organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3β,6α-Diacet­­oxy-5,9α-dihy­dr­oxy-5α-cholest-7-en-11-one

aDipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Farmacia, Università degli Studi di Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, roberto.centore@unina.it

(Received 28 May 2013; accepted 11 June 2013; online 15 June 2013)

The title compound, C31H48O7, a polyoxygenated steroid, was obtained by chemical oxidation of 7-de­hydro­cholesteryl acetate. The mol­ecular geometry features trans A/B and C/D junctions at the steroid core with the acetyl groups in the equatorial position and a fully extended conformation for the alkyl side chain. A chair conformation is observed for rings A and C while ring B adopts a half-chair conformation. The five-membered ring D has an envelope conformation, with the C atom bearing the methyl group at the flap. The terminal isopropyl group and one acetyl group are disordered over two sets of sites with 0.774 (8):0.226 (8) and 0.843 (7):0.157 (7) ratios, respectively. An intra­molecular S(6) O—H⋯O hydrogen-bonding motif involving a hy­droxy donor and acceptor is observed. In the crystal, chains of mol­ecules running along the b axis are formed via O—H⋯O hydrogen bonds between hy­droxy donors and carbonyl acceptors of the ordered acetyl group, giving rise to a C(14) motif. The chains are wrapped around the 21 screw axes.

Related literature

For general information on the isolation of polyoxygenated steroids from marine source, see: Notaro et al. (1991[Notaro, G., Piccialli, V., Sica, D. & Corriero, G. (1991). J. Nat. Prod. 54, 1570-1575.], 1992[Notaro, G., Piccialli, V., Sica, D. & Pronzato, R. (1992). J. Nat. Prod. 55, 773-779.]). For the synthesis of polyoxygenated steroids, see: Migliuolo et al. (1992[Migliuolo, A., Piccialli, V. & Sica, D. (1992). Steroids, 57, 344-347.]). For new selective oxidation protocols, see: Piccialli et al. (1993[Piccialli, V., Smaldone, D. M. A. & Sica, D. (1993). Tetrahedron, 49, 4211-4228.]); Notaro et al. (1994[Notaro, G., Piccialli, V., Sica, D. & Smaldone, D. M. A. (1994). Tetrahedron, 50, 4835-4852.]); Caserta et al. (2005[Caserta, T., Piccialli, V., Gomez-Paloma, L. & Bifulco, G. (2005). Tetrahedron, 61, 927-939.]); Piccialli, D'Errico et al. (2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]). For recent examples of hydrogen bonding in crystals, see: Centore, Fusco, Jazbinsek et al. (2013[Centore, R., Fusco, S., Jazbinsek, M., Capobianco, A. & Peluso, A. (2013). CrystEngComm, 15, 3318-3325.]); Centore et al. (2013a[Centore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667-o668.],b[Centore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802-o803.]); Centore, Fusco, Capobianco et al. (2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. doi:10.1002/ejoc.201201653.]). For the structure and packing of the 6β isomeric steroid see: Piccialli, Oliviero et al. (2013[Piccialli, V., Oliviero, G., Borbone, N., Centore, R. & Tuzi, A. (2013). Acta Cryst. E69, o879-o880.]).

[Scheme 1]

Experimental

Crystal data
  • C31H48O7

  • Mr = 532.69

  • Monoclinic, P 21

  • a = 10.964 (2) Å

  • b = 9.155 (1) Å

  • c = 14.740 (2) Å

  • β = 92.98 (1)°

  • V = 1477.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.60 × 0.35 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.996

  • 9976 measured reflections

  • 3498 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.07

  • 3498 reflections

  • 414 parameters

  • 43 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1D⋯O1 0.84 (4) 1.89 (4) 2.619 (3) 145 (4)
O1—H1C⋯O7i 0.76 (4) 2.04 (4) 2.782 (3) 166 (4)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Polyoxygenated steroids have been isolated from both marine and terrestrial sources. They are characterized by a wide range of oxygenation and nuclear substitution patterns. Some of them show antitumour activity as well as other important biological effects and, as a result, steroids are important targets from chemical, biological and medicinal point of view. Our group has previously been involved into studies aimed at the isolation of polyoxygenated steroids from marine sources (Notaro et al., 1991, 1992), as well as at the synthesis and structural modification of some members of this class (Migliuolo et al., 1992). This has led to the development of new efficient oxidation protocols, mostly based on the use of transition-metal oxo-species (Piccialli et al., 1993; Notaro et al., 1994; Caserta et al., 2005; Piccialli, D'Errico et al., 2013), to selectively introduce oxygenated functions into specific positions of the steroidal nucleus. Recently we have undertaken a study aimed at preparing new polyoxygenated steroids for structure-activity relationship studies. In this frame the title compound, shown in the Scheme, was synthesized from commercially available 7-dehydrocholesteryl acetate (Fig. 1) according to a previously developed RuO4-catalyzed route (Notaro et al., 1994). Its 3β,5α,6α-oxygenation pattern is a motif found in some biologically active steroids isolated from sponges of genus Dysidea and, in particular, its C7—C10 functionalization pattern was seen as a key feature to introduce diversely configurated oxygenated functions at these carbon centres and/or neighbouring positions. The present X-ray diffraction study was undertaken in order to confirm the stereostructure of the title compound.

The molecular structure determined by X-ray analysis (Fig.2) fully confirms the stereostructure of the synthesized compound and shows an almost planar shape of the molecule. A chair conformation is observed both in A and C rings while the ring B, containing the C7=C8 double bond, adopts a half-chair conformation (twist at C5—C10 bond). The five-membered D ring has an envelope conformation, with C13 at the flap. In the steroid ring core trans junctions at A/B and C/D rings are observed. The two acetyl groups at C3 and C6 occupy equatorial positions of A and B rings. The alkyl side-chain is fully extended and the isopropyl group is disordered over two positions. Also in the acetyl moiety at C3 disorder in two positions is observed. An intramolecular H bonding motif S(6) involving hydroxy O2–H donor and hydroxy O1 acceptor is observed. In the crystal packing (Fig. 3) molecules are linked into chains running along b, through intermolecular H bonding between hydroxy O1–H donor and carbonyl O7 acceptor, giving rise to a C(14) motif. The chains are generated by the binary screw rotation of the space group. It is a remarkable finding that the isomeric 6β compound crystallizes with three independent molecules in the asymmetric unit (Piccialli, Oliviero et al., 2013).

Related literature top

For general information on the isolation of polyoxygenated steroids from marine source, see: Notaro et al. (1991, 1992). For the synthesis of polyoxygenated steroids, see: Migliuolo et al. (1992). For new selective oxidation protocols, see: Piccialli et al. (1993); Notaro et al. (1994); Caserta et al. (2005); Piccialli, D'Errico et al. (2013). For recent examples of hydrogen bonding in crystals, see: Centore, Fusco, Jazbinsek et al. (2013); Centore et al. (2013a,b); Centore, Fusco, Capobianco et al. (2013). For the structure and packing of the 6β isomeric steroid see: Piccialli, Oliviero et al. (2013).

Experimental top

The title compound was prepared according to the recipe given in Notaro et al., 1994. Crystals suitable for X-ray analysis were obtained by slow evaporation of CHCl3—MeOH (8:2) solutions of the compound.

Refinement top

H atoms of hydroxy groups were located in DIF maps and were refined with Uiso = 1.2×Ueq of the carrier atom. The positions of the other H atoms were determined stereochemically (C–H = 0.98–1.00 Å) and refined by the riding model with Uiso=1.2×Ueq of the carrier atom (1.5 for H atoms of methyl group). Two different positions were found for the isopropyl group of the lateral alkyl chain (occupancy factor refined to 0.774 (8) for C25A/C26A/C27A; 0.226 (8) for C25B/C26B/C27B) and for the acetyl group at C3 (occupancy factor refined to 0.843 (7) for C28A/O5A/C29A; 0.157 (7) for C28B/O5B/C29B). SIMU and SAME restraints (Sheldrick, 2008) were applied to keep similar geometry in the disordered parts. Friedel pairs were merged using MERG3 and the absolute structure was assigned by reference to known chiral centers.

Structure description top

Polyoxygenated steroids have been isolated from both marine and terrestrial sources. They are characterized by a wide range of oxygenation and nuclear substitution patterns. Some of them show antitumour activity as well as other important biological effects and, as a result, steroids are important targets from chemical, biological and medicinal point of view. Our group has previously been involved into studies aimed at the isolation of polyoxygenated steroids from marine sources (Notaro et al., 1991, 1992), as well as at the synthesis and structural modification of some members of this class (Migliuolo et al., 1992). This has led to the development of new efficient oxidation protocols, mostly based on the use of transition-metal oxo-species (Piccialli et al., 1993; Notaro et al., 1994; Caserta et al., 2005; Piccialli, D'Errico et al., 2013), to selectively introduce oxygenated functions into specific positions of the steroidal nucleus. Recently we have undertaken a study aimed at preparing new polyoxygenated steroids for structure-activity relationship studies. In this frame the title compound, shown in the Scheme, was synthesized from commercially available 7-dehydrocholesteryl acetate (Fig. 1) according to a previously developed RuO4-catalyzed route (Notaro et al., 1994). Its 3β,5α,6α-oxygenation pattern is a motif found in some biologically active steroids isolated from sponges of genus Dysidea and, in particular, its C7—C10 functionalization pattern was seen as a key feature to introduce diversely configurated oxygenated functions at these carbon centres and/or neighbouring positions. The present X-ray diffraction study was undertaken in order to confirm the stereostructure of the title compound.

The molecular structure determined by X-ray analysis (Fig.2) fully confirms the stereostructure of the synthesized compound and shows an almost planar shape of the molecule. A chair conformation is observed both in A and C rings while the ring B, containing the C7=C8 double bond, adopts a half-chair conformation (twist at C5—C10 bond). The five-membered D ring has an envelope conformation, with C13 at the flap. In the steroid ring core trans junctions at A/B and C/D rings are observed. The two acetyl groups at C3 and C6 occupy equatorial positions of A and B rings. The alkyl side-chain is fully extended and the isopropyl group is disordered over two positions. Also in the acetyl moiety at C3 disorder in two positions is observed. An intramolecular H bonding motif S(6) involving hydroxy O2–H donor and hydroxy O1 acceptor is observed. In the crystal packing (Fig. 3) molecules are linked into chains running along b, through intermolecular H bonding between hydroxy O1–H donor and carbonyl O7 acceptor, giving rise to a C(14) motif. The chains are generated by the binary screw rotation of the space group. It is a remarkable finding that the isomeric 6β compound crystallizes with three independent molecules in the asymmetric unit (Piccialli, Oliviero et al., 2013).

For general information on the isolation of polyoxygenated steroids from marine source, see: Notaro et al. (1991, 1992). For the synthesis of polyoxygenated steroids, see: Migliuolo et al. (1992). For new selective oxidation protocols, see: Piccialli et al. (1993); Notaro et al. (1994); Caserta et al. (2005); Piccialli, D'Errico et al. (2013). For recent examples of hydrogen bonding in crystals, see: Centore, Fusco, Jazbinsek et al. (2013); Centore et al. (2013a,b); Centore, Fusco, Capobianco et al. (2013). For the structure and packing of the 6β isomeric steroid see: Piccialli, Oliviero et al. (2013).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound by ruthenium catalyzed oxidation of 7-dehydrocholesteryl acetate.
[Figure 2] Fig. 2. ORTEP view of the molecule, thermal ellipsoids are drawn at 30% probability level. The disordered parts with the minor occupancy factors were omitted.
[Figure 3] Fig. 3. Partial packing showing chains of H bonded molecules running along b. The H bonds are represented by dashed lines. The disordered parts with the minor occupancy factors were omitted.
3β,6α-Diacetoxy-5,9α-dihydroxy-5α-cholest-7-en-11-one top
Crystal data top
C31H48O7F(000) = 580
Mr = 532.69Dx = 1.197 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 96 reflections
a = 10.964 (2) Åθ = 3.7–18.4°
b = 9.155 (1) ŵ = 0.08 mm1
c = 14.740 (2) ÅT = 173 K
β = 92.98 (1)°Block, colorless
V = 1477.5 (4) Å30.60 × 0.35 × 0.05 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3498 independent reflections
Radiation source: normal-focus sealed tube2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1411
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1110
Tmin = 0.952, Tmax = 0.996l = 1917
9976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.6674P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max = 0.004
414 parametersΔρmax = 0.24 e Å3
43 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H48O7V = 1477.5 (4) Å3
Mr = 532.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.964 (2) ŵ = 0.08 mm1
b = 9.155 (1) ÅT = 173 K
c = 14.740 (2) Å0.60 × 0.35 × 0.05 mm
β = 92.98 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2502 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.996Rint = 0.051
9976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04743 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
3498 reflectionsΔρmin = 0.23 e Å3
414 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.2313 (3)0.6868 (7)0.3113 (2)0.0272 (8)
H1A1.25940.72370.37200.033*
H1B1.21850.58010.31660.033*
C21.3314 (3)0.7144 (7)0.2447 (2)0.0346 (9)
H2A1.35080.82000.24330.042*
H2B1.40650.66100.26500.042*
C31.2894 (3)0.6642 (7)0.1518 (2)0.0292 (8)
H31.27250.55700.15330.035*
C41.1750 (3)0.7445 (7)0.1178 (2)0.0255 (7)
H4A1.14920.70920.05630.031*
H4B1.19230.85040.11390.031*
C51.0716 (3)0.7187 (6)0.18291 (19)0.0195 (7)
C60.9551 (3)0.8041 (6)0.15326 (19)0.0224 (7)
H60.97480.90970.14440.027*
C70.8587 (3)0.7886 (6)0.2195 (2)0.0230 (7)
H70.77730.81190.19940.028*
C80.8780 (2)0.7447 (6)0.30446 (19)0.0187 (6)
C91.0055 (3)0.7047 (6)0.34476 (19)0.0207 (7)
C101.1079 (3)0.7597 (6)0.2832 (2)0.0216 (7)
C111.0205 (3)0.7551 (6)0.44532 (19)0.0226 (7)
C120.9153 (3)0.7191 (6)0.50437 (19)0.0245 (7)
H12A0.93140.76130.56570.029*
H12B0.90850.61180.51080.029*
C130.7943 (3)0.7805 (6)0.46246 (19)0.0212 (7)
C140.7768 (3)0.7126 (6)0.36678 (19)0.0222 (7)
H140.77750.60430.37600.027*
C150.6462 (3)0.7519 (7)0.3353 (2)0.0293 (8)
H15A0.61300.68160.28940.035*
H15B0.64190.85170.30950.035*
C160.5767 (3)0.7423 (7)0.4239 (2)0.0314 (8)
H16A0.52150.65670.42200.038*
H16B0.52720.83150.43160.038*
C170.6749 (3)0.7270 (7)0.50405 (19)0.0244 (7)
H17A0.68490.62040.51710.029*
C180.8001 (3)0.9459 (6)0.4582 (2)0.0256 (7)
H18A0.86300.97540.41710.038*
H18B0.82020.98490.51910.038*
H18C0.72070.98430.43570.038*
C191.1215 (3)0.9269 (6)0.2916 (2)0.0281 (8)
H19A1.16830.95070.34820.042*
H19B1.04040.97180.29230.042*
H19C1.16440.96440.23980.042*
C200.6328 (3)0.7998 (6)0.5910 (2)0.0246 (7)
H200.61880.90580.57780.030*
C210.7275 (3)0.7879 (6)0.6704 (2)0.0294 (8)
H21A0.74520.68480.68300.044*
H21B0.69540.83360.72440.044*
H21C0.80260.83790.65480.044*
C220.5109 (3)0.7333 (7)0.6181 (2)0.0347 (8)
H22A0.45550.72700.56300.042*
H22B0.52660.63230.63970.042*
C230.4456 (3)0.8149 (7)0.6905 (3)0.0387 (9)
H23A0.50020.82120.74600.046*
H23B0.42870.91580.66910.046*
C24A0.3273 (3)0.7443 (7)0.7141 (3)0.0438 (10)0.774 (8)
H24A0.28380.71460.65660.053*0.774 (8)
H24B0.34770.65380.74840.053*0.774 (8)
C25A0.2395 (4)0.8302 (7)0.7680 (3)0.0349 (13)0.774 (8)
H25B0.21180.91340.72810.042*0.774 (8)
C26A0.1269 (6)0.7425 (12)0.7838 (8)0.072 (3)0.774 (8)
H26D0.14890.65700.82110.108*0.774 (8)
H26E0.08950.71040.72530.108*0.774 (8)
H26F0.06860.80300.81530.108*0.774 (8)
C27A0.2935 (11)0.8984 (13)0.8535 (6)0.068 (2)0.774 (8)
H27D0.23290.96260.87950.101*0.774 (8)
H27E0.36560.95570.83950.101*0.774 (8)
H27F0.31710.82160.89720.101*0.774 (8)
C24B0.3273 (3)0.7443 (7)0.7141 (3)0.0438 (10)0.226 (8)
H24C0.33710.63790.70520.053*0.226 (8)
H24D0.26410.77750.66830.053*0.226 (8)
C25B0.2751 (15)0.7655 (18)0.8072 (12)0.0349 (14)0.226 (8)
H25A0.33020.70910.85050.042*0.226 (8)
C26B0.281 (4)0.921 (2)0.840 (3)0.068 (2)0.226 (8)
H26A0.36680.94730.85460.101*0.226 (8)
H26B0.23470.93040.89470.101*0.226 (8)
H26C0.24700.98560.79250.101*0.226 (8)
C27B0.1508 (17)0.700 (4)0.815 (3)0.063 (10)0.226 (8)
H27A0.13180.63660.76230.095*0.226 (8)
H27B0.08970.77750.81670.095*0.226 (8)
H27C0.14960.64150.87070.095*0.226 (8)
C300.9133 (3)0.8178 (6)0.0083 (2)0.0255 (7)
C310.8490 (3)0.7403 (7)0.0855 (2)0.0333 (8)
H31A0.86610.78940.14260.050*
H31B0.76080.74150.07740.050*
H31C0.87760.63900.08740.050*
O11.0437 (2)0.5655 (6)0.18240 (15)0.0226 (5)
H1C1.031 (3)0.538 (4)0.134 (2)0.027*
O21.0090 (2)0.5488 (6)0.35657 (15)0.0234 (5)
H1D1.007 (3)0.519 (4)0.303 (3)0.028*
O31.1125 (2)0.8138 (6)0.47619 (15)0.0310 (6)
O41.3878 (2)0.6926 (6)0.09140 (16)0.0394 (7)
O5A1.3419 (4)0.4895 (7)0.0110 (3)0.0720 (16)0.843 (7)
C28A1.4072 (5)0.5927 (7)0.0263 (3)0.0461 (18)0.843 (7)
C29A1.5189 (6)0.6266 (12)0.0245 (5)0.058 (2)0.843 (7)
H29D1.58840.57060.00170.086*0.843 (7)
H29E1.53690.73120.01980.086*0.843 (7)
H29F1.50440.59990.08850.086*0.843 (7)
O5B1.407 (2)0.466 (2)0.0706 (19)0.0720 (17)0.157 (7)
C28B1.431 (3)0.590 (2)0.053 (3)0.0461 (19)0.157 (7)
C29B1.538 (4)0.636 (5)0.001 (4)0.058 (3)0.157 (7)
H29A1.51660.72530.03460.086*0.157 (7)
H29B1.55660.55790.04330.086*0.157 (7)
H29C1.60880.65410.04070.086*0.157 (7)
O60.90421 (18)0.7413 (6)0.06841 (13)0.0239 (5)
O70.9678 (2)0.9317 (6)0.01271 (15)0.0352 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (17)0.038 (2)0.0204 (15)0.0016 (15)0.0016 (12)0.0000 (15)
C20.0206 (17)0.050 (2)0.0335 (18)0.0059 (17)0.0037 (14)0.0041 (18)
C30.0181 (17)0.044 (2)0.0266 (17)0.0020 (15)0.0118 (13)0.0021 (16)
C40.0217 (16)0.0338 (19)0.0217 (15)0.0037 (15)0.0080 (12)0.0013 (16)
C50.0209 (16)0.0218 (17)0.0163 (14)0.0022 (13)0.0044 (11)0.0005 (13)
C60.0252 (17)0.0259 (18)0.0161 (14)0.0028 (14)0.0006 (12)0.0009 (14)
C70.0193 (16)0.0287 (19)0.0210 (15)0.0019 (13)0.0012 (12)0.0027 (14)
C80.0165 (15)0.0199 (16)0.0197 (15)0.0018 (13)0.0027 (11)0.0002 (14)
C90.0232 (16)0.0204 (18)0.0181 (15)0.0008 (13)0.0016 (12)0.0006 (13)
C100.0187 (16)0.0259 (18)0.0202 (15)0.0029 (13)0.0002 (12)0.0024 (14)
C110.0214 (17)0.0271 (18)0.0187 (15)0.0071 (14)0.0036 (12)0.0014 (14)
C120.0254 (17)0.033 (2)0.0149 (14)0.0031 (15)0.0026 (12)0.0014 (15)
C130.0207 (16)0.0267 (19)0.0164 (14)0.0005 (13)0.0021 (11)0.0009 (13)
C140.0211 (16)0.0301 (19)0.0155 (14)0.0012 (14)0.0020 (11)0.0008 (14)
C150.0198 (17)0.049 (2)0.0187 (15)0.0014 (16)0.0012 (12)0.0057 (17)
C160.0223 (17)0.051 (2)0.0216 (16)0.0022 (17)0.0040 (12)0.0052 (17)
C170.0240 (16)0.0291 (19)0.0205 (15)0.0021 (15)0.0048 (12)0.0031 (15)
C180.0266 (18)0.0278 (19)0.0227 (16)0.0016 (14)0.0051 (13)0.0015 (15)
C190.0308 (19)0.030 (2)0.0242 (17)0.0075 (15)0.0021 (14)0.0003 (16)
C200.0274 (17)0.0272 (18)0.0196 (15)0.0011 (14)0.0046 (12)0.0008 (14)
C210.0363 (19)0.031 (2)0.0214 (16)0.0057 (15)0.0043 (13)0.0021 (15)
C220.0323 (19)0.042 (2)0.0313 (18)0.0052 (18)0.0156 (14)0.0043 (18)
C230.035 (2)0.040 (2)0.043 (2)0.0067 (18)0.0176 (16)0.0121 (19)
C24A0.039 (2)0.048 (2)0.047 (2)0.009 (2)0.0235 (17)0.010 (2)
C25A0.033 (3)0.036 (3)0.037 (3)0.001 (2)0.014 (2)0.000 (2)
C26A0.056 (5)0.049 (6)0.115 (10)0.007 (4)0.058 (5)0.013 (6)
C27A0.061 (4)0.094 (5)0.050 (4)0.011 (4)0.020 (3)0.023 (4)
C24B0.039 (2)0.048 (2)0.047 (2)0.009 (2)0.0235 (17)0.010 (2)
C25B0.033 (3)0.036 (3)0.038 (3)0.001 (2)0.014 (2)0.000 (3)
C26B0.061 (4)0.094 (5)0.050 (4)0.011 (4)0.020 (3)0.023 (4)
C27B0.049 (15)0.06 (2)0.09 (2)0.008 (13)0.038 (13)0.033 (15)
C300.0236 (17)0.034 (2)0.0197 (16)0.0052 (16)0.0040 (12)0.0057 (15)
C310.0327 (19)0.047 (2)0.0201 (16)0.0001 (18)0.0025 (13)0.0009 (17)
O10.0261 (13)0.0218 (12)0.0201 (11)0.0021 (10)0.0031 (9)0.0031 (10)
O20.0288 (13)0.0225 (13)0.0192 (11)0.0017 (10)0.0031 (9)0.0009 (10)
O30.0267 (13)0.0419 (15)0.0239 (12)0.0032 (11)0.0029 (9)0.0074 (11)
O40.0250 (13)0.0554 (18)0.0391 (14)0.0021 (12)0.0145 (10)0.0044 (13)
O5A0.084 (3)0.067 (3)0.069 (3)0.013 (2)0.049 (3)0.022 (2)
C28A0.038 (3)0.059 (3)0.044 (4)0.010 (2)0.021 (3)0.006 (3)
C29A0.045 (4)0.079 (4)0.052 (5)0.019 (3)0.031 (4)0.023 (4)
O5B0.084 (4)0.067 (3)0.069 (3)0.013 (3)0.049 (3)0.022 (3)
C28B0.038 (3)0.059 (3)0.044 (4)0.010 (3)0.021 (3)0.006 (3)
C29B0.045 (4)0.079 (4)0.052 (5)0.019 (3)0.031 (4)0.023 (4)
O60.0253 (12)0.0297 (13)0.0167 (10)0.0024 (10)0.0011 (8)0.0017 (10)
O70.0441 (16)0.0382 (16)0.0232 (12)0.0102 (12)0.0005 (10)0.0098 (12)
Geometric parameters (Å, º) top
C1—C21.532 (4)C20—C221.539 (4)
C1—C101.546 (4)C20—H201.0000
C1—H1A0.9900C21—H21A0.9800
C1—H1B0.9900C21—H21B0.9800
C2—C31.494 (5)C21—H21C0.9800
C2—H2A0.9900C22—C231.514 (5)
C2—H2B0.9900C22—H22A0.9900
C3—O41.458 (4)C22—H22B0.9900
C3—C41.516 (5)C23—C24A1.506 (5)
C3—H31.0000C23—H23A0.9900
C4—C51.540 (4)C23—H23B0.9900
C4—H4A0.9900C24A—C25A1.501 (2)
C4—H4B0.9900C24A—H24A0.9900
C5—O11.435 (4)C24A—H24B0.9900
C5—C61.542 (4)C25A—C27A1.500 (2)
C5—C101.557 (4)C25A—C26A1.501 (2)
C6—O61.461 (4)C25A—H25B1.0000
C6—C71.482 (4)C26A—H26D0.9800
C6—H61.0000C26A—H26E0.9800
C7—C81.322 (4)C26A—H26F0.9800
C7—H70.9500C27A—H27D0.9800
C8—C141.506 (4)C27A—H27E0.9800
C8—C91.534 (4)C27A—H27F0.9800
C9—O21.438 (4)C25B—C27B1.500 (2)
C9—C111.553 (4)C25B—C26B1.501 (2)
C9—C101.563 (4)C25B—H25A1.0000
C10—C191.542 (5)C26B—H26A0.9800
C11—O31.210 (4)C26B—H26B0.9800
C11—C121.517 (4)C26B—H26C0.9800
C12—C131.540 (4)C27B—H27A0.9800
C12—H12A0.9900C27B—H27B0.9800
C12—H12B0.9900C27B—H27C0.9800
C13—C181.517 (5)C30—O71.205 (4)
C13—C141.544 (4)C30—O61.339 (4)
C13—C171.553 (4)C30—C311.487 (5)
C14—C151.525 (4)C31—H31A0.9800
C14—H141.0000C31—H31B0.9800
C15—C161.548 (4)C31—H31C0.9800
C15—H15A0.9900O1—H1C0.76 (4)
C15—H15B0.9900O2—H1D0.84 (4)
C16—C171.562 (4)O4—C28B1.20 (3)
C16—H16A0.9900O4—C28A1.3500 (11)
C16—H16B0.9900O5A—C28A1.2000 (10)
C17—C201.536 (4)C28A—C29A1.5003 (11)
C17—H17A1.0000C29A—H29D0.9800
C18—H18A0.9800C29A—H29E0.9800
C18—H18B0.9800C29A—H29F0.9800
C18—H18C0.9800O5B—C28B1.2000 (15)
C19—H19A0.9800C28B—C29B1.5003 (15)
C19—H19B0.9800C29B—H29A0.9800
C19—H19C0.9800C29B—H29B0.9800
C20—C211.528 (4)C29B—H29C0.9800
C2—C1—C10113.8 (3)C16—C17—H17A107.3
C2—C1—H1A108.8C13—C18—H18A109.5
C10—C1—H1A108.8C13—C18—H18B109.5
C2—C1—H1B108.8H18A—C18—H18B109.5
C10—C1—H1B108.8C13—C18—H18C109.5
H1A—C1—H1B107.7H18A—C18—H18C109.5
C3—C2—C1109.8 (3)H18B—C18—H18C109.5
C3—C2—H2A109.7C10—C19—H19A109.5
C1—C2—H2A109.7C10—C19—H19B109.5
C3—C2—H2B109.7H19A—C19—H19B109.5
C1—C2—H2B109.7C10—C19—H19C109.5
H2A—C2—H2B108.2H19A—C19—H19C109.5
O4—C3—C2107.6 (3)H19B—C19—H19C109.5
O4—C3—C4109.7 (3)C21—C20—C17112.7 (3)
C2—C3—C4111.4 (3)C21—C20—C22109.7 (3)
O4—C3—H3109.4C17—C20—C22110.3 (3)
C2—C3—H3109.4C21—C20—H20108.0
C4—C3—H3109.4C17—C20—H20108.0
C3—C4—C5110.0 (3)C22—C20—H20108.0
C3—C4—H4A109.7C20—C21—H21A109.5
C5—C4—H4A109.7C20—C21—H21B109.5
C3—C4—H4B109.7H21A—C21—H21B109.5
C5—C4—H4B109.7C20—C21—H21C109.5
H4A—C4—H4B108.2H21A—C21—H21C109.5
O1—C5—C4108.0 (2)H21B—C21—H21C109.5
O1—C5—C6108.7 (2)C23—C22—C20115.9 (3)
C4—C5—C6111.8 (3)C23—C22—H22A108.3
O1—C5—C10106.5 (2)C20—C22—H22A108.3
C4—C5—C10113.2 (2)C23—C22—H22B108.3
C6—C5—C10108.3 (2)C20—C22—H22B108.3
O6—C6—C7105.8 (2)H22A—C22—H22B107.4
O6—C6—C5108.5 (2)C24A—C23—C22113.3 (3)
C7—C6—C5111.9 (3)C24A—C23—H23A108.9
O6—C6—H6110.2C22—C23—H23A108.9
C7—C6—H6110.2C24A—C23—H23B108.9
C5—C6—H6110.2C22—C23—H23B108.9
C8—C7—C6124.6 (3)H23A—C23—H23B107.7
C8—C7—H7117.7C25A—C24A—C23118.8 (3)
C6—C7—H7117.7C25A—C24A—H24A107.6
C7—C8—C14123.4 (3)C23—C24A—H24A107.6
C7—C8—C9122.5 (3)C25A—C24A—H24B107.6
C14—C8—C9113.7 (2)C23—C24A—H24B107.6
O2—C9—C8107.6 (2)H24A—C24A—H24B107.1
O2—C9—C11100.3 (2)C27A—C25A—C26A112.6 (4)
C8—C9—C11110.4 (2)C27A—C25A—C24A115.2 (6)
O2—C9—C10112.0 (2)C26A—C25A—C24A111.0 (5)
C8—C9—C10111.4 (2)C27A—C25A—H25B105.7
C11—C9—C10114.5 (2)C26A—C25A—H25B105.7
C19—C10—C1109.1 (3)C24A—C25A—H25B105.7
C19—C10—C5109.5 (3)C27B—C25B—C26B112.6 (5)
C1—C10—C5109.1 (2)C27B—C25B—H25A105.4
C19—C10—C9110.0 (3)C26B—C25B—H25A105.4
C1—C10—C9110.5 (2)C25B—C26B—H26A109.5
C5—C10—C9108.5 (2)C25B—C26B—H26B109.5
O3—C11—C12121.6 (3)H26A—C26B—H26B109.5
O3—C11—C9122.4 (3)C25B—C26B—H26C109.5
C12—C11—C9115.9 (3)H26A—C26B—H26C109.5
C11—C12—C13110.8 (2)H26B—C26B—H26C109.5
C11—C12—H12A109.5C25B—C27B—H27A109.5
C13—C12—H12A109.5C25B—C27B—H27B109.5
C11—C12—H12B109.5H27A—C27B—H27B109.5
C13—C12—H12B109.5C25B—C27B—H27C109.5
H12A—C12—H12B108.1H27A—C27B—H27C109.5
C18—C13—C12110.1 (3)H27B—C27B—H27C109.5
C18—C13—C14111.6 (3)O7—C30—O6123.8 (3)
C12—C13—C14106.4 (2)O7—C30—C31126.1 (3)
C18—C13—C17111.7 (3)O6—C30—C31110.1 (3)
C12—C13—C17116.9 (3)C30—C31—H31A109.5
C14—C13—C1799.6 (2)C30—C31—H31B109.5
C8—C14—C15118.6 (3)H31A—C31—H31B109.5
C8—C14—C13114.7 (3)C30—C31—H31C109.5
C15—C14—C13104.6 (2)H31A—C31—H31C109.5
C8—C14—H14106.0H31B—C31—H31C109.5
C15—C14—H14106.0C5—O1—H1C111 (3)
C13—C14—H14106.0C9—O2—H1D102 (3)
C14—C15—C16103.1 (2)C28B—O4—C28A20 (2)
C14—C15—H15A111.2C28B—O4—C3118.2 (12)
C16—C15—H15A111.2C28A—O4—C3117.5 (3)
C14—C15—H15B111.2O5A—C28A—O4123.5 (4)
C16—C15—H15B111.2O5A—C28A—C29A124.3 (4)
H15A—C15—H15B109.1O4—C28A—C29A112.2 (5)
C15—C16—C17107.0 (2)O5B—C28B—O4123 (2)
C15—C16—H16A110.3O5B—C28B—C29B124.3 (4)
C17—C16—H16A110.3O4—C28B—C29B112 (2)
C15—C16—H16B110.3C28B—C29B—H29A109.5
C17—C16—H16B110.3C28B—C29B—H29B109.5
H16A—C16—H16B108.6H29A—C29B—H29B109.5
C20—C17—C13119.2 (3)C28B—C29B—H29C109.5
C20—C17—C16111.5 (3)H29A—C29B—H29C109.5
C13—C17—C16103.6 (2)H29B—C29B—H29C109.5
C20—C17—H17A107.3C30—O6—C6118.4 (3)
C13—C17—H17A107.3
C10—C1—C2—C356.6 (4)C9—C11—C12—C1355.5 (4)
C1—C2—C3—O4179.9 (3)C11—C12—C13—C1863.1 (3)
C1—C2—C3—C459.8 (4)C11—C12—C13—C1458.0 (3)
O4—C3—C4—C5178.3 (3)C11—C12—C13—C17168.1 (3)
C2—C3—C4—C559.3 (4)C7—C8—C14—C158.6 (5)
C3—C4—C5—O163.0 (3)C9—C8—C14—C15178.2 (3)
C3—C4—C5—C6177.4 (3)C7—C8—C14—C13133.2 (3)
C3—C4—C5—C1054.7 (4)C9—C8—C14—C1353.6 (4)
O1—C5—C6—O651.2 (3)C18—C13—C14—C861.1 (4)
C4—C5—C6—O668.0 (3)C12—C13—C14—C859.0 (4)
C10—C5—C6—O6166.6 (2)C17—C13—C14—C8179.1 (3)
O1—C5—C6—C765.2 (3)C18—C13—C14—C1570.5 (3)
C4—C5—C6—C7175.6 (3)C12—C13—C14—C15169.4 (3)
C10—C5—C6—C750.2 (3)C17—C13—C14—C1547.5 (3)
O6—C6—C7—C8136.2 (3)C8—C14—C15—C16165.5 (3)
C5—C6—C7—C818.2 (5)C13—C14—C15—C1636.1 (4)
C6—C7—C8—C14172.3 (3)C14—C15—C16—C1710.4 (4)
C6—C7—C8—C90.3 (5)C18—C13—C17—C2046.0 (4)
C7—C8—C9—O2108.6 (3)C12—C13—C17—C2082.1 (4)
C14—C8—C9—O264.7 (3)C14—C13—C17—C20163.9 (3)
C7—C8—C9—C11142.9 (3)C18—C13—C17—C1678.6 (3)
C14—C8—C9—C1143.8 (4)C12—C13—C17—C16153.4 (3)
C7—C8—C9—C1014.6 (4)C14—C13—C17—C1639.3 (3)
C14—C8—C9—C10172.2 (3)C15—C16—C17—C20148.0 (3)
C2—C1—C10—C1968.7 (4)C15—C16—C17—C1318.5 (4)
C2—C1—C10—C550.9 (4)C13—C17—C20—C2158.8 (4)
C2—C1—C10—C9170.2 (3)C16—C17—C20—C21179.4 (3)
O1—C5—C10—C19172.0 (2)C13—C17—C20—C22178.2 (3)
C4—C5—C10—C1969.4 (3)C16—C17—C20—C2257.5 (4)
C6—C5—C10—C1955.2 (3)C21—C20—C22—C2367.4 (4)
O1—C5—C10—C168.6 (3)C17—C20—C22—C23167.8 (3)
C4—C5—C10—C150.0 (4)C20—C22—C23—C24A179.9 (3)
C6—C5—C10—C1174.6 (3)C22—C23—C24A—C25A165.9 (4)
O1—C5—C10—C951.8 (3)C23—C24A—C25A—C27A51.2 (7)
C4—C5—C10—C9170.5 (3)C23—C24A—C25A—C26A179.3 (6)
C6—C5—C10—C964.9 (3)C2—C3—O4—C28B120 (2)
O2—C9—C10—C19166.0 (3)C4—C3—O4—C28B119 (2)
C8—C9—C10—C1973.5 (3)C2—C3—O4—C28A142.1 (4)
C11—C9—C10—C1952.6 (3)C4—C3—O4—C28A96.6 (4)
O2—C9—C10—C145.4 (3)C28B—O4—C28A—O5A104 (4)
C8—C9—C10—C1166.0 (3)C3—O4—C28A—O5A6.5 (7)
C11—C9—C10—C167.9 (3)C28B—O4—C28A—C29A77 (4)
O2—C9—C10—C574.2 (3)C3—O4—C28A—C29A173.9 (4)
C8—C9—C10—C546.4 (3)C28A—O4—C28B—O5B102 (6)
C11—C9—C10—C5172.5 (3)C3—O4—C28B—O5B9 (5)
O2—C9—C11—O3109.9 (3)C28A—O4—C28B—C29B91 (5)
C8—C9—C11—O3136.8 (3)C3—O4—C28B—C29B176 (3)
C10—C9—C11—O310.2 (4)O7—C30—O6—C64.9 (4)
O2—C9—C11—C1267.0 (3)C31—C30—O6—C6176.1 (3)
C8—C9—C11—C1246.3 (4)C7—C6—O6—C30131.8 (3)
C10—C9—C11—C12173.0 (3)C5—C6—O6—C30108.0 (3)
O3—C11—C12—C13127.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1D···O10.84 (4)1.89 (4)2.619 (3)145 (4)
O1—H1C···O7i0.76 (4)2.04 (4)2.782 (3)166 (4)
Symmetry code: (i) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC31H48O7
Mr532.69
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.964 (2), 9.155 (1), 14.740 (2)
β (°) 92.98 (1)
V3)1477.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.35 × 0.05
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.952, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9976, 3498, 2502
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.07
No. of reflections3498
No. of parameters414
No. of restraints43
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1D···O10.84 (4)1.89 (4)2.619 (3)145 (4)
O1—H1C···O7i0.76 (4)2.04 (4)2.782 (3)166 (4)
Symmetry code: (i) x+2, y1/2, z.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II".

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaserta, T., Piccialli, V., Gomez-Paloma, L. & Bifulco, G. (2005). Tetrahedron, 61, 927–939.  Web of Science CrossRef CAS Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. doi:10.1002/ejoc.201201653.  Google Scholar
First citationCentore, R., Fusco, S., Jazbinsek, M., Capobianco, A. & Peluso, A. (2013). CrystEngComm, 15, 3318–3325.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667–o668.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802–o803.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMigliuolo, A., Piccialli, V. & Sica, D. (1992). Steroids, 57, 344–347.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNotaro, G., Piccialli, V., Sica, D. & Corriero, G. (1991). J. Nat. Prod. 54, 1570–1575.  CrossRef CAS Web of Science Google Scholar
First citationNotaro, G., Piccialli, V., Sica, D. & Pronzato, R. (1992). J. Nat. Prod. 55, 773–779.  CrossRef Web of Science Google Scholar
First citationNotaro, G., Piccialli, V., Sica, D. & Smaldone, D. M. A. (1994). Tetrahedron, 50, 4835–4852.  CrossRef CAS Web of Science Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef Google Scholar
First citationPiccialli, V., Oliviero, G., Borbone, N., Centore, R. & Tuzi, A. (2013). Acta Cryst. E69, o879–o880.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiccialli, V., Smaldone, D. M. A. & Sica, D. (1993). Tetrahedron, 49, 4211–4228.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds