organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-3-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-N-phenyl-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2013; accepted 25 March 2013; online 28 March 2013)

In the title compound, C26H23FN6S, the pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The thio­urea group is close to being coplanar with the pyrazole N atoms [N—N—C—S torsion angle = 176.78 (15)°], which allows for an intra­molecular N—H⋯N hydrogen bond; the connected triazole ring is nearly coplanar with this ring [N—C—C—N = −172.65 (19)°]. There is a significant twist between the pyrazole ring and attached fluoro­benzene ring [N—C—C—C = −18.8 (3)°] and a greater twist between triazole and attached tolyl ring [dihedral angle = 58.25 (14)°]. In the crystal, supra­molecular chains aligned along [40,10] are consolidated by ππ inter­actions between the triazole and phenyl rings [centroid–centroid distance = 3.7053 (13) Å].

Related literature

For the biological activity and synthesis of related compounds, see: Abdel-Wahab, Abdel-Latif et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]). For a related structure, see: Abdel-Wahab, Mohamed et al. (2012[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1985.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23FN6S

  • Mr = 470.56

  • Monoclinic, P 21 /c

  • a = 6.5449 (5) Å

  • b = 26.1030 (17) Å

  • c = 14.3818 (8) Å

  • β = 100.604 (7)°

  • V = 2415.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.802, Tmax = 1.000

  • 15173 measured reflections

  • 5578 independent reflections

  • 3313 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.03

  • 5578 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯N3 0.83 (3) 2.05 (3) 2.568 (3) 120 (2)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with studies into the biological studies on related pyrazolines (Abdel-Wahab, Abdel-Latif et al., 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the pyrazole ring has an envelope conformation with the methine-C8 atom being the flap atom. The thiourea group is close to co-planar with the N atoms of this ring [the N3—N2—C7—S1 torsion angle = 176.78 (15)°], which allows for an intramolecular N1—H···N3 hydrogen bond, Table 1, and the connected triazole ring is slightly twisted out of the plane through this ring [N3—C10—C17—N4 is -172.65 (19)°]. There is a significant twist between the pyrazole ring and attached fluorobenzene ring as seen in the N2—C8—C11—C12 torsion angle of -18.8 (3)°, and an even greater twist between triazole and attached tolyl ring with the dihedral angle being 58.25 (14)°. The relative dispositions of the terminal substituent in (I) resembles those found in a recently determined structure with pyrazole-p-tolyl and triazole-4-(piperidin-1-yl)phenyl substituents (Abdel-Wahab, Mohamed et al., 2012).

The most prominent feature of the crystal packing is the formation of ππ interactions between the triazole and phenyl rings [inter-centroid distance = 3.7053 (13) Å, angle of inclination = 10.17 (12)° for symmetry operation i: 1 + x, 3/2 - y, 1/2 + z]. These lead to a supramolecular chains, aligned approximately along [1 0 2], and which aggregate in the ac plane with no specific interactions between them, Fig. 2. Layers thus formed stack along the b axis, Fig. 3.

Related literature top

For the biological activity and synthesis of related compounds, see: Abdel-Wahab, Abdel-Latif et al. (2012). For a related structure, see: Abdel-Wahab, Mohamed et al. (2012).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab, Abdel-Latif et al., 2012). Colourless crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C). The nitrogen-bound H-atom was refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in (I) highlighting the supramolecular chains sustained by ππ interactions (purple dashed lines).
[Figure 3] Fig. 3. A view of the crystal packing in projection down the a axis. The ππ interactions are shown as purple dashed lines.
5-(4-Fluorophenyl)-3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-N-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C26H23FN6SF(000) = 984
Mr = 470.56Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2937 reflections
a = 6.5449 (5) Åθ = 2.9–27.5°
b = 26.1030 (17) ŵ = 0.17 mm1
c = 14.3818 (8) ÅT = 295 K
β = 100.604 (7)°Prism, colourless
V = 2415.0 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5578 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3313 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 3333
Tmin = 0.802, Tmax = 1.000l = 1818
15173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3514P]
where P = (Fo2 + 2Fc2)/3
5578 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H23FN6SV = 2415.0 (3) Å3
Mr = 470.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5449 (5) ŵ = 0.17 mm1
b = 26.1030 (17) ÅT = 295 K
c = 14.3818 (8) Å0.40 × 0.30 × 0.20 mm
β = 100.604 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5578 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3313 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.040
15173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
5578 reflectionsΔρmin = 0.21 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28247 (11)0.59566 (2)0.26576 (4)0.0660 (2)
F10.4921 (5)0.53780 (11)0.71572 (17)0.1882 (13)
N10.2779 (3)0.69941 (8)0.25175 (14)0.0581 (5)
N20.5580 (3)0.66351 (7)0.34286 (12)0.0538 (5)
N30.6368 (3)0.71314 (7)0.35592 (12)0.0519 (5)
N41.1621 (3)0.75227 (8)0.45157 (14)0.0624 (5)
N51.2414 (3)0.79826 (8)0.45671 (15)0.0662 (6)
N61.0814 (3)0.83112 (8)0.42485 (12)0.0584 (5)
C10.0777 (3)0.71154 (8)0.20191 (14)0.0503 (5)
C20.0342 (4)0.76336 (9)0.18895 (15)0.0580 (6)
H20.13730.78730.21050.070*
C30.1592 (4)0.77990 (10)0.14473 (15)0.0635 (7)
H3A0.18600.81480.13710.076*
C40.3132 (4)0.74477 (11)0.11172 (15)0.0655 (7)
H40.44420.75570.08190.079*
C50.2697 (4)0.69365 (11)0.12361 (16)0.0659 (7)
H50.37290.66990.10120.079*
C60.0762 (4)0.67637 (9)0.16809 (15)0.0608 (6)
H60.05000.64140.17510.073*
C70.3712 (4)0.65505 (8)0.28600 (14)0.0504 (5)
C80.7040 (3)0.62449 (9)0.39009 (14)0.0532 (6)
H80.72410.59760.34510.064*
C90.9037 (3)0.65642 (9)0.41746 (16)0.0572 (6)
H9A0.96440.65200.48370.069*
H9B1.00560.64720.37920.069*
C100.8281 (3)0.70984 (9)0.39768 (14)0.0503 (5)
C110.6339 (4)0.60126 (9)0.47522 (15)0.0547 (6)
C120.4899 (4)0.62432 (10)0.51996 (17)0.0666 (7)
H120.42420.65430.49560.080*
C130.4429 (5)0.60252 (14)0.6021 (2)0.0936 (10)
H130.34700.61790.63360.112*
C140.5405 (7)0.55819 (17)0.6353 (2)0.1117 (13)
C150.6779 (7)0.53446 (15)0.5924 (3)0.1172 (13)
H150.74040.50410.61640.141*
C160.7249 (5)0.55604 (11)0.5117 (2)0.0877 (9)
H160.82020.53980.48100.105*
C170.9534 (3)0.75537 (9)0.41700 (14)0.0520 (5)
C180.8996 (3)0.80599 (9)0.39990 (14)0.0530 (5)
C190.6961 (4)0.83117 (10)0.36692 (18)0.0669 (7)
H19A0.70830.86720.38020.100*
H19B0.59400.81650.39910.100*
H19C0.65430.82610.30000.100*
C201.1213 (4)0.88469 (10)0.41824 (18)0.0636 (6)
C211.2087 (4)0.91154 (11)0.4967 (2)0.0790 (8)
H211.24410.89530.55500.095*
C221.2439 (5)0.96392 (12)0.4878 (3)0.0979 (10)
H221.30190.98260.54130.117*
C231.1953 (5)0.98862 (13)0.4024 (3)0.1023 (11)
C241.1078 (6)0.95997 (14)0.3244 (3)0.1113 (12)
H241.07300.97580.26570.134*
C251.0717 (5)0.90862 (12)0.3320 (2)0.0926 (10)
H251.01340.88990.27860.111*
C261.2352 (5)1.04560 (13)0.3937 (4)0.151 (2)
H26A1.27151.06040.45560.227*
H26B1.11211.06190.35990.227*
H26C1.34731.05060.35990.227*
H30.355 (5)0.7242 (10)0.2690 (19)0.080 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0670 (5)0.0540 (4)0.0691 (4)0.0000 (3)0.0082 (3)0.0048 (3)
F10.231 (3)0.219 (3)0.1311 (18)0.018 (2)0.0773 (19)0.0845 (19)
N10.0465 (12)0.0515 (12)0.0686 (12)0.0016 (9)0.0094 (10)0.0012 (10)
N20.0447 (11)0.0541 (11)0.0577 (10)0.0005 (9)0.0038 (9)0.0055 (9)
N30.0419 (11)0.0577 (11)0.0533 (10)0.0040 (9)0.0018 (9)0.0021 (8)
N40.0391 (11)0.0766 (14)0.0691 (12)0.0062 (10)0.0038 (9)0.0110 (10)
N50.0392 (11)0.0766 (14)0.0799 (13)0.0071 (10)0.0033 (10)0.0126 (11)
N60.0420 (11)0.0739 (13)0.0585 (10)0.0079 (10)0.0069 (9)0.0072 (10)
C10.0435 (13)0.0598 (14)0.0438 (10)0.0014 (10)0.0018 (9)0.0020 (10)
C20.0570 (15)0.0587 (14)0.0543 (12)0.0013 (11)0.0001 (11)0.0060 (10)
C30.0608 (16)0.0713 (16)0.0552 (13)0.0141 (13)0.0023 (12)0.0123 (12)
C40.0492 (15)0.0914 (19)0.0517 (12)0.0119 (14)0.0018 (11)0.0060 (13)
C50.0490 (15)0.0826 (18)0.0605 (13)0.0044 (13)0.0046 (12)0.0059 (13)
C60.0532 (15)0.0620 (14)0.0617 (13)0.0002 (12)0.0042 (11)0.0070 (11)
C70.0473 (13)0.0569 (13)0.0445 (10)0.0017 (10)0.0020 (10)0.0008 (10)
C80.0475 (13)0.0581 (14)0.0511 (11)0.0086 (10)0.0013 (10)0.0023 (10)
C90.0400 (13)0.0709 (15)0.0592 (12)0.0056 (11)0.0049 (10)0.0081 (11)
C100.0392 (12)0.0660 (14)0.0450 (10)0.0006 (10)0.0059 (9)0.0041 (10)
C110.0489 (14)0.0561 (13)0.0555 (12)0.0058 (11)0.0001 (11)0.0023 (10)
C120.0601 (16)0.0752 (17)0.0637 (14)0.0069 (13)0.0092 (13)0.0015 (13)
C130.085 (2)0.122 (3)0.0793 (19)0.018 (2)0.0293 (17)0.0031 (19)
C140.124 (3)0.132 (3)0.081 (2)0.026 (3)0.023 (2)0.041 (2)
C150.131 (3)0.108 (3)0.111 (3)0.013 (2)0.020 (3)0.055 (2)
C160.092 (2)0.082 (2)0.0896 (19)0.0178 (17)0.0177 (17)0.0252 (17)
C170.0385 (12)0.0715 (15)0.0453 (10)0.0048 (11)0.0058 (9)0.0062 (10)
C180.0407 (13)0.0708 (15)0.0479 (11)0.0051 (11)0.0088 (10)0.0043 (11)
C190.0452 (14)0.0740 (17)0.0788 (16)0.0009 (12)0.0045 (12)0.0087 (13)
C200.0442 (14)0.0697 (16)0.0753 (16)0.0098 (12)0.0070 (12)0.0136 (13)
C210.0627 (18)0.0807 (19)0.0870 (18)0.0114 (14)0.0036 (15)0.0070 (15)
C220.062 (2)0.079 (2)0.142 (3)0.0133 (16)0.009 (2)0.003 (2)
C230.0480 (17)0.078 (2)0.175 (3)0.0001 (15)0.004 (2)0.039 (2)
C240.088 (3)0.112 (3)0.129 (3)0.015 (2)0.007 (2)0.055 (2)
C250.096 (2)0.097 (2)0.0811 (18)0.0215 (18)0.0057 (17)0.0258 (17)
C260.076 (2)0.074 (2)0.291 (6)0.0018 (18)0.002 (3)0.058 (3)
Geometric parameters (Å, º) top
S1—C71.662 (2)C10—C171.442 (3)
F1—C141.363 (4)C11—C121.374 (3)
N1—C71.358 (3)C11—C161.381 (3)
N1—C11.409 (3)C12—C131.395 (4)
N1—H30.83 (3)C12—H120.9300
N2—C71.358 (3)C13—C141.365 (5)
N2—N31.394 (2)C13—H130.9300
N2—C81.474 (3)C14—C151.333 (5)
N3—C101.288 (3)C15—C161.375 (4)
N4—N51.305 (3)C15—H150.9300
N4—C171.367 (3)C16—H160.9300
N5—N61.366 (3)C17—C181.378 (3)
N6—C181.348 (3)C18—C191.482 (3)
N6—C201.429 (3)C19—H19A0.9600
C1—C61.383 (3)C19—H19B0.9600
C1—C21.388 (3)C19—H19C0.9600
C2—C31.377 (3)C20—C211.361 (4)
C2—H20.9300C20—C251.373 (4)
C3—C41.381 (4)C21—C221.396 (4)
C3—H3A0.9300C21—H210.9300
C4—C51.368 (4)C22—C231.372 (5)
C4—H40.9300C22—H220.9300
C5—C61.385 (3)C23—C241.382 (5)
C5—H50.9300C23—C261.519 (4)
C6—H60.9300C24—C251.369 (4)
C8—C111.511 (3)C24—H240.9300
C8—C91.539 (3)C25—H250.9300
C8—H80.9800C26—H26A0.9600
C9—C101.489 (3)C26—H26B0.9600
C9—H9A0.9700C26—H26C0.9600
C9—H9B0.9700
C7—N1—C1133.6 (2)C11—C12—C13119.7 (3)
C7—N1—H3110 (2)C11—C12—H12120.2
C1—N1—H3116 (2)C13—C12—H12120.2
C7—N2—N3120.12 (17)C14—C13—C12118.7 (3)
C7—N2—C8126.89 (18)C14—C13—H13120.7
N3—N2—C8112.83 (17)C12—C13—H13120.7
C10—N3—N2107.71 (17)C15—C14—F1119.6 (4)
N5—N4—C17109.1 (2)C15—C14—C13123.0 (3)
N4—N5—N6106.63 (18)F1—C14—C13117.5 (4)
C18—N6—N5111.6 (2)C14—C15—C16118.4 (3)
C18—N6—C20128.4 (2)C14—C15—H15120.8
N5—N6—C20119.91 (19)C16—C15—H15120.8
C6—C1—C2118.8 (2)C15—C16—C11121.5 (3)
C6—C1—N1125.3 (2)C15—C16—H16119.2
C2—C1—N1115.9 (2)C11—C16—H16119.2
C3—C2—C1121.1 (2)N4—C17—C18109.1 (2)
C3—C2—H2119.5N4—C17—C10121.1 (2)
C1—C2—H2119.5C18—C17—C10129.7 (2)
C2—C3—C4120.1 (2)N6—C18—C17103.6 (2)
C2—C3—H3A120.0N6—C18—C19124.5 (2)
C4—C3—H3A120.0C17—C18—C19131.9 (2)
C5—C4—C3118.9 (2)C18—C19—H19A109.5
C5—C4—H4120.6C18—C19—H19B109.5
C3—C4—H4120.6H19A—C19—H19B109.5
C4—C5—C6121.8 (2)C18—C19—H19C109.5
C4—C5—H5119.1H19A—C19—H19C109.5
C6—C5—H5119.1H19B—C19—H19C109.5
C1—C6—C5119.4 (2)C21—C20—C25120.5 (3)
C1—C6—H6120.3C21—C20—N6120.2 (2)
C5—C6—H6120.3C25—C20—N6119.3 (2)
N1—C7—N2111.98 (19)C20—C21—C22118.6 (3)
N1—C7—S1127.76 (17)C20—C21—H21120.7
N2—C7—S1120.26 (16)C22—C21—H21120.7
N2—C8—C11112.53 (19)C23—C22—C21121.8 (3)
N2—C8—C9101.03 (17)C23—C22—H22119.1
C11—C8—C9112.35 (18)C21—C22—H22119.1
N2—C8—H8110.2C22—C23—C24117.8 (3)
C11—C8—H8110.2C22—C23—C26121.3 (4)
C9—C8—H8110.2C24—C23—C26121.0 (4)
C10—C9—C8102.80 (18)C25—C24—C23121.1 (3)
C10—C9—H9A111.2C25—C24—H24119.4
C8—C9—H9A111.2C23—C24—H24119.4
C10—C9—H9B111.2C24—C25—C20120.1 (3)
C8—C9—H9B111.2C24—C25—H25119.9
H9A—C9—H9B109.1C20—C25—H25119.9
N3—C10—C17120.3 (2)C23—C26—H26A109.5
N3—C10—C9114.3 (2)C23—C26—H26B109.5
C17—C10—C9125.3 (2)H26A—C26—H26B109.5
C12—C11—C16118.8 (2)C23—C26—H26C109.5
C12—C11—C8122.7 (2)H26A—C26—H26C109.5
C16—C11—C8118.5 (2)H26B—C26—H26C109.5
C7—N2—N3—C10168.49 (19)C11—C12—C13—C140.8 (4)
C8—N2—N3—C107.2 (2)C12—C13—C14—C150.5 (6)
C17—N4—N5—N60.1 (2)C12—C13—C14—F1179.8 (3)
N4—N5—N6—C180.4 (3)F1—C14—C15—C16179.6 (3)
N4—N5—N6—C20177.4 (2)C13—C14—C15—C160.8 (7)
C7—N1—C1—C65.6 (4)C14—C15—C16—C110.2 (6)
C7—N1—C1—C2172.6 (2)C12—C11—C16—C151.4 (4)
C6—C1—C2—C31.1 (3)C8—C11—C16—C15175.9 (3)
N1—C1—C2—C3177.3 (2)N5—N4—C17—C180.2 (3)
C1—C2—C3—C40.5 (3)N5—N4—C17—C10175.68 (19)
C2—C3—C4—C50.1 (4)N3—C10—C17—N4172.65 (19)
C3—C4—C5—C60.3 (4)C9—C10—C17—N43.8 (3)
C2—C1—C6—C50.9 (3)N3—C10—C17—C182.3 (3)
N1—C1—C6—C5177.3 (2)C9—C10—C17—C18178.7 (2)
C4—C5—C6—C10.3 (4)N5—N6—C18—C170.5 (2)
C1—N1—C7—N2170.1 (2)C20—N6—C18—C17177.1 (2)
C1—N1—C7—S19.8 (4)N5—N6—C18—C19177.0 (2)
N3—N2—C7—N13.3 (3)C20—N6—C18—C195.5 (4)
C8—N2—C7—N1178.33 (19)N4—C17—C18—N60.4 (2)
N3—N2—C7—S1176.78 (15)C10—C17—C18—N6175.0 (2)
C8—N2—C7—S11.7 (3)N4—C17—C18—C19176.8 (2)
C7—N2—C8—C1175.8 (3)C10—C17—C18—C197.8 (4)
N3—N2—C8—C11108.8 (2)C18—N6—C20—C21123.5 (3)
C7—N2—C8—C9164.2 (2)N5—N6—C20—C2159.1 (3)
N3—N2—C8—C911.2 (2)C18—N6—C20—C2556.8 (4)
N2—C8—C9—C1010.3 (2)N5—N6—C20—C25120.5 (3)
C11—C8—C9—C10109.9 (2)C25—C20—C21—C220.9 (4)
N2—N3—C10—C17177.36 (18)N6—C20—C21—C22179.5 (3)
N2—N3—C10—C90.6 (2)C20—C21—C22—C230.8 (5)
C8—C9—C10—N37.4 (2)C21—C22—C23—C240.5 (5)
C8—C9—C10—C17175.99 (19)C21—C22—C23—C26179.8 (3)
N2—C8—C11—C1218.8 (3)C22—C23—C24—C250.3 (5)
C9—C8—C11—C1294.5 (3)C26—C23—C24—C25180.0 (3)
N2—C8—C11—C16164.0 (2)C23—C24—C25—C200.4 (6)
C9—C8—C11—C1682.8 (3)C21—C20—C25—C240.7 (5)
C16—C11—C12—C131.7 (4)N6—C20—C25—C24179.7 (3)
C8—C11—C12—C13175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···N30.83 (3)2.05 (3)2.568 (3)120 (2)

Experimental details

Crystal data
Chemical formulaC26H23FN6S
Mr470.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.5449 (5), 26.1030 (17), 14.3818 (8)
β (°) 100.604 (7)
V3)2415.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15173, 5578, 3313
Rint0.040
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.03
No. of reflections5578
No. of parameters313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···N30.83 (3)2.05 (3)2.568 (3)120 (2)
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1985.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds