organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o169-o170

(S,Z)-3-Phenyl-2-[(1,1,1-tri­chloro-7-meth­­oxy-2,7-dioxohept-3-en-4-yl)amino]­propanoic acid monohydrate

aEscola de Quimica e Alimentos, Universidade Federal do Rio Grande, Av. Italia, km 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, bUniversidade Federal da Grande Dourados, UFGD, CEP 79825-070 Dourados, MS, Brazil, and cInstituto Federal Farroupilha, Campus Júlio de Castilhos, CEP 98130-000, Júlio de Castilhos, RS, Brazil
*Correspondence e-mail: alexflores@furg.br

(Received 11 December 2013; accepted 3 January 2014; online 18 January 2014)

In the title compound, C17H18Cl3NO5·H2O, intra­molecular N—H⋯O and C—H⋯Cl hydrogen bonds form S(6) and S(5) ring motifs, respectively. The chiral organic mol­ecule is connected to the solvent water mol­ecule by a short O—H⋯O hydrogen bond. In the crystal, a weak C—H⋯Cl inter­action connects the organic mol­ecules along [100] while the water mol­ecules act as bridges between the organic mol­ecules in both the [100] and [010] directions, generating layers parallel to the ab plane.

Related literature

For the synthesis of the title compound and a similar crystal structure, see: Flores et al. (2008[Flores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184-193.]). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013[Flores, A. F. C., Malavolta, J. L., Souto, A. A., Goularte, R. B., Flores, D. C. & Piovesan, L. A. (2013). J. Braz. Chem. Soc. 24, 580-584.]); Hachuła et al. (2013[Hachuła, B., Polasz, A., Dzida, M., Nowak, M. & Kusz, J. (2013). Acta Cryst. E69, o1406.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m722-m723.]). For short inter­molecular hydrogen-bond inter­actions, see: Pojarová et al. (2010[Pojarová, M., Fejfarová, K. & Makrlík, E. (2010). Acta Cryst. E66, o3341-o3342.]). For intra­molecular hydrogen-bonding systems, see: da Costa et al. (2013[Costa, D. P. da, Nobre, S. M., Lisboa, B. G., Vicenti, J. R. de M. & Back, D. F. (2013). Acta Cryst. E69, o201.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18Cl3NO5·H2O

  • Mr = 440.69

  • Triclinic, P 1

  • a = 5.6684 (16) Å

  • b = 8.601 (3) Å

  • c = 10.336 (3) Å

  • α = 87.720 (19)°

  • β = 85.696 (17)°

  • γ = 85.649 (17)°

  • V = 500.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.98 × 0.30 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: Gaussian (XPREP; Bruker, 2006[Bruker (2006). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 1

  • 13424 measured reflections

  • 6020 independent reflections

  • 4784 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.04

  • 6020 reflections

  • 256 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack parameter determined using 1984 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.04 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.97 2.94 3.774 (3) 145
O33—H33B⋯O91ii 0.87 (6) 1.89 (6) 2.766 (4) 177 (5)
N41—H41⋯O21 0.83 (5) 2.05 (6) 2.672 (3) 131 (5)
O33—H33A⋯O21iii 0.76 (6) 2.06 (6) 2.815 (3) 171 (6)
O92—H92⋯O33 0.89 (5) 1.66 (5) 2.542 (4) 175 (5)
C3—H3⋯Cl1 0.93 2.55 3.031 (3) 112
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dielectrophiles derived from levulinic acid (Hachuła et al., 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of heterocyclic compounds. Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores et al., 2008; Flores et al., 2013). As a part of our studies, we report in this paper the crystal structure of (S,Z)-3-phenyl-2-(1,1,1-trichloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and L-phenylalanine.

In the crystal structure of the title compound, the asymmetric unit is composed of the whole chiral organic molecule, C17H18Cl3NO5, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová et al., 2010]. Additionally, S(6) and S(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41—H41···O21 [2.672 (3) Å] and C3—H3···Cl1 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa et al., 2013).

There is also a weak C6—H6A···Cl1i intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the crystal structure by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the ab plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ii, 2.766 (4) Å] and ketone [O33—H33A···O21iii, 2.815 (3) Å]. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. A super cell central projection of the crystal structure can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic a axis.

Related literature top

For the synthesis of the title compound and a similar crystal structure, see: Flores et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short intermolecular hydrogen-bond interactions, see: Pojarová et al. (2010). For intramolecular hydrogen-bonding systems, see: da Costa et al. (2013).

Experimental top

To a stirred solution of methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate (5 mmol, 1.52 g) and L-phenylalanine (5.5 mmol, 0.91 g), at 25 °C, was added a solution of 1 mol·L-1 NaOH. There was an immediate formation of a yellow precipitate and the mixture was further stirred for 30 minutes. A solution of 50% HCl was added until the pH 1, when there was complete precipitation of the yellow solid. The solid was extracted with ethyl acetate, and this solution was dried over anhydrous MgSO4. The ethyl acetate was removed on a rotary evaporator to give the product as a yellow solid. Yield: 79%. m. p. 120 – 123 °C. 1H NMR (400 MHz, DMSO-D6, TMS): δ 2.17 (m, 2H, CH2), 2.44 (m, 2H, CH2), 3.06 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.37 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.66 (s, 3H, OMe), 4.53 (m, 1H, CHchiral), 5.60 (s, 1H, =CH), 7.22–7.33 (m, 5H, Ph), 10.9 (d, 1H, 3J = 10 Hz, NH) p.p.m.; 13C NMR (100 MHz, DMSO-D6): δ 26.8, 31.5, 39.9, 52.2, 58.1, 86.0, 96.9, 127.5, 128.9, 129.5, 135.4, 169.9, 172.0, 173.2, 181.2 p.p.m.. Crystals were grown from a methanol solution, which was slowly evaporated at room temperature.

Refinement top

All H atoms attached to carbon were positioned with idealized geometry and were refined isotropically. For H atoms of CH3 group, Uiso(H) was set to 1.5Ueq(C) using a riding model with C—H = 0.96 Å. For all remaining H atoms attached to C atoms, Uiso(H) was set to 1.2Ueq(C) using a riding model with the following C—H distances: C—H (CH) = 0.93 Å, C—H (CHchiral) = 0.98 Å and C—H (CH2) = 0.97 Å. H atoms attached to nitrogen, H atoms of the water molecule and the H atom of the carboxylic acid fragment were located in difference Fourier maps, and were refined with Uiso values set to 1.5Ueq of the parent atom. Reflections (001) and (001) were omitted due to the large difference observed between Fo2 and Fc2.

Structure description top

Dielectrophiles derived from levulinic acid (Hachuła et al., 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of heterocyclic compounds. Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores et al., 2008; Flores et al., 2013). As a part of our studies, we report in this paper the crystal structure of (S,Z)-3-phenyl-2-(1,1,1-trichloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and L-phenylalanine.

In the crystal structure of the title compound, the asymmetric unit is composed of the whole chiral organic molecule, C17H18Cl3NO5, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová et al., 2010]. Additionally, S(6) and S(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41—H41···O21 [2.672 (3) Å] and C3—H3···Cl1 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa et al., 2013).

There is also a weak C6—H6A···Cl1i intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the crystal structure by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the ab plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ii, 2.766 (4) Å] and ketone [O33—H33A···O21iii, 2.815 (3) Å]. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. A super cell central projection of the crystal structure can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic a axis.

For the synthesis of the title compound and a similar crystal structure, see: Flores et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short intermolecular hydrogen-bond interactions, see: Pojarová et al. (2010). For intramolecular hydrogen-bonding systems, see: da Costa et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (50% probability) showing the asymmetric unit. Hydrogen bonds are represented as dashed lines. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z.
[Figure 2] Fig. 2. Packing of molecules along the [100] direction through intermolecular hydrogen bonds, represented with dashed lines. Some hydrogen atoms were omitted for clarity.
(S,Z)-3-Phenyl-2-[(1,1,1-trichloro-7-methoxy-2,7-dioxohept-3-en-4-yl)amino]propanoic acid monohydrate top
Crystal data top
C17H18Cl3NO5·H2OF(000) = 228
Mr = 440.69Dx = 1.461 Mg m3
Triclinic, P1Melting point: 393 K
a = 5.6684 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.601 (3) ÅCell parameters from 3866 reflections
c = 10.336 (3) Åθ = 3.0–25.5°
α = 87.720 (19)°µ = 0.49 mm1
β = 85.696 (17)°T = 296 K
γ = 85.649 (17)°Blade, colorless
V = 500.8 (2) Å30.98 × 0.30 × 0.12 mm
Z = 1
Data collection top
Bruker APEXII CCD
diffractometer
6020 independent reflections
Radiation source: fine-focus sealed tube4784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 30.7°, θmin = 2.4°
Absorption correction: gaussian
(XPREP; Bruker, 2006)
h = 88
Tmin = 0.881, Tmax = 1k = 1212
13424 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0376P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.41 e Å3
6020 reflectionsΔρmin = 0.32 e Å3
256 parametersAbsolute structure: Flack parameter determined using 1984 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.04 (2)
Crystal data top
C17H18Cl3NO5·H2Oγ = 85.649 (17)°
Mr = 440.69V = 500.8 (2) Å3
Triclinic, P1Z = 1
a = 5.6684 (16) ÅMo Kα radiation
b = 8.601 (3) ŵ = 0.49 mm1
c = 10.336 (3) ÅT = 296 K
α = 87.720 (19)°0.98 × 0.30 × 0.12 mm
β = 85.696 (17)°
Data collection top
Bruker APEXII CCD
diffractometer
6020 independent reflections
Absorption correction: gaussian
(XPREP; Bruker, 2006)
4784 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 1Rint = 0.024
13424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.32 e Å3
6020 reflectionsAbsolute structure: Flack parameter determined using 1984 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
256 parametersAbsolute structure parameter: 0.04 (2)
3 restraints
Special details top

Experimental. Absorption correction: XPREP (Bruker, 2006) was used to perform the Gaussian absorption correction based on the face-indexed crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O330.4813 (5)1.0147 (3)0.9230 (3)0.0554 (6)
H33B0.629 (11)0.977 (6)0.919 (5)0.083*
H410.147 (9)0.465 (6)0.794 (5)0.083*
H33A0.458 (10)1.092 (7)0.887 (5)0.083*
H920.352 (9)0.869 (6)0.864 (5)0.083*
Cl10.75049 (16)0.24572 (10)0.42096 (9)0.0652 (3)
Cl20.50084 (18)0.01516 (11)0.57338 (11)0.0759 (3)
Cl30.88358 (15)0.16349 (14)0.67617 (11)0.0742 (3)
N410.1053 (4)0.5403 (3)0.7462 (2)0.0403 (5)
C10.6395 (5)0.1924 (3)0.5785 (3)0.0432 (6)
C70.1436 (5)0.7761 (4)0.3642 (3)0.0424 (6)
C90.0625 (5)0.7901 (3)0.8625 (3)0.0439 (6)
C30.3699 (5)0.4434 (3)0.5739 (3)0.0412 (6)
H30.42820.45690.48800.049*
C100.0576 (5)0.6530 (3)0.8145 (3)0.0402 (6)
H100.17040.69560.75260.048*
C50.1234 (5)0.6912 (3)0.5398 (3)0.0414 (6)
H5A0.25260.71350.47640.050*
H5B0.08540.78280.59130.050*
C1110.0514 (5)0.4758 (4)1.0193 (3)0.0455 (6)
C20.4540 (5)0.3128 (3)0.6460 (3)0.0386 (5)
C60.0917 (6)0.6567 (4)0.4700 (3)0.0472 (7)
H6A0.06450.55450.43280.057*
H6B0.22850.65430.53210.057*
C110.2023 (5)0.5712 (4)0.9264 (3)0.0475 (7)
H11A0.30050.64960.97450.057*
H11B0.30710.50330.88970.057*
C1120.0981 (7)0.5453 (4)1.0959 (3)0.0584 (8)
H1120.10400.65321.09160.070*
C80.4279 (7)0.8699 (5)0.2188 (4)0.0649 (10)
H8A0.58330.85010.19530.097*
H8B0.31650.85730.14460.097*
H8C0.42990.97450.24810.097*
C1160.0616 (8)0.3156 (4)1.0306 (4)0.0638 (9)
H1160.16270.26640.98130.077*
C1150.0793 (10)0.2279 (5)1.1156 (4)0.0792 (13)
H1150.07180.12021.12220.095*
C1130.2391 (9)0.4563 (6)1.1789 (4)0.0734 (11)
H1130.34220.50391.22800.088*
C1140.2259 (9)0.2964 (6)1.1884 (4)0.0774 (13)
H1140.31830.23631.24500.093*
O720.3587 (4)0.7608 (3)0.3218 (2)0.0535 (5)
O920.2915 (4)0.7852 (3)0.8366 (3)0.0554 (5)
O910.0517 (4)0.8944 (3)0.9190 (3)0.0591 (6)
O710.0124 (5)0.8698 (3)0.3220 (3)0.0637 (7)
C40.2004 (5)0.5547 (3)0.6269 (3)0.0370 (5)
O210.3934 (4)0.2806 (2)0.7613 (2)0.0473 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O330.0494 (13)0.0492 (13)0.0673 (15)0.0017 (11)0.0076 (11)0.0051 (11)
Cl10.0759 (6)0.0560 (5)0.0586 (5)0.0031 (4)0.0241 (4)0.0061 (4)
Cl20.0741 (6)0.0476 (4)0.1050 (8)0.0204 (4)0.0308 (5)0.0288 (5)
Cl30.0413 (4)0.0946 (7)0.0838 (6)0.0154 (4)0.0058 (4)0.0032 (5)
N410.0439 (13)0.0350 (11)0.0398 (12)0.0079 (10)0.0005 (9)0.0012 (9)
C10.0375 (14)0.0379 (14)0.0531 (16)0.0024 (11)0.0056 (11)0.0056 (11)
C70.0410 (14)0.0435 (15)0.0412 (14)0.0029 (12)0.0024 (11)0.0028 (11)
C90.0441 (14)0.0397 (14)0.0459 (15)0.0077 (11)0.0048 (11)0.0056 (12)
C30.0417 (14)0.0403 (14)0.0398 (13)0.0013 (11)0.0024 (10)0.0017 (11)
C100.0375 (13)0.0376 (13)0.0444 (14)0.0073 (11)0.0052 (11)0.0035 (11)
C50.0419 (14)0.0338 (13)0.0481 (15)0.0020 (10)0.0039 (11)0.0043 (11)
C1110.0480 (15)0.0477 (16)0.0385 (13)0.0000 (13)0.0078 (12)0.0018 (12)
C20.0349 (12)0.0363 (13)0.0440 (14)0.0022 (10)0.0012 (10)0.0049 (10)
C60.0478 (16)0.0414 (15)0.0532 (16)0.0051 (12)0.0114 (13)0.0081 (13)
C110.0387 (14)0.0508 (17)0.0516 (16)0.0032 (12)0.0001 (12)0.0028 (13)
C1120.075 (2)0.0510 (19)0.0489 (17)0.0038 (17)0.0081 (16)0.0032 (14)
C80.063 (2)0.081 (3)0.0495 (18)0.0133 (19)0.0149 (15)0.0064 (17)
C1160.082 (3)0.0495 (19)0.059 (2)0.0072 (17)0.0021 (18)0.0027 (15)
C1150.115 (4)0.049 (2)0.069 (3)0.007 (2)0.006 (3)0.0063 (18)
C1130.084 (3)0.085 (3)0.052 (2)0.004 (2)0.0171 (19)0.0069 (19)
C1140.093 (3)0.078 (3)0.055 (2)0.026 (2)0.002 (2)0.013 (2)
O720.0482 (12)0.0614 (14)0.0511 (12)0.0012 (10)0.0121 (9)0.0063 (10)
O920.0449 (12)0.0501 (13)0.0709 (14)0.0013 (10)0.0017 (10)0.0073 (11)
O910.0540 (13)0.0445 (12)0.0778 (16)0.0107 (10)0.0050 (11)0.0166 (11)
O710.0538 (14)0.0628 (15)0.0738 (16)0.0076 (11)0.0098 (12)0.0244 (12)
C40.0379 (12)0.0331 (13)0.0400 (13)0.0025 (10)0.0037 (10)0.0014 (10)
O210.0524 (12)0.0423 (11)0.0432 (11)0.0133 (9)0.0038 (8)0.0029 (9)
Geometric parameters (Å, º) top
O33—H33B0.87 (6)C5—H5B0.9700
O33—H33A0.76 (6)C111—C1161.384 (5)
Cl1—C11.757 (3)C111—C1121.385 (5)
Cl2—C11.772 (3)C111—C111.510 (4)
Cl3—C11.770 (3)C2—O211.241 (4)
N41—C41.314 (4)C6—H6A0.9700
N41—C101.453 (3)C6—H6B0.9700
N41—H410.83 (5)C11—H11A0.9700
C1—C21.564 (4)C11—H11B0.9700
C7—O711.186 (4)C112—C1131.385 (5)
C7—O721.343 (4)C112—H1120.9300
C7—C61.500 (4)C8—O721.448 (4)
C9—O911.209 (4)C8—H8A0.9600
C9—O921.303 (4)C8—H8B0.9600
C9—C101.523 (4)C8—H8C0.9600
C3—C21.397 (4)C116—C1151.393 (6)
C3—C41.401 (4)C116—H1160.9300
C3—H30.9300C115—C1141.344 (7)
C10—C111.545 (4)C115—H1150.9300
C10—H100.9800C113—C1141.382 (7)
C5—C41.509 (4)C113—H1130.9300
C5—C61.517 (4)C114—H1140.9300
C5—H5A0.9700O92—H920.89 (5)
H33B—O33—H33A115 (6)C7—C6—H6A109.2
C4—N41—C10126.9 (2)C5—C6—H6A109.2
C4—N41—H41121 (4)C7—C6—H6B109.2
C10—N41—H41112 (4)C5—C6—H6B109.2
C2—C1—Cl1116.0 (2)H6A—C6—H6B107.9
C2—C1—Cl3107.9 (2)C111—C11—C10113.8 (2)
Cl1—C1—Cl3107.55 (16)C111—C11—H11A108.8
C2—C1—Cl2107.0 (2)C10—C11—H11A108.8
Cl1—C1—Cl2109.06 (17)C111—C11—H11B108.8
Cl3—C1—Cl2109.22 (17)C10—C11—H11B108.8
O71—C7—O72124.4 (3)H11A—C11—H11B107.7
O71—C7—C6125.1 (3)C111—C112—C113120.9 (4)
O72—C7—C6110.5 (2)C111—C112—H112119.6
O91—C9—O92124.1 (3)C113—C112—H112119.6
O91—C9—C10121.0 (3)O72—C8—H8A109.5
O92—C9—C10114.9 (3)O72—C8—H8B109.5
C2—C3—C4122.1 (3)H8A—C8—H8B109.5
C2—C3—H3119.0O72—C8—H8C109.5
C4—C3—H3119.0H8A—C8—H8C109.5
N41—C10—C9113.6 (2)H8B—C8—H8C109.5
N41—C10—C11110.4 (2)C111—C116—C115120.1 (4)
C9—C10—C11111.3 (2)C111—C116—H116119.9
N41—C10—H10107.1C115—C116—H116119.9
C9—C10—H10107.1C114—C115—C116121.0 (4)
C11—C10—H10107.1C114—C115—H115119.5
C4—C5—C6110.9 (2)C116—C115—H115119.5
C4—C5—H5A109.5C114—C113—C112119.7 (4)
C6—C5—H5A109.5C114—C113—H113120.1
C4—C5—H5B109.5C112—C113—H113120.1
C6—C5—H5B109.5C115—C114—C113119.9 (4)
H5A—C5—H5B108.0C115—C114—H114120.1
C116—C111—C112118.3 (3)C113—C114—H114120.1
C116—C111—C11120.3 (3)C7—O72—C8115.5 (3)
C112—C111—C11121.4 (3)C9—O92—H92111 (3)
O21—C2—C3125.9 (3)N41—C4—C3122.1 (2)
O21—C2—C1115.3 (2)N41—C4—C5120.6 (2)
C3—C2—C1118.7 (3)C3—C4—C5117.4 (2)
C7—C6—C5112.0 (2)
C4—N41—C10—C976.6 (4)N41—C10—C11—C11154.1 (3)
C4—N41—C10—C11157.5 (3)C9—C10—C11—C11173.0 (3)
O91—C9—C10—N41178.7 (3)C116—C111—C112—C1131.9 (6)
O92—C9—C10—N410.6 (4)C11—C111—C112—C113178.7 (4)
O91—C9—C10—C1156.0 (3)C112—C111—C116—C1151.1 (5)
O92—C9—C10—C11124.7 (3)C11—C111—C116—C115179.5 (4)
C4—C3—C2—O210.5 (5)C111—C116—C115—C1140.3 (7)
C4—C3—C2—C1178.8 (3)C111—C112—C113—C1141.9 (7)
Cl1—C1—C2—O21173.6 (2)C116—C115—C114—C1130.3 (7)
Cl3—C1—C2—O2153.0 (3)C112—C113—C114—C1151.0 (7)
Cl2—C1—C2—O2164.5 (3)O71—C7—O72—C80.8 (5)
Cl1—C1—C2—C37.0 (4)C6—C7—O72—C8179.7 (3)
Cl3—C1—C2—C3127.7 (3)C10—N41—C4—C3175.1 (3)
Cl2—C1—C2—C3114.9 (3)C10—N41—C4—C57.0 (4)
O71—C7—C6—C513.3 (5)C2—C3—C4—N412.2 (5)
O72—C7—C6—C5167.8 (3)C2—C3—C4—C5179.8 (3)
C4—C5—C6—C7168.9 (3)C6—C5—C4—N4186.6 (3)
C116—C111—C11—C10115.5 (3)C6—C5—C4—C391.4 (3)
C112—C111—C11—C1065.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1i0.972.943.774 (3)145
O33—H33B···O91ii0.87 (6)1.89 (6)2.766 (4)177 (5)
N41—H41···O210.83 (5)2.05 (6)2.672 (3)131 (5)
O33—H33A···O21iii0.76 (6)2.06 (6)2.815 (3)171 (6)
O92—H92···O330.89 (5)1.66 (5)2.542 (4)175 (5)
C3—H3···Cl10.932.553.031 (3)112
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1i0.972.943.774 (3)144.9
O33—H33B···O91ii0.87 (6)1.89 (6)2.766 (4)177 (5)
N41—H41···O210.83 (5)2.05 (6)2.672 (3)131 (5)
O33—H33A···O21iii0.76 (6)2.06 (6)2.815 (3)171 (6)
O92—H92···O330.89 (5)1.66 (5)2.542 (4)175 (5)
C3—H3···Cl10.932.553.031 (3)112.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal grant 6577818477962764–01), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PqG grant 1016236) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PROEX).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, D. P. da, Nobre, S. M., Lisboa, B. G., Vicenti, J. R. de M. & Back, D. F. (2013). Acta Cryst. E69, o201.  CSD CrossRef IUCr Journals Google Scholar
First citationFlores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlores, A. F. C., Malavolta, J. L., Souto, A. A., Goularte, R. B., Flores, D. C. & Piovesan, L. A. (2013). J. Braz. Chem. Soc. 24, 580–584.  CAS Google Scholar
First citationHachuła, B., Polasz, A., Dzida, M., Nowak, M. & Kusz, J. (2013). Acta Cryst. E69, o1406.  CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m722–m723.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPojarová, M., Fejfarová, K. & Makrlík, E. (2010). Acta Cryst. E66, o3341–o3342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o169-o170
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds