; (xiv) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.832.538 (3)143
O2—H2···N10.821.932.630 (3)142
C9—H9···O1viii0.932.523.338 (4)146
Symmetry code: (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.832.538 (3)143
O2—H2···N10.821.932.630 (3)142
C9—H9···O1i0.932.523.338 (4)146
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit of the University of Constantine, Algeria, for the valuable assistance they have provided us throughout the realisation of this work. We also express our gratitude and thank Mr L. Ouahab, Director of Research at the laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for his valuable collaboration in the recording and inter­pretation of the XRD data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaradayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3695–o3696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOakes, J. (2002). Rev. Prog. Color. pp. 32–63.  Google Scholar
First citationOlivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525–5532.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77–86.  Web of Science CrossRef CAS Google Scholar
First citationYazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2010). Acta Cryst. E66, o559–o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds