organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Di­chloro­methyl-N-ethyl-5-(1-phenyl­silolan-1-yl)cyclo­pent-3-enecarboxamide

aChemical Science and Technology Department, Kunming University, Kunming 650091, People's Republic of China
*Correspondence e-mail: blackcrossing630@vip.sina.com

(Received 2 July 2013; accepted 2 September 2013; online 12 September 2013)

In the title compound, C19H25Cl2NOSi, the NH group and the carbonyl O atom of the amide fragment are involved in an inter­molecular N—H⋯O hydrogen bond forming chains of mol­ecules. The plane of the benzene ring forms a dihedral angle of 50.5 (2)° with respect to the silolane ring and an angle of 49.74 (2)° with the cyclo­pentyl moiety.

Related literature

For biological activity of silicon-containing compounds, see: Tacke & Wannagat (1975[Tacke, R. & Wannagat, U. (1975). Monatsh. Chem. 106, 1005-1018.], 1979[Tacke, R. & Wannagat, U. (1979). Top. Curr. Chem. 84, 1-75.]); Voronkov (1979[Voronkov, M. G. (1979). Top. Curr. Chem. 84, 77-135.]). For synthetic methods, see: Matthews et al. (2001[Matthews, J. L., McArthur, D. R., Muir, K. W. & White, D. N. J. (2001). Acta Cryst. C57, 120-122.], 2002[Matthews, J. L., McArthur, D. R. & Muir, K. W. (2002). Tetrahedron Lett. 43, 5401-5404.]); Benkeser et al. (1962[Benkeser, R. A., Grossman, R. F. & Stanton, G. M. (1962). J. Am. Chem. Soc. 84, 4727-4730.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25Cl2NOSi

  • Mr = 382.39

  • Orthorhombic, F d d 2

  • a = 42.892 (9) Å

  • b = 13.335 (3) Å

  • c = 14.234 (3) Å

  • V = 8141 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 295 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.927, Tmax = 0.963

  • 3814 measured reflections

  • 1925 independent reflections

  • 1375 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.106

  • S = 1.03

  • 1925 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.10 2.945 (5) 170
Symmetry code: (i) [-x+{\script{7\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It is well known that some silicon-containing compounds show extremely high biological activity, e.g. silatranes, which are much more toxic than strychnine (Tacke & Wannagat, 1975, 1979; Voronkov, 1979). In recent years, people have reported that the reaction of diphenyldichlorosilane with magnesium and butadiene yields silacyclopentenes, which are thought to be formed via a diphenylsilylene intermediate (Matthews et al., 2001, 2002). As part of this work, we synthesized the title compound derived from 1-(cyclopenta-2,4-dienyl)-1-phenylsilolane (CDP), and its structure is reported here..

The compound crystallized with a structural configuration in which the phenyl ring (C1~C6) forms a dihedral angle of 50.5 (2)° with respect to the silolane ring (C7,C8,C9,C10,Si1). The cyclopentene ring (C11~C15) is almost planar with the largest deviation being 0.074 Å for atom C15. The bond length of C12—C13 (1.294 (6) Å), agrees with the value characteristic of a double bond. in general bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, there one intermolecular hydrogen bond (N1—H1···O1) is observed.

Related literature top

For biological activity of silicon-containing compounds, see: Tacke & Wannagat (1975, 1979); Voronkov (1979). For synthetic methods, see: Matthews et al. (2001, 2002); Benkeser et al. (1962). For bond-length data, see: Allen et al. (1987).

Experimental top

1-(cyclopenta-2,4-dienyl)-1-phenylsilolane (CDP) was synthesized according to the method reported by Benkeser et al. (1962). 0.5 mol of CDP was dissolved in 20 ml n-hexane and 20 ml triethylamine in a 200 ml round flask. At 0°C 0.6 mol of 2, 2-dichloroacetyl chloride was added to the flask in 30 min. After continually stirring for 1 h, the solvent was removed and the residue was fractionated on a Todd-column (yield: 31.7%). Colourless block-shaped and needlelike crystals were obtained by slow evaporation of the solution in methanol. Colourless block-shaped single crystals suitable for X-ray structure determination were picked up and determined while the needlelike crystals were too thin to perform an X-ray diffraction experiment. Acoording to elemental analysis, colourless block-shaped and needlelike crystals show an identical composition and are therefore considered to be diastereoisomeric forms of the title compound.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å for phenyl, 0.96 Å for methyl, 0.97 Å for methylene and 0.98 Å for methine H atoms, and refined as riding, with Uiso(H) = 1.2 Ueq(C) for phenyl, methylene and methine H, and 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids shown at the 30% probability levels).
2-Dichloromethyl-N-ethyl-5-(1-phenylsilolan-1-yl)cyclopent-3-enecarboxamide top
Crystal data top
C19H25Cl2NOSiF(000) = 3232
Mr = 382.39Dx = 1.248 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 42.892 (9) Åθ = 9–13°
b = 13.335 (3) ŵ = 0.38 mm1
c = 14.234 (3) ÅT = 295 K
V = 8141 (3) Å3Block, colourless
Z = 160.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1375 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 5151
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.927, Tmax = 0.963l = 170
3814 measured reflections3 standard reflections every 200 reflections
1925 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1925 reflectionsΔρmax = 0.17 e Å3
219 parametersΔρmin = 0.22 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00184 (15)
Crystal data top
C19H25Cl2NOSiV = 8141 (3) Å3
Mr = 382.39Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 42.892 (9) ŵ = 0.38 mm1
b = 13.335 (3) ÅT = 295 K
c = 14.234 (3) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1375 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.927, Tmax = 0.9633 standard reflections every 200 reflections
3814 measured reflections intensity decay: 1%
1925 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
1925 reflectionsΔρmin = 0.22 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.94858 (13)0.0023 (4)0.1728 (4)0.0739 (16)
H1A0.94580.00790.23740.089*
C20.94605 (15)0.0875 (5)0.1173 (5)0.090 (2)
H2A0.94150.14920.14460.108*
C30.95014 (17)0.0805 (6)0.0235 (6)0.100 (2)
H3A0.94880.13760.01370.120*
C40.95610 (19)0.0076 (7)0.0158 (5)0.116 (3)
H4A0.95860.01190.08050.139*
C50.95859 (15)0.0936 (5)0.0391 (4)0.0888 (19)
H5A0.96270.15480.01030.107*
C60.95507 (10)0.0902 (4)0.1349 (3)0.0557 (12)
C70.98950 (12)0.2923 (4)0.1792 (4)0.0792 (17)
H7A1.00410.26120.13600.095*
H7B0.98180.35420.15190.095*
C81.00467 (18)0.3112 (6)0.2756 (6)0.123 (3)
H8A1.02660.32640.26700.148*
H8B0.99490.36870.30510.148*
C91.00157 (18)0.2240 (8)0.3370 (5)0.128 (3)
H9A1.00620.24340.40120.154*
H9B1.01650.17310.31840.154*
C100.96865 (14)0.1803 (4)0.3323 (4)0.0796 (16)
H10A0.95490.21360.37640.096*
H10B0.96880.10890.34550.096*
C110.91725 (10)0.2683 (3)0.2005 (3)0.0526 (11)
H11A0.91390.28930.13530.063*
C120.91344 (13)0.3580 (4)0.2632 (4)0.0716 (15)
H12A0.92760.41080.26440.086*
C130.88879 (14)0.3557 (4)0.3152 (4)0.0754 (15)
H13A0.88410.40440.35980.090*
C140.86844 (11)0.2662 (3)0.2964 (3)0.0563 (12)
H14A0.86470.23040.35540.068*
C150.88968 (9)0.2007 (3)0.2312 (3)0.0448 (10)
H15A0.89820.14580.26920.054*
C160.87364 (10)0.1546 (3)0.1461 (3)0.0460 (10)
C170.85258 (15)0.0022 (4)0.0751 (4)0.0873 (18)
H17A0.83070.02030.07590.105*
H17B0.86110.02300.01510.105*
C180.85540 (18)0.1051 (4)0.0838 (6)0.113 (2)
H18A0.84270.13710.03690.169*
H18B0.84860.12550.14510.169*
H18C0.87680.12430.07510.169*
C190.83734 (11)0.2984 (4)0.2541 (4)0.0637 (13)
H19A0.84110.32670.19160.076*
Cl10.81918 (4)0.39170 (15)0.32648 (13)0.1198 (8)
Cl20.81099 (3)0.19693 (13)0.24396 (13)0.0928 (6)
N10.86865 (8)0.0559 (2)0.1503 (3)0.0522 (10)
H10.87510.02310.19860.063*
O10.86593 (8)0.2069 (2)0.0793 (2)0.0605 (9)
Si10.95663 (3)0.20524 (10)0.20897 (9)0.0551 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.088 (4)0.065 (3)0.070 (4)0.010 (3)0.005 (3)0.005 (3)
C20.105 (5)0.063 (4)0.103 (6)0.012 (3)0.001 (4)0.011 (4)
C30.112 (5)0.094 (5)0.093 (6)0.010 (4)0.002 (4)0.038 (5)
C40.167 (7)0.112 (6)0.068 (5)0.006 (5)0.024 (5)0.023 (4)
C50.115 (5)0.080 (4)0.071 (4)0.016 (4)0.019 (4)0.001 (3)
C60.048 (2)0.069 (3)0.050 (3)0.002 (2)0.009 (2)0.005 (2)
C70.053 (3)0.082 (4)0.102 (5)0.016 (3)0.006 (3)0.011 (3)
C80.091 (5)0.145 (6)0.133 (7)0.052 (5)0.030 (5)0.014 (6)
C90.104 (5)0.190 (9)0.091 (5)0.026 (6)0.038 (5)0.008 (6)
C100.088 (4)0.091 (4)0.060 (3)0.009 (3)0.008 (3)0.010 (3)
C110.061 (3)0.045 (2)0.052 (3)0.009 (2)0.001 (2)0.000 (2)
C120.074 (4)0.049 (3)0.092 (4)0.005 (3)0.013 (3)0.010 (3)
C130.082 (4)0.072 (3)0.073 (4)0.013 (3)0.005 (3)0.027 (3)
C140.071 (3)0.057 (3)0.041 (3)0.008 (2)0.005 (2)0.004 (2)
C150.053 (3)0.043 (2)0.039 (2)0.001 (2)0.000 (2)0.006 (2)
C160.047 (2)0.046 (3)0.045 (3)0.005 (2)0.0012 (19)0.006 (2)
C170.117 (5)0.062 (3)0.083 (4)0.009 (3)0.034 (4)0.007 (3)
C180.163 (6)0.072 (4)0.104 (5)0.024 (4)0.038 (5)0.016 (4)
C190.064 (3)0.071 (3)0.056 (3)0.017 (3)0.004 (3)0.002 (3)
Cl10.1200 (14)0.1454 (16)0.0939 (12)0.0787 (12)0.0007 (11)0.0313 (12)
Cl20.0573 (8)0.1037 (11)0.1173 (13)0.0021 (8)0.0057 (8)0.0253 (10)
N10.062 (2)0.043 (2)0.051 (2)0.0045 (18)0.0147 (19)0.0037 (18)
O10.084 (2)0.0553 (18)0.0425 (17)0.0005 (16)0.0081 (16)0.0121 (17)
Si10.0507 (7)0.0603 (8)0.0541 (7)0.0046 (6)0.0019 (6)0.0013 (7)
Geometric parameters (Å, º) top
C1—C61.375 (7)C11—C151.550 (6)
C1—C21.388 (8)C11—Si11.891 (5)
C1—H1A0.9300C11—H11A0.9800
C2—C31.350 (10)C12—C131.291 (7)
C2—H2A0.9300C12—H12A0.9300
C3—C41.325 (10)C13—C141.502 (7)
C3—H3A0.9300C13—H13A0.9300
C4—C51.393 (9)C14—C191.525 (7)
C4—H4A0.9300C14—C151.567 (6)
C5—C61.372 (8)C14—H14A0.9800
C5—H5A0.9300C15—C161.523 (6)
C6—Si11.862 (5)C15—H15A0.9800
C7—C81.539 (10)C16—O11.224 (5)
C7—Si11.875 (5)C16—N11.335 (5)
C7—H7A0.9700C17—C181.442 (8)
C7—H7B0.9700C17—N11.461 (6)
C8—C91.461 (10)C17—H17A0.9700
C8—H8A0.9700C17—H17B0.9700
C8—H8B0.9700C18—H18A0.9600
C9—C101.529 (10)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700C19—Cl21.769 (5)
C10—Si11.859 (6)C19—Cl11.794 (5)
C10—H10A0.9700C19—H19A0.9800
C10—H10B0.9700N1—H10.8600
C11—C121.501 (6)
C6—C1—C2121.8 (6)C13—C12—C11114.2 (4)
C6—C1—H1A119.1C13—C12—H12A122.9
C2—C1—H1A119.1C11—C12—H12A122.9
C3—C2—C1119.8 (7)C12—C13—C14113.1 (5)
C3—C2—H2A120.1C12—C13—H13A123.4
C1—C2—H2A120.1C14—C13—H13A123.4
C4—C3—C2120.2 (7)C13—C14—C19110.8 (4)
C4—C3—H3A119.9C13—C14—C15102.2 (4)
C2—C3—H3A119.9C19—C14—C15115.5 (4)
C3—C4—C5120.6 (7)C13—C14—H14A109.3
C3—C4—H4A119.7C19—C14—H14A109.3
C5—C4—H4A119.7C15—C14—H14A109.3
C6—C5—C4121.5 (6)C16—C15—C11110.8 (4)
C6—C5—H5A119.3C16—C15—C14115.7 (4)
C4—C5—H5A119.3C11—C15—C14106.6 (3)
C5—C6—C1116.2 (5)C16—C15—H15A107.8
C5—C6—Si1122.1 (5)C11—C15—H15A107.8
C1—C6—Si1121.6 (4)C14—C15—H15A107.8
C8—C7—Si1102.6 (4)O1—C16—N1123.6 (4)
C8—C7—H7A111.3O1—C16—C15120.7 (4)
Si1—C7—H7A111.3N1—C16—C15115.7 (4)
C8—C7—H7B111.3C18—C17—N1112.6 (5)
Si1—C7—H7B111.3C18—C17—H17A109.1
H7A—C7—H7B109.2N1—C17—H17A109.1
C9—C8—C7111.4 (5)C18—C17—H17B109.1
C9—C8—H8A109.3N1—C17—H17B109.1
C7—C8—H8A109.3H17A—C17—H17B107.8
C9—C8—H8B109.3C17—C18—H18A109.5
C7—C8—H8B109.3C17—C18—H18B109.5
H8A—C8—H8B108.0H18A—C18—H18B109.5
C8—C9—C10111.2 (6)C17—C18—H18C109.5
C8—C9—H9A109.4H18A—C18—H18C109.5
C10—C9—H9A109.4H18B—C18—H18C109.5
C8—C9—H9B109.4C14—C19—Cl2112.1 (3)
C10—C9—H9B109.4C14—C19—Cl1110.4 (3)
H9A—C9—H9B108.0Cl2—C19—Cl1107.5 (3)
C9—C10—Si1103.3 (5)C14—C19—H19A108.9
C9—C10—H10A111.1Cl2—C19—H19A108.9
Si1—C10—H10A111.1Cl1—C19—H19A108.9
C9—C10—H10B111.1C16—N1—C17121.8 (4)
Si1—C10—H10B111.1C16—N1—H1119.1
H10A—C10—H10B109.1C17—N1—H1119.1
C12—C11—C15102.3 (4)C10—Si1—C6113.4 (2)
C12—C11—Si1114.4 (3)C10—Si1—C796.6 (3)
C15—C11—Si1113.9 (3)C6—Si1—C7114.2 (2)
C12—C11—H11A108.6C10—Si1—C11112.8 (2)
C15—C11—H11A108.6C6—Si1—C11107.3 (2)
Si1—C11—H11A108.6C7—Si1—C11112.4 (2)
C6—C1—C2—C30.3 (10)C14—C15—C16—N1107.3 (4)
C1—C2—C3—C41.0 (12)C13—C14—C19—Cl2173.0 (4)
C2—C3—C4—C50.8 (13)C15—C14—C19—Cl271.5 (5)
C3—C4—C5—C60.1 (12)C13—C14—C19—Cl153.2 (5)
C4—C5—C6—C10.8 (10)C15—C14—C19—Cl1168.8 (3)
C4—C5—C6—Si1177.3 (5)O1—C16—N1—C171.6 (7)
C2—C1—C6—C50.6 (9)C15—C16—N1—C17178.0 (4)
C2—C1—C6—Si1177.1 (4)C18—C17—N1—C16167.7 (5)
Si1—C7—C8—C931.3 (8)C9—C10—Si1—C6108.3 (5)
C7—C8—C9—C1044.1 (9)C9—C10—Si1—C711.6 (5)
C8—C9—C10—Si132.6 (7)C9—C10—Si1—C11129.4 (5)
C15—C11—C12—C134.7 (6)C5—C6—Si1—C10154.6 (5)
Si1—C11—C12—C13128.3 (5)C1—C6—Si1—C1029.1 (5)
C11—C12—C13—C143.7 (7)C5—C6—Si1—C745.2 (6)
C12—C13—C14—C19113.5 (5)C1—C6—Si1—C7138.5 (4)
C12—C13—C14—C1510.1 (6)C5—C6—Si1—C1180.2 (5)
C12—C11—C15—C16137.1 (4)C1—C6—Si1—C1196.2 (4)
Si1—C11—C15—C1698.9 (4)C8—C7—Si1—C1010.0 (5)
C12—C11—C15—C1410.5 (4)C8—C7—Si1—C6129.4 (5)
Si1—C11—C15—C14134.5 (3)C8—C7—Si1—C11108.0 (5)
C13—C14—C15—C16135.9 (4)C12—C11—Si1—C1049.2 (4)
C19—C14—C15—C1615.5 (5)C15—C11—Si1—C1068.0 (4)
C13—C14—C15—C1112.3 (5)C12—C11—Si1—C6174.8 (4)
C19—C14—C15—C11108.1 (4)C15—C11—Si1—C657.6 (4)
C11—C15—C16—O149.2 (5)C12—C11—Si1—C758.8 (4)
C14—C15—C16—O172.3 (5)C15—C11—Si1—C7176.0 (3)
C11—C15—C16—N1131.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.102.945 (5)170
Symmetry code: (i) x+7/4, y1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.102.945 (5)169.5
Symmetry code: (i) x+7/4, y1/4, z+1/4.
 

Acknowledgements

This work was supported by Yunnan Provincial Department of Science and Technology: Study on neuro-activities of gastrodin and helicid derivatives (grant No. 2013FZ102), Synthesis and Sturcture-Activity Relationship of Pulverolide and Its Analogues (grant No. 2013FZ101).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBenkeser, R. A., Grossman, R. F. & Stanton, G. M. (1962). J. Am. Chem. Soc. 84, 4727–4730.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMatthews, J. L., McArthur, D. R. & Muir, K. W. (2002). Tetrahedron Lett. 43, 5401–5404.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatthews, J. L., McArthur, D. R., Muir, K. W. & White, D. N. J. (2001). Acta Cryst. C57, 120–122.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTacke, R. & Wannagat, U. (1975). Monatsh. Chem. 106, 1005–1018.  CrossRef CAS Web of Science Google Scholar
First citationTacke, R. & Wannagat, U. (1979). Top. Curr. Chem. 84, 1–75.  CrossRef CAS PubMed Google Scholar
First citationVoronkov, M. G. (1979). Top. Curr. Chem. 84, 77–135.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds