organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1192-o1193

2-[1′-(Benz­yl­oxy)spiro­[indane-1,2′-pyrrolidine]-5′-yl]aceto­nitrile

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 20 June 2013; accepted 26 June 2013; online 3 July 2013)

In the title compound, C21H22N2O, the planes of the two six-membered rings make a dihedral angle of 89.51 (7)°. The pyrrolidine ring has a puckering amplitude q2 = 0.418 (3) and a pseudo-rotation phase angle φ2 = −166.8 (5), adopting a twist conformation (T). The other five-membered ring has a puckering amplitude q2 = 0.247 (2) and a pseudo-rotation phase angle φ2 = −173.7 (5), adopting an envelope conformation with the CH2 atom adjacent to the C atom common with the pyrrolidine ring as the flap. In the crystal, mol­ecules are linked via C—H⋯N, enclosing R22(20) rings, forming chains propagating along [100]. The aceto­nitrile group is disordered over two positions and was refined with a fixed occupancy ratio of 0.56:0.44.

Related literature

For radical cyclization of 1-aza­spiro compounds, see: El Bialy et al. (2004[El Bialy, S. A. A., Braun, H. & Tietze, L. F. (2004). Synthesis, pp. 2249-2262.]); Dake (2006[Dake, G. (2006). Tetrahedron, 62, 3467-3492.]). For cephalotaxine synthesis, see: Paudler et al. (1963[Paudler, W. W., Kerley, G. I. & McKay, J. (1963). J. Org. Chem. 28, 2194-2197.]); Planas et al. (2004[Planas, L., Pérard-Viret, J. & Royer, J. (2004). J. Org. Chem. 69, 3087-3092.]). For esters with anti­leukemic activity, see: Benderra et al. (1998[Benderra, Z., Morjani, H., Trussardi, A. & Manfait, M. (1998). Leukemia, 12, 1539-1544.]); Kantarjian et al. (2001[Kantarjian, H. M., Talpaz, M., Santini, V., Murgo, A., Cheson, B. & O'Brien, S. M. (2001). Cancer, 92, 1591-1605.]); Lévy et al. (2006[Lévy, V., Zohar, S., Bardin, C., Vekhoff, A., Chaoui, D., Rio, B., Legrand, O., Sentenac, S., Rousselot, P., Raffoux, E., Chast, F., Chevret, S. & Marie, J. P. (2006). Br. J. Cancer, 95, 253-259.]). For pyrrolidine properties, see: Chen et al. (2012[Chen, J., Zhou, L. & Yeung, Y.-Y. (2012). Org. Biomol. Chem. 10, 3808-3811.]); Boyd et al. (1999[Boyd, S. A., Mantei, R. A., Tasker, A. S., Liu, G., Sorensen, B. K., Henry, K. J. Jr, von Geldern, T. W., Winn, M., Wu-Wong, J. R., Chiou, W. J., Dixon, D. B., Hutchins, C. W., Marsh, K. C., Nguyen, B. & Opgenorth, T. J. (1999). Bioorg. Med. Chem. 7, 991-1002.]). For tandem reactions under radical conditions, see: Jaramillo-Gómez et al. (2006[Jaramillo-Gómez, L. M., Loaiza, A. E., Martin, J., Ríos, L. A. & Wang, P. G. (2006). Tetrahedron Lett. 47, 3909-3912.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for hydrogen-bond motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For ring torsion angles, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O

  • Mr = 318.41

  • Triclinic, [P \overline 1]

  • a = 9.1688 (4) Å

  • b = 10.0800 (4) Å

  • c = 11.4141 (6) Å

  • α = 98.826 (2)°

  • β = 108.777 (2)°

  • γ = 110.403 (4)°

  • V = 893.17 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.29 × 0.25 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6429 measured reflections

  • 3617 independent reflections

  • 2307 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.191

  • S = 1.05

  • 3617 reflections

  • 249 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N2Bi 0.93 2.61 3.511 (15) 164
C21—H21⋯N2Ai 0.93 2.48 3.390 (18) 168
Symmetry codes: (i) -x+2, -y+2, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound, 1'-(benzyloxy)-5'-cyanomethyl-2,3-dihydrospiro [inden-1,2'-pyrrolidine], (trans-IIIa), belongs to the family of spirocyclic compounds. It is worthwhile to stand out the natural occurring and synthetic cyclic alkaloids which contain a nitrogen atom adjacent to the spiro carbon. Of special interest are the structures exhibiting the 1-azaspiro[4.4]nonane (I) system (El Bialy et al., 2004) which represents the central core of the cephalotaxine, a natural occurring product isolated from evergreen plum yews of the genus Cephalotaxus (Paudler et al., 1963; Planas et al., 2004), whose ester derivatives as homoharringtonine exhibited a pronounced antileukemic activity (Benderra et al., 1998; Kantarjian et al., 2001; Lévy et al., 2006). Pyrrolidine is a heterocyclic amine used as building block or base in pharmaceutical and fine chemical manufacturing (Boyd et al., 1999; Chen et al., 2012). Therefore, considerable attention has been focused toward the synthesis of molecules with the embedded 1-azaspiro [4.4]nonane (I) system in their structures, using mainly ionic strategy and only scarce examples via radical cyclisation to form out them (El Bialy et al., 2004; Dake, 2006).

Continuing with our current interest in applying tandem reactions under radical conditions, with the participation of aryl and neutral alkyl oxyaminyl radicals (Jaramillo-Gómez et al. 2006), we are reporting here, the synthesis of the azaspirocyclic 1'-(benzyloxy)-5'-cyanomethyl-2,3-dihydrospiro [inden-1,2'-pyrrolidine] (III), as a mixture of the diastereomers cis and trans, being able to crystallize in the pure form, the isomer trans IIIa. The interesting azaspiro [4.4] nonano (I) framework embedded in (III) was obtained in one single synthetic step, from the oxime ether 6-(benzyloxy-imino)-8-(2-iodophenyl)oct-2-enenitrile (II), through a sequential process of two closures 5-exo under standard radical conditions, (scheme 2). The molecular structure of (trans IIIa) is shown in Fig. 1.

The title compound crystallizes in the monoclinic space group P21/c. The two phenyl rings are oriented to each other with a dihedral angle of 89.51 (7)°. Analysis of torsion angles, and least-square plane calculation, indicate that pyrrolidine ring shows a puckering amplitude q2= 0.418 (3) and pseudo-rotation phase angle ϕ2= -166.8 (5) adopting a twist conformation T with the N atom above the mean plane of the ring. In the same way the other five member ring shows a puckering amplitude q2= 0.247 (2) and pseudo-rotation phase angle ϕ2= -173.7 (5) adopting an envelope conformation E with the atom C9 below the mean plane of the ring (Cremer & Pople, 1975). The N-O bond length is close to the mean value [1.463 (12) Å] reported in the literature (Allen et al., 1987) and the torsion angle formed by the atoms [N1-O1-C15-C16] which links the pyrrolidine and phenyl rings is 179.41 (13)°. The crystal packing reveals that the molecules are linked through a network of weak C—H···N and C—H···O intermolecular interactions (see Table 1, Nardelli, 1995). The C21 atom in the molecule at (x,y,z) donates a proton to N2a y N2b atoms in the molecule at (-x+2,-y+2,-z+1), forming as a result of these interactions R22(20) rings (Etter, 1990). These rings are in turn linked by a weak C-H···O interaction. Indeed, the C23 atom in the molecule at (x,y,z) donates a proton to O1 atom of the molecule at (-x+1,-y+2,-z+1) forming layers parallel to (001) as shown in Fig. 2.

Related literature top

For radical cyclization of 1-azaspiro compounds, see: El Bialy et al. (2004); Dake (2006). For cephalotaxine synthesis, see: Paudler et al. (1963); Planas et al. (2004). For esters with antileukemic activity, see: Benderra et al. (1998); Kantarjian et al. (2001); Lévy et al. (2006). For pyrrolidine properties, see: Chen et al. (2012); Boyd et al. (1999). For tandem reactions under radical conditions, see: Jaramillo-Gómez et al. (2006). For bond-length data, see: Allen et al. (1987). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond motifs, see: Etter (1990). For ring torsion angles, see: Cremer & Pople (1975).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A solution of 6-(benzyloxyimino)-8-(2-iodophenyl)oct-2-enenitrile (II) (129 mg, 0.29 mmol), 2,2'-azobisisobutyronitrile (AIBN, 14 mg, 0.09 mmol) and tributyltin hydride (n-Bu3SnH, 0.09 ml, 0.35 mmol) in cyclohexane (Cy, 13 mL) was degassed for 1 h by bubbling dry argon, and subsequently stirred at 353 K for 7 h. After cooling to room temperature the solvent was removed under reduced pressure and the crude product treated with a mixture of 20% KF aqueous solution (2 mL) and ethyl acetate (2 mL), stirring overnight. The organic layer was separated, dried with anhydrous Na2SO4 and filtered over silica gel. The purification was carried out by flash column chromatography with 60-95% benzene/hexane (gradient 5%) to afford a mixture of two diastereomers IIIa and IIIb (59 mg, 65%) as yellow oil. By addition of hexane to this oil, white crystals suitable for X-ray diffraction, fell down [20 mg, 21%, m.p. 372 (1) K] of the diastereomeric spirocycle trans-IIIa suitable for X-ray analysis. Elemental Analysis: Calculated: C 79.20, H 6.98, N 8.80; Found: C 79.25, H 6.73, N 8.85.

Refinement top

The H-atoms were positioned geometrically [C—H= 0.93 Å for aromatic and C—H= 0.97 Å for methylene, and with Uiso(H) (1.2 and 1.5 times Ueq of the parent atom respectively]. The H12 atom was found in difference Fourier maps an its coordinates were refined freely.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms were omitted for more clarity.
[Figure 2] Fig. 2. Part of the crystal structure of (IIIa), forming layers in the ab plane. Symmetry code: (i) -x+2,-y+2,-z+1; (ii) -x+1,-y+2,-z+1.
[Figure 3] Fig. 3. Reaction scheme.
2-[1'-(Benzyloxy)spiro[indane-1,2'-pyrrolidine]-5'-yl]acetonitrile top
Crystal data top
C21H22N2OZ = 2
Mr = 318.41F(000) = 340
Triclinic, P1Dx = 1.184 Mg m3
Hall symbol: -P 1Melting point: 372(1) K
a = 9.1688 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0800 (4) ÅCell parameters from 5157 reflections
c = 11.4141 (6) Åθ = 2.9–25.7°
α = 98.826 (2)°µ = 0.07 mm1
β = 108.777 (2)°T = 295 K
γ = 110.403 (4)°Block, white
V = 893.17 (7) Å30.29 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2307 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1110
6429 measured reflectionsk = 1212
3617 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.0489P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.11 e Å3
3 restraintsΔρmin = 0.13 e Å3
Crystal data top
C21H22N2Oγ = 110.403 (4)°
Mr = 318.41V = 893.17 (7) Å3
Triclinic, P1Z = 2
a = 9.1688 (4) ÅMo Kα radiation
b = 10.0800 (4) ŵ = 0.07 mm1
c = 11.4141 (6) ÅT = 295 K
α = 98.826 (2)°0.29 × 0.25 × 0.15 mm
β = 108.777 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2307 reflections with I > 2σ(I)
6429 measured reflectionsRint = 0.063
3617 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.11 e Å3
3617 reflectionsΔρmin = 0.13 e Å3
249 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.48268 (14)0.93003 (12)0.30050 (11)0.0770 (4)
N10.46487 (19)0.78319 (16)0.30577 (14)0.0779 (4)
C10.2926 (2)0.66924 (19)0.20916 (18)0.0789 (5)
C20.1560 (2)0.72661 (18)0.18692 (19)0.0784 (5)
C30.0707 (3)0.7469 (2)0.2642 (2)0.1021 (7)
H30.09100.71980.34010.123*
C40.0441 (3)0.8075 (3)0.2276 (3)0.1190 (8)
H40.10110.82120.27940.143*
C50.0749 (3)0.8472 (3)0.1174 (3)0.1224 (9)
H50.15030.89050.09550.147*
C60.0039 (3)0.8241 (3)0.0373 (2)0.1114 (8)
H60.01980.84910.03960.134*
C70.1202 (2)0.7625 (2)0.07324 (19)0.0878 (5)
C80.2196 (3)0.7262 (3)0.0030 (2)0.1071 (7)
H8A0.31100.81550.00830.128*
H8B0.14700.67170.08760.128*
C90.2901 (3)0.6305 (2)0.07358 (19)0.0958 (6)
H9A0.21810.52600.02810.115*
H9B0.40410.65190.07890.115*
C100.2684 (4)0.5431 (3)0.2722 (3)0.1171 (8)
H10A0.15380.50140.26860.141*
H10B0.28670.46480.22690.141*
C110.3975 (4)0.6097 (3)0.4117 (3)0.1284 (10)
H11A0.34330.58350.47030.154*
H11B0.48620.57510.42510.154*
C120.4700 (4)0.7747 (3)0.4335 (2)0.1040 (7)
C150.6189 (2)0.9965 (2)0.2623 (2)0.0990 (7)
H15A0.59620.93670.17780.119*
H15B0.72531.00500.32460.119*
C160.6290 (2)1.1473 (2)0.2575 (2)0.0853 (5)
C170.4913 (2)1.1636 (2)0.1765 (2)0.1015 (7)
H170.39091.07990.12440.122*
C180.5008 (3)1.3020 (2)0.1720 (2)0.1035 (7)
H180.40721.31080.11670.124*
C190.6473 (3)1.4269 (2)0.2482 (2)0.0987 (6)
H190.65351.52030.24500.118*
C200.7837 (3)1.4125 (2)0.3289 (2)0.0985 (7)
H200.88331.49680.38110.118*
C210.7759 (2)1.2749 (2)0.3340 (2)0.0913 (6)
H210.87041.26740.38960.110*
N2A0.8984 (16)0.801 (2)0.4992 (18)0.115 (3)0.44
C13A0.6184 (11)0.8347 (10)0.5469 (9)0.097 (2)0.44
H1310.59340.80120.61630.116*0.44
H1320.66440.94210.57270.116*0.44
C14A0.7383 (11)0.7889 (10)0.5243 (10)0.088 (2)0.44
N2B0.8463 (15)0.7591 (16)0.5103 (16)0.131 (3)0.56
C13B0.6718 (10)0.8878 (9)0.5325 (7)0.1077 (18)0.56
H1330.69790.98430.51840.129*0.56
H1340.68270.90020.62140.129*0.56
C14B0.7995 (10)0.8369 (8)0.5167 (8)0.0904 (18)0.56
H120.400 (3)0.821 (2)0.454 (2)0.109 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0734 (7)0.0694 (7)0.0904 (8)0.0416 (6)0.0252 (6)0.0203 (6)
N10.0945 (10)0.0754 (9)0.0749 (9)0.0552 (8)0.0267 (8)0.0232 (7)
C10.0921 (12)0.0670 (10)0.0862 (12)0.0423 (9)0.0369 (10)0.0232 (8)
C20.0791 (10)0.0624 (9)0.0939 (13)0.0315 (8)0.0337 (9)0.0232 (8)
C30.1121 (15)0.0891 (13)0.1370 (18)0.0530 (12)0.0723 (14)0.0453 (13)
C40.1025 (16)0.1018 (17)0.175 (3)0.0558 (14)0.0705 (17)0.0389 (17)
C50.0930 (15)0.1002 (16)0.161 (3)0.0525 (13)0.0300 (16)0.0244 (17)
C60.1009 (15)0.0993 (16)0.1069 (16)0.0462 (13)0.0078 (13)0.0261 (13)
C70.0812 (11)0.0782 (11)0.0837 (12)0.0311 (9)0.0157 (9)0.0162 (9)
C80.1162 (15)0.1236 (18)0.0698 (12)0.0529 (13)0.0265 (10)0.0182 (11)
C90.1021 (13)0.0907 (13)0.0840 (13)0.0428 (11)0.0335 (11)0.0031 (10)
C100.157 (2)0.0902 (15)0.156 (2)0.0813 (15)0.084 (2)0.0627 (15)
C110.203 (3)0.153 (2)0.135 (2)0.135 (2)0.107 (2)0.0954 (19)
C120.1553 (19)0.1313 (18)0.0756 (12)0.1116 (16)0.0472 (12)0.0407 (11)
C150.0703 (11)0.0884 (14)0.1379 (18)0.0410 (10)0.0376 (11)0.0254 (12)
C160.0615 (9)0.0775 (11)0.1134 (15)0.0298 (8)0.0346 (9)0.0204 (10)
C170.0653 (10)0.0742 (12)0.1411 (18)0.0269 (9)0.0232 (11)0.0170 (11)
C180.0837 (12)0.0872 (14)0.1346 (18)0.0407 (11)0.0354 (12)0.0290 (12)
C190.1060 (15)0.0746 (12)0.1174 (16)0.0322 (11)0.0545 (14)0.0286 (11)
C200.0870 (13)0.0801 (13)0.1029 (15)0.0109 (10)0.0380 (12)0.0208 (11)
C210.0659 (10)0.0980 (14)0.0982 (14)0.0245 (10)0.0316 (10)0.0269 (11)
N2A0.096 (7)0.119 (8)0.122 (5)0.060 (6)0.022 (5)0.029 (5)
C13A0.146 (5)0.111 (6)0.080 (3)0.097 (4)0.048 (2)0.041 (3)
C14A0.086 (5)0.081 (5)0.090 (4)0.042 (4)0.020 (4)0.024 (4)
N2B0.109 (7)0.124 (8)0.146 (6)0.070 (6)0.026 (5)0.011 (5)
C13B0.171 (3)0.120 (5)0.060 (2)0.103 (3)0.032 (3)0.031 (3)
C14B0.090 (5)0.080 (4)0.089 (3)0.046 (3)0.013 (3)0.017 (3)
Geometric parameters (Å, º) top
O1—C151.434 (2)C11—H11A0.9700
O1—N11.4444 (17)C11—H11B0.9700
N1—C121.460 (3)C12—C13A1.395 (9)
N1—C11.502 (2)C12—C13B1.670 (8)
C1—C21.520 (2)C12—H120.97 (2)
C1—C91.528 (3)C15—C161.501 (3)
C1—C101.540 (3)C15—H15A0.9700
C2—C71.369 (3)C15—H15B0.9700
C2—C31.390 (3)C16—C171.384 (3)
C3—C41.378 (3)C16—C211.387 (3)
C3—H30.9300C17—C181.377 (3)
C4—C51.351 (4)C17—H170.9300
C4—H40.9300C18—C191.371 (3)
C5—C61.375 (4)C18—H180.9300
C5—H50.9300C19—C201.364 (3)
C6—C71.396 (3)C19—H190.9300
C6—H60.9300C20—C211.374 (3)
C7—C81.491 (3)C20—H200.9300
C8—C91.529 (3)C21—H210.9300
C8—H8A0.9700N2A—C14A1.553 (17)
C8—H8B0.9700C13A—C14A1.410 (16)
C9—H9A0.9700C13A—H1310.9700
C9—H9B0.9700C13A—H1320.9700
C10—C111.514 (4)N2B—C14B1.021 (17)
C10—H10A0.9700C13B—C14B1.481 (13)
C10—H10B0.9700C13B—H1330.9700
C11—C121.505 (4)C13B—H1340.9700
C15—O1—N1109.50 (12)C10—C11—H11B110.7
O1—N1—C12107.46 (13)H11A—C11—H11B108.8
O1—N1—C1110.06 (12)C13A—C12—N1124.5 (4)
C12—N1—C1106.19 (16)C13A—C12—C11105.6 (4)
N1—C1—C2112.94 (14)N1—C12—C11101.52 (17)
N1—C1—C9111.30 (15)N1—C12—C13B103.0 (3)
C2—C1—C9101.77 (16)C11—C12—C13B122.4 (3)
N1—C1—C10100.66 (17)C13A—C12—H12103.9 (13)
C2—C1—C10115.07 (17)N1—C12—H12107.9 (12)
C9—C1—C10115.58 (17)C11—C12—H12113.9 (13)
C7—C2—C3119.32 (19)C13B—C12—H12106.6 (13)
C7—C2—C1111.24 (17)O1—C15—C16106.64 (14)
C3—C2—C1129.44 (18)O1—C15—H15A110.4
C4—C3—C2119.6 (2)C16—C15—H15A110.4
C4—C3—H3120.2O1—C15—H15B110.4
C2—C3—H3120.2C16—C15—H15B110.4
C5—C4—C3120.8 (3)H15A—C15—H15B108.6
C5—C4—H4119.6C17—C16—C21117.70 (19)
C3—C4—H4119.6C17—C16—C15121.00 (17)
C4—C5—C6120.7 (2)C21—C16—C15121.30 (18)
C4—C5—H5119.6C18—C17—C16120.93 (19)
C6—C5—H5119.6C18—C17—H17119.5
C5—C6—C7118.9 (2)C16—C17—H17119.5
C5—C6—H6120.5C19—C18—C17120.5 (2)
C7—C6—H6120.5C19—C18—H18119.7
C2—C7—C6120.5 (2)C17—C18—H18119.7
C2—C7—C8110.62 (18)C20—C19—C18119.1 (2)
C6—C7—C8128.8 (2)C20—C19—H19120.4
C7—C8—C9103.76 (17)C18—C19—H19120.4
C7—C8—H8A111.0C19—C20—C21120.88 (19)
C9—C8—H8A111.0C19—C20—H20119.6
C7—C8—H8B111.0C21—C20—H20119.6
C9—C8—H8B111.0C20—C21—C16120.8 (2)
H8A—C8—H8B109.0C20—C21—H21119.6
C1—C9—C8106.36 (16)C16—C21—H21119.6
C1—C9—H9A110.5C12—C13A—C14A109.0 (8)
C8—C9—H9A110.5C12—C13A—H131109.9
C1—C9—H9B110.5C14A—C13A—H131109.9
C8—C9—H9B110.5C12—C13A—H132109.9
H9A—C9—H9B108.6C14A—C13A—H132109.9
C11—C10—C1106.99 (19)H131—C13A—H132108.3
C11—C10—H10A110.3C13A—C14A—N2A158.1 (9)
C1—C10—H10A110.3C14B—C13B—C12115.0 (6)
C11—C10—H10B110.3C14B—C13B—H133108.5
C1—C10—H10B110.3C12—C13B—H133108.5
H10A—C10—H10B108.6C14B—C13B—H134108.5
C12—C11—C10105.04 (17)C12—C13B—H134108.5
C12—C11—H11A110.7H133—C13B—H134107.5
C10—C11—H11A110.7N2B—C14B—C13B152.4 (10)
C12—C11—H11B110.7
C15—O1—N1—C12127.02 (18)C2—C1—C10—C11105.6 (2)
C15—O1—N1—C1117.76 (16)C9—C1—C10—C11136.2 (2)
O1—N1—C1—C231.15 (19)C1—C10—C11—C1210.2 (3)
C12—N1—C1—C284.87 (17)O1—N1—C12—C13A78.5 (5)
O1—N1—C1—C982.60 (17)C1—N1—C12—C13A163.7 (5)
C12—N1—C1—C9161.38 (16)O1—N1—C12—C11163.27 (17)
O1—N1—C1—C10154.38 (14)C1—N1—C12—C1145.5 (2)
C12—N1—C1—C1038.36 (19)O1—N1—C12—C13B69.3 (3)
N1—C1—C2—C7102.02 (18)C1—N1—C12—C13B173.0 (3)
C9—C1—C2—C717.40 (19)C10—C11—C12—C13A164.3 (5)
C10—C1—C2—C7143.16 (19)C10—C11—C12—N133.3 (2)
N1—C1—C2—C377.2 (2)C10—C11—C12—C13B146.9 (4)
C9—C1—C2—C3163.37 (19)N1—O1—C15—C16179.41 (14)
C10—C1—C2—C337.6 (3)O1—C15—C16—C1759.3 (3)
C7—C2—C3—C42.2 (3)O1—C15—C16—C21120.56 (19)
C1—C2—C3—C4176.98 (19)C21—C16—C17—C180.3 (3)
C2—C3—C4—C50.1 (4)C15—C16—C17—C18179.8 (2)
C3—C4—C5—C61.9 (4)C16—C17—C18—C190.3 (4)
C4—C5—C6—C71.7 (4)C17—C18—C19—C200.0 (4)
C3—C2—C7—C62.4 (3)C18—C19—C20—C210.2 (3)
C1—C2—C7—C6176.96 (17)C19—C20—C21—C160.1 (3)
C3—C2—C7—C8177.52 (18)C17—C16—C21—C200.2 (3)
C1—C2—C7—C83.2 (2)C15—C16—C21—C20179.98 (18)
C5—C6—C7—C20.4 (3)N1—C12—C13A—C14A49.7 (7)
C5—C6—C7—C8179.4 (2)C11—C12—C13A—C14A66.6 (6)
C2—C7—C8—C912.6 (2)C13B—C12—C13A—C14A73.4 (17)
C6—C7—C8—C9167.3 (2)C12—C13A—C14A—N2A105 (3)
N1—C1—C9—C896.19 (19)C13A—C12—C13B—C14B93.7 (19)
C2—C1—C9—C824.4 (2)N1—C12—C13B—C14B66.5 (5)
C10—C1—C9—C8149.8 (2)C11—C12—C13B—C14B46.4 (6)
C7—C8—C9—C123.2 (2)C12—C13B—C14B—N2B51 (3)
N1—C1—C10—C1116.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···N2Bi0.932.613.511 (15)164
C21—H21···N2Ai0.932.483.390 (18)168
C13B—H134···O1ii0.972.873.389 (9)115
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H22N2O
Mr318.41
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.1688 (4), 10.0800 (4), 11.4141 (6)
α, β, γ (°)98.826 (2), 108.777 (2), 110.403 (4)
V3)893.17 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.29 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6429, 3617, 2307
Rint0.063
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.191, 1.05
No. of reflections3617
No. of parameters249
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···N2Bi0.932.613.511 (15)164.4
C21—H21···N2Ai0.932.483.390 (18)168.0
C13B—H134···O1ii0.972.873.389 (9)114.5
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

RMF and LMJG are grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBenderra, Z., Morjani, H., Trussardi, A. & Manfait, M. (1998). Leukemia, 12, 1539–1544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoyd, S. A., Mantei, R. A., Tasker, A. S., Liu, G., Sorensen, B. K., Henry, K. J. Jr, von Geldern, T. W., Winn, M., Wu-Wong, J. R., Chiou, W. J., Dixon, D. B., Hutchins, C. W., Marsh, K. C., Nguyen, B. & Opgenorth, T. J. (1999). Bioorg. Med. Chem. 7, 991–1002.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, J., Zhou, L. & Yeung, Y.-Y. (2012). Org. Biomol. Chem. 10, 3808–3811.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDake, G. (2006). Tetrahedron, 62, 3467–3492.  Web of Science CrossRef CAS Google Scholar
First citationEl Bialy, S. A. A., Braun, H. & Tietze, L. F. (2004). Synthesis, pp. 2249–2262.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaramillo-Gómez, L. M., Loaiza, A. E., Martin, J., Ríos, L. A. & Wang, P. G. (2006). Tetrahedron Lett. 47, 3909–3912.  Google Scholar
First citationKantarjian, H. M., Talpaz, M., Santini, V., Murgo, A., Cheson, B. & O'Brien, S. M. (2001). Cancer, 92, 1591–1605.  CrossRef PubMed CAS Google Scholar
First citationLévy, V., Zohar, S., Bardin, C., Vekhoff, A., Chaoui, D., Rio, B., Legrand, O., Sentenac, S., Rousselot, P., Raffoux, E., Chast, F., Chevret, S. & Marie, J. P. (2006). Br. J. Cancer, 95, 253–259.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPaudler, W. W., Kerley, G. I. & McKay, J. (1963). J. Org. Chem. 28, 2194–2197.  CrossRef CAS Web of Science Google Scholar
First citationPlanas, L., Pérard-Viret, J. & Royer, J. (2004). J. Org. Chem. 69, 3087–3092.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1192-o1193
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds