metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m303-m304

Poly[1H-imidazol-3-ium [di-μ-nitrato-sodium]]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria, and cSciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

(Received 25 April 2013; accepted 1 May 2013; online 11 May 2013)

In the title compound {(C3H5N2)[Na(NO3)2]}n, the NaI ion is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal–prismatic geometry. The imidazolium cation is essentially planar (r.m.s. deviation for all non-H atoms = 0.0018 Å). In the crystal, the NaI ions are connected by bridging nitrate ligands, forming layers parallel to (010). The imidazolium cations are sandwiched between these layers. Weak C—H⋯O hydrogen bonds link the layers into a three-dimensional network. In addtion, ππ inter­actions between the imidazolium rings [centroid–centroid distance = 3.588 (3) Å] are observed.

Related literature

For applications of imidazole and its derivatives, see: Huang et al. (2008[Huang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 1795-1797.], 2011[Huang, Z.-J., Tang, J.-N., Luo, Z.-R., Wang, D.-Y. & Wei, H. (2011). Acta Cryst. E67, m408.]). For the preparation and characterization of some metal complexes of imidazolium, see: Gao et al. (2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. E65, m561.]); Zhang et al. (2011[Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569-m570.]); Zhu (2012[Zhu, R.-Q. (2012). Acta Cryst. E68, m389.]); Han et al. (2007[Han, W.-H., Dang, L.-L. & Zhang, W.-J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 403-404.]); Wenyan et al. (2011[Wenyan, B., Guanghua, L., Xue, Q., Huo, Y. & Wang, G. (2011). Z. Kristallogr. New Cryst. Struct. 226, 121-122.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H5N2)[Na(NO3)2]

  • Mr = 216.1

  • Monoclinic, P 21 /c

  • a = 3.5875 (3) Å

  • b = 24.8548 (17) Å

  • c = 8.819 (6) Å

  • β = 95.546 (4)°

  • V = 782.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.52 × 0.15 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.972

  • 9892 measured reflections

  • 1778 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.10

  • 1778 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O12 2.4321 (16)
Na1—O21 2.4639 (14)
Na1—O13i 2.5106 (13)
Na1—O23 2.5338 (13)
Na1—O13ii 2.5730 (14)
Na1—O11ii 2.5910 (19)
Na1—O11 2.6239 (17)
Na1—O21iii 2.6776 (14)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O23iv 0.95 2.50 3.438 (3) 168
C4—H4⋯O11v 0.95 2.41 3.355 (3) 173
Symmetry codes: (iv) -x+1, -y, -z+2; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Knowledge of the detailed coordination behavior of imidazoles and their limitation in the possible use in complexes with specific catalytic activity is of great current importance. Imidazole, namely 1,3-diazacyclopenta-2,4-diene and its derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Huang et al. 2011; Huang et al. 2008). Recently, several complexes based on the imidazolium cation were reported (Gao et al. 2009; Zhang et al. 2011; Zhu 2012; Han et al. 2007; Wenyan et al. 2011). This paper describes the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (I) (Fig. 1) contains one NaI ion, one protonated imidazole molecule and two coordinated nitrate anions. The Na centre is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal-prismatic geometry (Fig. 2). The Na—O bond distances range from 2.4321 (16) to 2.6239 (17) Å. The C—N distances lie in the range 1.328 (2)- 1.376 (2) A°. The imidazolium cation is essentially planar giving an r.m.s. deviation for all non-H atoms of 0.0018 A°, with a maximum deviation from the mean plane of -0.0028 (1)Å for the C4 atom. The crystal packing can be described by alterning two-dimensional polymecric layers and double layers of imidazolium ions. A two-dimensional layer structure is thus constructed parallel to (010) (Fig. 3). Weak hydrogen bonds are formed between imidazolium cation and the nitrate O atoms of adjacent layers (Fig. 3) further connect the two-dimensional layers into a three-dimensional network. In addition, π···π contacts between the imidazolium rings, [centroid-centroid distance = 3.588 (3) Å with ca 1.382 Å slippage] are also observed.

Related literature top

For applications of imidazole and its derivatives, see: Huang et al. (2008, 2011). For the preparation and characterization of some metal complexes of imidazolium, see: Gao et al. (2009); Zhang et al. (2011); Zhu (2012); Han et al. (2007); Wenyan et al. (2011).

Experimental top

All chemicals used (reagent grade) were commercially available. The compound was obtained by using hydrothermal method in Teflon-lined autoclave. The mixture of barium nitrate, imidazole, sodium hydroxide and deionized water in the molar ratio 1:1:3:264 was stirred for half an hour, and transferred in a Teflon-lined autoclave, then treated at 423 K for 4 d. After the mixture was slowly cooled to room temperature, colorless needles suitable for X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature.

Refinement top

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined with the riding-model approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; Naryl—Haryl = 0.88 Å and Uiso(Haryl) = 1.2 Ueq(Caryl).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The asymetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The coordination of the unieque NaI ion.
[Figure 3] Fig. 3. A partial packing diagram of (I), showing alterning layers with hydrogen bond shown as dashed lines.
Poly[1H-imidazol-3-ium [di-µ-nitrato-sodium]] top
Crystal data top
(C3H5N2)[Na(NO3)2]F(000) = 440
Mr = 216.1Dx = 1.834 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7048 reflections
a = 3.5875 (3) Åθ = 2.9–27.5°
b = 24.8548 (17) ŵ = 0.22 mm1
c = 8.819 (6) ÅT = 150 K
β = 95.546 (4)°Stick, colourless
V = 782.7 (5) Å30.52 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1778 independent reflections
Radiation source: Enraf Nonius FR5901541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.0°
CCD rotation images, thin slices scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 3232
Tmin = 0.884, Tmax = 0.972l = 1111
9892 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.6068P]
where P = (Fo2 + 2Fc2)/3
1778 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
(C3H5N2)[Na(NO3)2]V = 782.7 (5) Å3
Mr = 216.1Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.5875 (3) ŵ = 0.22 mm1
b = 24.8548 (17) ÅT = 150 K
c = 8.819 (6) Å0.52 × 0.15 × 0.13 mm
β = 95.546 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1541 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.972Rint = 0.029
9892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
1778 reflectionsΔρmin = 0.29 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.51191 (18)0.19828 (2)1.30182 (7)0.02160 (17)
O210.9994 (3)0.13952 (4)1.42898 (13)0.0229 (3)
N220.8825 (4)0.09735 (5)1.35908 (15)0.0179 (3)
O230.6569 (3)0.10118 (5)1.24273 (13)0.0236 (3)
O220.9921 (3)0.05206 (4)1.40834 (13)0.0243 (3)
O120.0537 (3)0.18850 (4)1.08164 (13)0.0221 (3)
N10.1514 (4)0.22797 (5)1.00369 (15)0.0172 (3)
O110.3871 (3)0.26060 (4)1.06212 (13)0.0228 (3)
O130.0153 (3)0.23312 (5)0.86783 (13)0.0234 (3)
C40.5075 (5)0.12044 (6)0.74003 (19)0.0223 (3)
H40.45120.15370.68960.027*
N30.6807 (4)0.11445 (5)0.87906 (16)0.0208 (3)
H30.76190.14080.94030.025*
C20.7128 (5)0.06034 (6)0.91212 (19)0.0212 (3)
H20.82520.04491.00390.025*
C10.5545 (4)0.03354 (6)0.78945 (18)0.0207 (3)
H10.53480.00440.7780.025*
N50.4268 (4)0.07172 (5)0.68401 (15)0.0203 (3)
H50.31010.0650.59360.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0229 (3)0.0196 (3)0.0211 (3)0.0029 (2)0.0037 (3)0.0020 (2)
O210.0284 (6)0.0159 (5)0.0235 (6)0.0015 (5)0.0022 (5)0.0039 (4)
N220.0200 (6)0.0169 (6)0.0169 (7)0.0007 (5)0.0019 (5)0.0006 (5)
O230.0273 (6)0.0246 (6)0.0178 (6)0.0012 (5)0.0046 (5)0.0006 (4)
O220.0313 (7)0.0153 (5)0.0251 (6)0.0018 (5)0.0033 (5)0.0009 (4)
O120.0297 (6)0.0169 (5)0.0188 (6)0.0040 (4)0.0019 (5)0.0045 (4)
N10.0194 (6)0.0157 (6)0.0165 (7)0.0024 (5)0.0020 (5)0.0005 (5)
O110.0225 (6)0.0192 (5)0.0263 (6)0.0052 (4)0.0001 (5)0.0025 (5)
O130.0309 (6)0.0239 (6)0.0144 (6)0.0022 (5)0.0024 (5)0.0022 (4)
C40.0246 (8)0.0206 (7)0.0219 (8)0.0004 (6)0.0035 (6)0.0015 (6)
N30.0221 (7)0.0190 (6)0.0214 (7)0.0022 (5)0.0023 (5)0.0045 (5)
C20.0222 (8)0.0205 (8)0.0210 (8)0.0012 (6)0.0022 (6)0.0010 (6)
C10.0207 (8)0.0195 (7)0.0219 (8)0.0003 (6)0.0025 (6)0.0012 (6)
N50.0202 (7)0.0242 (7)0.0161 (7)0.0009 (5)0.0003 (5)0.0025 (5)
Geometric parameters (Å, º) top
Na1—O122.4321 (16)O12—Na1iii2.8874 (17)
Na1—O212.4639 (14)N1—O111.2467 (17)
Na1—O13i2.5106 (13)N1—O131.2560 (19)
Na1—O232.5338 (13)N1—Na1v2.9406 (16)
Na1—O13ii2.5730 (14)O11—Na1v2.5910 (19)
Na1—O11ii2.5910 (19)O13—Na1vi2.5106 (13)
Na1—O112.6239 (17)O13—Na1v2.5730 (14)
Na1—O21iii2.6776 (14)C4—N31.328 (2)
Na1—O12iv2.8874 (17)C4—N51.329 (2)
Na1—N12.911 (2)C4—H40.95
Na1—N1ii2.9406 (16)N3—C21.379 (2)
Na1—Na1iii3.5875 (3)N3—H30.88
O21—N221.2668 (17)C2—C11.348 (2)
O21—Na1iv2.6776 (14)C2—H20.95
N22—O231.2475 (19)C1—N51.376 (2)
N22—O221.2558 (17)C1—H10.95
O12—N11.2666 (17)N5—H50.88
O12—Na1—O21134.38 (5)N1—Na1—N1ii101.88 (5)
O12—Na1—O13i131.96 (5)O12—Na1—Na1iii53.22 (4)
O21—Na1—O13i80.44 (4)O21—Na1—Na1iii131.75 (3)
O12—Na1—O2382.93 (4)O13i—Na1—Na1iii134.17 (3)
O21—Na1—O2351.55 (4)O23—Na1—Na1iii103.01 (3)
O13i—Na1—O23122.49 (5)O13ii—Na1—Na1iii44.41 (3)
O12—Na1—O13ii79.49 (5)O11ii—Na1—Na1iii75.02 (3)
O21—Na1—O13ii140.03 (5)O11—Na1—Na1iii84.68 (3)
O13i—Na1—O13ii89.76 (4)O21iii—Na1—Na1iii43.36 (3)
O23—Na1—O13ii146.94 (5)O12iv—Na1—Na1iii137.57 (3)
O12—Na1—O11ii125.84 (5)N1—Na1—Na1iii69.08 (3)
O21—Na1—O11ii90.37 (5)N1ii—Na1—Na1iii60.11 (3)
O13i—Na1—O11ii73.07 (4)N22—O21—Na194.69 (9)
O23—Na1—O11ii127.91 (4)N22—O21—Na1iv117.13 (10)
O13ii—Na1—O11ii49.87 (4)Na1—O21—Na1iv88.39 (4)
O12—Na1—O1150.67 (4)O23—N22—O22120.63 (13)
O21—Na1—O11140.80 (5)O23—N22—O21119.68 (13)
O13i—Na1—O1181.31 (4)O22—N22—O21119.69 (13)
O23—Na1—O11114.77 (5)N22—O23—Na191.91 (9)
O13ii—Na1—O1173.93 (5)N1—O12—Na198.90 (9)
O11ii—Na1—O11116.76 (4)N1—O12—Na1iii122.64 (9)
O12—Na1—O21iii80.87 (5)Na1—O12—Na1iii84.35 (5)
O21—Na1—O21iii88.39 (4)O11—N1—O13120.90 (13)
O13i—Na1—O21iii141.34 (5)O11—N1—O12119.46 (13)
O23—Na1—O21iii74.30 (4)O13—N1—O12119.62 (13)
O13ii—Na1—O21iii75.42 (4)O11—N1—Na164.35 (8)
O11ii—Na1—O21iii70.10 (4)O13—N1—Na1170.21 (10)
O11—Na1—O21iii126.07 (4)O12—N1—Na155.64 (7)
O12—Na1—O12iv84.35 (5)O11—N1—Na1v61.59 (8)
O21—Na1—O12iv76.22 (5)O13—N1—Na1v60.79 (8)
O13i—Na1—O12iv72.38 (4)O12—N1—Na1v166.49 (10)
O23—Na1—O12iv67.45 (4)Na1—N1—Na1v121.45 (5)
O13ii—Na1—O12iv137.21 (4)N1—O11—Na1v93.37 (9)
O11ii—Na1—O12iv144.51 (4)N1—O11—Na190.29 (9)
O11—Na1—O12iv65.26 (5)Na1v—O11—Na1156.34 (6)
O21iii—Na1—O12iv140.33 (4)N1—O13—Na1vi119.68 (9)
O12—Na1—N125.46 (4)N1—O13—Na1v93.99 (9)
O21—Na1—N1142.68 (4)Na1vi—O13—Na1v89.76 (4)
O13i—Na1—N1106.51 (4)N3—C4—N5107.85 (14)
O23—Na1—N197.92 (4)N3—C4—H4126.1
O13ii—Na1—N177.26 (5)N5—C4—H4126.1
O11ii—Na1—N1126.91 (5)C4—N3—C2109.07 (14)
O11—Na1—N125.36 (4)C4—N3—H3125.5
O21iii—Na1—N1104.68 (5)C2—N3—H3125.5
O12iv—Na1—N171.53 (5)C1—C2—N3106.99 (15)
O12—Na1—N1ii104.05 (5)C1—C2—H2126.5
O21—Na1—N1ii115.36 (5)N3—C2—H2126.5
O13i—Na1—N1ii77.58 (4)C2—C1—N5106.76 (14)
O23—Na1—N1ii146.03 (5)C2—C1—H1126.6
O13ii—Na1—N1ii25.22 (4)N5—C1—H1126.6
O11ii—Na1—N1ii25.04 (4)C4—N5—C1109.33 (14)
O11—Na1—N1ii93.96 (5)C4—N5—H5125.3
O21iii—Na1—N1ii74.13 (4)C1—N5—H5125.3
O12iv—Na1—N1ii145.46 (4)
O12—Na1—O21—N2212.65 (12)O21—Na1—N1—O11102.52 (10)
O13i—Na1—O21—N22154.26 (9)O13i—Na1—N1—O116.60 (9)
O23—Na1—O21—N228.23 (8)O23—Na1—N1—O11133.96 (9)
O13ii—Na1—O21—N22127.71 (9)O13ii—Na1—N1—O1179.31 (8)
O11ii—Na1—O21—N22132.99 (9)O11ii—Na1—N1—O1174.35 (7)
O11—Na1—O21—N2290.93 (11)O21iii—Na1—N1—O11150.27 (8)
O21iii—Na1—O21—N2262.90 (10)O12iv—Na1—N1—O1171.01 (8)
O12iv—Na1—O21—N2280.21 (9)N1ii—Na1—N1—O1173.79 (10)
N1—Na1—O21—N2249.51 (12)Na1iii—Na1—N1—O11125.07 (8)
N1ii—Na1—O21—N22134.48 (8)O21—Na1—N1—O1285.90 (11)
Na1iii—Na1—O21—N2262.90 (10)O13i—Na1—N1—O12178.18 (9)
O12—Na1—O21—Na1iv104.45 (7)O23—Na1—N1—O1254.46 (9)
O13i—Na1—O21—Na1iv37.16 (4)O13ii—Na1—N1—O1292.27 (9)
O23—Na1—O21—Na1iv108.86 (6)O11ii—Na1—N1—O1297.23 (10)
O13ii—Na1—O21—Na1iv115.19 (7)O11—Na1—N1—O12171.58 (14)
O11ii—Na1—O21—Na1iv109.92 (4)O21iii—Na1—N1—O1221.31 (9)
O11—Na1—O21—Na1iv26.17 (8)O12iv—Na1—N1—O12117.41 (10)
O21iii—Na1—O21—Na1iv180N1ii—Na1—N1—O1297.78 (8)
O12iv—Na1—O21—Na1iv36.89 (4)Na1iii—Na1—N1—O1246.51 (8)
N1—Na1—O21—Na1iv67.58 (8)O12—Na1—N1—Na1v164.26 (12)
N1ii—Na1—O21—Na1iv108.43 (5)O21—Na1—N1—Na1v78.36 (8)
Na1iii—Na1—O21—Na1iv180O13i—Na1—N1—Na1v17.56 (7)
Na1—O21—N22—O2315.20 (14)O23—Na1—N1—Na1v109.81 (5)
Na1iv—O21—N22—O2375.40 (16)O13ii—Na1—N1—Na1v103.46 (6)
Na1—O21—N22—O22164.17 (12)O11ii—Na1—N1—Na1v98.51 (7)
Na1iv—O21—N22—O22105.23 (14)O11—Na1—N1—Na1v24.16 (7)
O22—N22—O23—Na1164.63 (12)O21iii—Na1—N1—Na1v174.43 (5)
O21—N22—O23—Na114.73 (14)O12iv—Na1—N1—Na1v46.85 (5)
O12—Na1—O23—N22174.84 (9)N1ii—Na1—N1—Na1v97.95 (7)
O21—Na1—O23—N228.34 (8)Na1iii—Na1—N1—Na1v149.23 (5)
O13i—Na1—O23—N2249.13 (10)O13—N1—O11—Na1v14.00 (14)
O13ii—Na1—O23—N22116.69 (11)O12—N1—O11—Na1v164.60 (12)
O11ii—Na1—O23—N2244.21 (11)Na1—N1—O11—Na1v156.62 (6)
O11—Na1—O23—N22144.67 (9)O13—N1—O11—Na1170.61 (12)
O21iii—Na1—O23—N2292.38 (10)O12—N1—O11—Na17.98 (13)
O12iv—Na1—O23—N2298.36 (10)Na1v—N1—O11—Na1156.62 (6)
N1—Na1—O23—N22164.52 (9)O12—Na1—O11—N14.67 (8)
N1ii—Na1—O23—N2270.14 (13)O21—Na1—O11—N1110.55 (10)
Na1iii—Na1—O23—N22125.23 (8)O13i—Na1—O11—N1173.60 (9)
O21—Na1—O12—N1122.22 (9)O23—Na1—O11—N151.74 (9)
O13i—Na1—O12—N12.35 (12)O13ii—Na1—O11—N194.12 (9)
O23—Na1—O12—N1125.70 (9)O11ii—Na1—O11—N1120.42 (7)
O13ii—Na1—O12—N182.42 (9)O21iii—Na1—O11—N136.40 (10)
O11ii—Na1—O12—N1101.91 (10)O12iv—Na1—O11—N199.07 (9)
O11—Na1—O12—N14.65 (8)N1ii—Na1—O11—N1109.62 (10)
O21iii—Na1—O12—N1159.15 (9)Na1iii—Na1—O11—N150.16 (8)
O12iv—Na1—O12—N157.79 (9)O12—Na1—O11—Na1v103.77 (14)
N1ii—Na1—O12—N188.16 (7)O21—Na1—O11—Na1v11.44 (17)
Na1iii—Na1—O12—N1122.21 (9)O13i—Na1—O11—Na1v74.50 (12)
O21—Na1—O12—Na1iii115.57 (6)O23—Na1—O11—Na1v47.37 (14)
O13i—Na1—O12—Na1iii119.86 (5)O13ii—Na1—O11—Na1v166.77 (13)
O23—Na1—O12—Na1iii112.09 (4)O11ii—Na1—O11—Na1v140.47 (11)
O13ii—Na1—O12—Na1iii39.79 (4)O21iii—Na1—O11—Na1v135.51 (12)
O11ii—Na1—O12—Na1iii20.30 (6)O12iv—Na1—O11—Na1v0.03 (12)
O11—Na1—O12—Na1iii117.56 (5)N1—Na1—O11—Na1v99.10 (15)
O21iii—Na1—O12—Na1iii36.93 (4)N1ii—Na1—O11—Na1v151.28 (12)
O12iv—Na1—O12—Na1iii180Na1iii—Na1—O11—Na1v149.26 (12)
N1—Na1—O12—Na1iii122.21 (9)O11—N1—O13—Na1vi77.90 (15)
N1ii—Na1—O12—Na1iii34.05 (4)O12—N1—O13—Na1vi103.51 (13)
Na1—O12—N1—O118.72 (14)Na1v—N1—O13—Na1vi92.00 (8)
Na1iii—O12—N1—O1180.25 (15)O11—N1—O13—Na1v14.11 (14)
Na1—O12—N1—O13169.89 (11)O12—N1—O13—Na1v164.48 (12)
Na1iii—O12—N1—O13101.14 (14)N5—C4—N3—C20.31 (19)
Na1iii—O12—N1—Na188.97 (9)C4—N3—C2—C10.00 (19)
Na1—O12—N1—Na1v82.0 (4)N3—C2—C1—N50.30 (18)
Na1iii—O12—N1—Na1v170.9 (4)N3—C4—N5—C10.50 (19)
O12—Na1—N1—O11171.58 (14)C2—C1—N5—C40.50 (18)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1/2, z1/2; (vi) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O23vii0.952.503.438 (3)168
C4—H4···O11v0.952.413.355 (3)173
Symmetry codes: (v) x, y+1/2, z1/2; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula(C3H5N2)[Na(NO3)2]
Mr216.1
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)3.5875 (3), 24.8548 (17), 8.819 (6)
β (°) 95.546 (4)
V3)782.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.52 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.884, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9892, 1778, 1541
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.10
No. of reflections1778
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.29

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Selected bond lengths (Å) top
Na1—O122.4321 (16)Na1—O13ii2.5730 (14)
Na1—O212.4639 (14)Na1—O11ii2.5910 (19)
Na1—O13i2.5106 (13)Na1—O112.6239 (17)
Na1—O232.5338 (13)Na1—O21iii2.6776 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O23iv0.952.503.438 (3)168.00
C4—H4···O11v0.952.413.355 (3)173.00
Symmetry codes: (iv) x+1, y, z+2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank MESRS and ATRST (Algérie) for financial support. They also thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. E65, m561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, W.-H., Dang, L.-L. & Zhang, W.-J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 403–404.  CAS Google Scholar
First citationHuang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 1795–1797.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Z.-J., Tang, J.-N., Luo, Z.-R., Wang, D.-Y. & Wei, H. (2011). Acta Cryst. E67, m408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWenyan, B., Guanghua, L., Xue, Q., Huo, Y. & Wang, G. (2011). Z. Kristallogr. New Cryst. Struct. 226, 121–122.  Google Scholar
First citationZhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569–m570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, R.-Q. (2012). Acta Cryst. E68, m389.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m303-m304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds