organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4′,5-Tri­chloro­bi­phenyl-4-yl 2,2,2-tri­chloro­ethyl sulfate

aThe University of Iowa, Department of Occupational and Environmental Health, Iowa City, IA 52242, USA, bThe University of Iowa, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, IA 52242, USA, and cUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 23 February 2013; accepted 22 March 2013; online 28 March 2013)

Crystals of the title compound, C14H8Cl6O4S, are twinned by inversion, with unequal components [0.85 (3):0.15 (3)]. The asymmetric unit contains two independent mol­ecules that are related by a pseudo-inversion center. The Car—O [1.393 (9) and 1.397 (9) Å] and ester S—O bond lengths [1.600 (5) and 1.590 (5) Å] of both mol­ecules are comparable to the structurally related 2,3,5,5-trichloro­biphenyl-4-yl 2,2,2-trichloro­ethyl sulfate. The dihedral angles between the benzene rings in the two mol­ecules are 37.8 (2) and 35.0 (2)°.

Related literature

For related structures of biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters of sulfuric acid, see: Li et al. (2008[Li, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464.], 2010a[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o1073.],b[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010b). Environ. Int. 36, 843-848.],c[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010c). Acta Cryst. E66, o1615-o1616.]). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005[Brandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzi, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct. 734, 205-209.]); Denehy et al. (2006[Denehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314-316.]). For additional background to sulfate metabolites of polychlorinated bi­phenyls, see: Liu et al. (2006[Liu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol. 19, 1420-1425.], 2009[Liu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos. 37, 1065-1072.]); Wang et al. (2006[Wang, L.-Q., Lehmler, H.-J., Robertson, L. W. & James, M. O. (2006). Chem. Biol. Interact. 159, 235-246.]); Dhakal et al. (2012[Dhakal, K., He, X., Lehmler, H. J., Teesch, L. M., Duffel, M. W. & Robertson, L. W. (2012). Chem. Res. Toxicol. 25, 2796-2804.]); Zhai et al. (2013[Zhai, G., Lehmler, H. J. & Schnoor, J. L. (2013). Environ. Sci. Technol. 47, 557-562.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Cl6O4S

  • Mr = 484.96

  • Orthorhombic, P c a 21

  • a = 13.993 (3) Å

  • b = 9.1890 (18) Å

  • c = 28.778 (6) Å

  • V = 3700.3 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 9.71 mm−1

  • T = 90 K

  • 0.17 × 0.09 × 0.02 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.504, Tmax = 0.830

  • 45894 measured reflections

  • 6651 independent reflections

  • 6238 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.161

  • S = 1.15

  • 6651 reflections

  • 302 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3176 Friedel pairs

  • Flack parameter: 0.15 (3)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Sulfuric acid monoesters of hydroxylated polychlorinated biphenyls (OHPCBs) are emerging as an important class of metabolites of polychlorinated biphenyls (PCBs). Two recent in vivo studies report the formation of PCB sulfates by rats (Dhakal et al., 2012) and poplar plants (Zhai et al., 2013). In vitro studies demonstrate that PCB sulfates are both substrates and inhibitors of mammalian cytosolic sulfotransferases (Liu et al., 2006; Wang et al., 2006; Liu et al., 2009). Only limited structural information about sulfate mono- and diesters of hydroxylated PCBs is available to support structure-activity or structure-property relationship studies. Here we report the structure of the title compound, a biphenyl-4-yl 2,2,2-trichloroethyl sulfate with two chlorine substituents ortho to the sulfate group, to contribute to the number of available crystal structures.

The two independent molecules of the title compound in the asymmetric unit are related by a pseudo-inversion center. The length of the Caromatic—O bonds of the two molecules are 1.393 (9) and 1.397 (9) Å, respectively. These bond lengths are comparable to the Caromatic—O bond length (1.405 Å) reported for the structurally related 2',3,5,5'-trichloro-biphenyl-4-yl 2,2,2-trichloroethyl sulfate (Li et al., 2010b). In contrast, biphenyl-4-yl 2,2,2-trichloroethyl sulfates without electronegative chlorine substituents ortho to the sulfate group have slightly longer Caromatic—O bond length ranging from 1.426 to 1.449 Å (Li et al., 2008; Li et al., 2010b; Li et al., 2010a; Li et al., 2010c).

The lengths of the PCB sulfate ester bond of the title compound (i.e., S1—O1) are 1.600 (5) and 1.590 (5) Å. In contrast, biphenyl-4-yl 2,2,2-trichloroethyl sulfates without chlorine substituents ortho to the sulfate group typically have shorter sulfate ester bond lengths ranging from 1.563 to 1.586 Å (Li et al., 2008; Li et al., 2010b; Li et al., 2010a; Li et al., 2010c). Similar to aromatic sulfate monoesters (Brandao et al., 2005; Denehy et al., 2006), this difference suggests that chlorine substituents ortho to the sulfate group decrease the stability of the S—O ester bond.

The dihedral angle of the biphenyl moiety of PCB derivatives is a structural parameter associated with the affinity of PCB derivatives for cellular target molecules. The two molecules of the title compound have solid state dihedral angles of 37.8 (2)° and 35.0 (2)°. Similarly, structurally related biphenyl-4-yl 2,2,2-trichloroethyl sulfates have dihedral angles ranging from 4.9° to 41.8° in the solid state (Li et al., 2008; Li et al., 2010a; Li et al., 2010c). The fact that biphenyl-4-yl 2,2,2-trichloroethyl sulfates without ortho chlorine substituents adopt a range of dihedral angles can be explained by crystal packing effects, which force the biphenyl moiety to adopt an energetically less favorable conformation in the solid state.

Related literature top

For related structures of biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters of sulfuric acid, see: Li et al. (2008, 2010a,b,c). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005); Denehy et al. (2006). For additional background to sulfate metabolites of polychlorinated biphenyls, see: Liu et al. (2006, 2009); Wang et al. (2006); Dhakal et al. (2012); Zhai et al. (2013).

Experimental top

The title compound was synthesized from 3,4',5-trichlorobiphenyl-4-ol and 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst as reported previously (Li et al., 2008). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanolic solution.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.99 Å (R2CH2), 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

The two independent molecules are related by a pseudo-inversion centre, which results in large correlations between the displacement parameters. In order to ensure satisfactory refinement, the displacement parameters of equivalent atoms in each molecule were constrained to be the same using the EADP command of SHELXL97.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
3,4',5-Trichlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate top
Crystal data top
C14H8Cl6O4SF(000) = 1936
Mr = 484.96Dx = 1.741 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 9992 reflections
a = 13.993 (3) Åθ = 3.1–68.3°
b = 9.1890 (18) ŵ = 9.71 mm1
c = 28.778 (6) ÅT = 90 K
V = 3700.3 (13) Å3Flake, colourless
Z = 80.17 × 0.09 × 0.02 mm
Data collection top
Bruker X8 Proteum
diffractometer
6651 independent reflections
Radiation source: fine-focus rotating anode6238 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.062
Detector resolution: 5.6 pixels mm-1θmax = 68.4°, θmin = 3.1°
ϕ and ω scansh = 1416
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1011
Tmin = 0.504, Tmax = 0.830l = 3434
45894 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0514P)2 + 21.3733P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
6651 reflectionsΔρmax = 0.96 e Å3
302 parametersΔρmin = 0.85 e Å3
1 restraintAbsolute structure: Flack (1983), 3176 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (3)
Crystal data top
C14H8Cl6O4SV = 3700.3 (13) Å3
Mr = 484.96Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 13.993 (3) ŵ = 9.71 mm1
b = 9.1890 (18) ÅT = 90 K
c = 28.778 (6) Å0.17 × 0.09 × 0.02 mm
Data collection top
Bruker X8 Proteum
diffractometer
6651 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
6238 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.830Rint = 0.062
45894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0514P)2 + 21.3733P]
where P = (Fo2 + 2Fc2)/3
S = 1.15Δρmax = 0.96 e Å3
6651 reflectionsΔρmin = 0.85 e Å3
302 parametersAbsolute structure: Flack (1983), 3176 Friedel pairs
1 restraintAbsolute structure parameter: 0.15 (3)
Special details top

Experimental. The crystal was twinned by inversion, but with unequal sized pieces of each component. The refined Flack parameter indicates major:minor fractions of 0.85 (3):0.15 (3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.77740 (12)0.4047 (2)0.35290 (7)0.0283 (2)
O1A0.8439 (4)0.2785 (5)0.33235 (19)0.0273 (7)
O2A0.8158 (4)0.4167 (6)0.40377 (19)0.0313 (7)
O3A0.7985 (4)0.5393 (6)0.3314 (2)0.0302 (7)
O4A0.6838 (4)0.3483 (6)0.3531 (2)0.0349 (7)
Cl1A1.03327 (13)0.3420 (2)0.37524 (7)0.0380 (3)
Cl2A0.78298 (12)0.2737 (2)0.23480 (7)0.0318 (2)
Cl3A1.37897 (13)0.5084 (2)0.10448 (8)0.0378 (3)
Cl4A0.8960 (2)0.4431 (3)0.50012 (9)0.0563 (4)
Cl5A0.69326 (19)0.4810 (2)0.48583 (9)0.0487 (4)
Cl6A0.76595 (19)0.2066 (2)0.52014 (8)0.0489 (4)
C1A1.0641 (5)0.3630 (7)0.2372 (3)0.0240 (9)
C2A1.0822 (5)0.3612 (8)0.2847 (3)0.0273 (9)
H2A1.14560.37600.29560.033*
C3A1.0090 (5)0.3381 (8)0.3166 (3)0.0276 (9)
C4A0.9162 (5)0.3143 (8)0.3011 (3)0.0252 (9)
C5A0.8987 (5)0.3119 (7)0.2542 (3)0.0259 (9)
C6A0.9704 (5)0.3381 (8)0.2223 (3)0.0273 (9)
H6A0.95600.33930.19000.033*
C7A0.7997 (6)0.2919 (9)0.4344 (3)0.0326 (10)
H7A10.85460.22410.43320.039*
H7A20.74120.23860.42510.039*
C8A0.7887 (7)0.3548 (10)0.4822 (3)0.0431 (12)
C1'A1.1400 (5)0.3932 (8)0.2034 (3)0.0284 (9)
C2'A1.1233 (5)0.4783 (9)0.1639 (3)0.0314 (11)
H2'A1.06070.51380.15810.038*
C3'A1.1959 (5)0.5118 (9)0.1333 (3)0.0307 (10)
H3'A1.18330.56910.10650.037*
C4'A1.2877 (5)0.4609 (9)0.1420 (3)0.0284 (10)
C5'A1.3053 (5)0.3752 (8)0.1800 (3)0.0293 (10)
H5'A1.36770.33790.18500.035*
C6'A1.2329 (5)0.3424 (8)0.2113 (3)0.0285 (9)
H6'A1.24640.28540.23800.034*
S1B0.48992 (12)0.0952 (2)0.44025 (7)0.0283 (2)
O1B0.4243 (3)0.2207 (5)0.46086 (19)0.0273 (7)
O2B0.4512 (4)0.0835 (6)0.38944 (19)0.0313 (7)
O3B0.4667 (4)0.0367 (6)0.4615 (2)0.0302 (7)
O4B0.5834 (4)0.1524 (6)0.4402 (2)0.0349 (7)
Cl1B0.23508 (13)0.1574 (2)0.41731 (7)0.0380 (3)
Cl2B0.48229 (12)0.2267 (2)0.55864 (7)0.0318 (2)
Cl3B0.11866 (13)0.0187 (2)0.68821 (8)0.0378 (3)
Cl4B0.3715 (2)0.0537 (3)0.29351 (9)0.0563 (4)
Cl5B0.50048 (19)0.2929 (2)0.27257 (8)0.0487 (4)
Cl6B0.57633 (19)0.0222 (3)0.30941 (8)0.0489 (4)
C1B0.2034 (5)0.1376 (8)0.5547 (3)0.0240 (9)
C2B0.1855 (5)0.1373 (8)0.5077 (3)0.0273 (9)
H2B0.12220.12210.49670.033*
C3B0.2590 (5)0.1590 (8)0.4759 (3)0.0276 (9)
C4B0.3515 (5)0.1866 (8)0.4923 (3)0.0252 (9)
C5B0.3684 (5)0.1883 (8)0.5392 (3)0.0259 (9)
C6B0.2963 (5)0.1672 (8)0.5714 (3)0.0273 (9)
H6B0.30890.17250.60380.033*
C7B0.4686 (6)0.2041 (9)0.3589 (3)0.0326 (10)
H7B10.52760.25560.36840.039*
H7B20.41460.27360.36040.039*
C8B0.4791 (7)0.1461 (10)0.3102 (3)0.0431 (12)
C1'B0.1230 (5)0.1095 (8)0.5886 (3)0.0284 (9)
C2'B0.1395 (5)0.0364 (9)0.6294 (3)0.0314 (11)
H2'B0.20240.00420.63640.038*
C3'B0.0659 (5)0.0087 (8)0.6607 (3)0.0307 (10)
H3'B0.07840.04210.68880.037*
C4'B0.0243 (5)0.0551 (9)0.6506 (3)0.0284 (10)
C5'B0.0442 (5)0.1307 (8)0.6098 (3)0.0293 (10)
H5'B0.10720.16290.60310.035*
C6'B0.0308 (5)0.1580 (8)0.5789 (3)0.0285 (9)
H6'B0.01880.21020.55100.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0183 (5)0.0276 (5)0.0392 (6)0.0017 (4)0.0002 (4)0.0039 (4)
O1A0.0202 (14)0.0205 (15)0.0411 (17)0.0046 (12)0.0037 (13)0.0031 (12)
O2A0.0285 (16)0.0267 (16)0.0386 (17)0.0036 (13)0.0023 (13)0.0059 (13)
O3A0.0248 (17)0.0217 (16)0.0442 (18)0.0022 (12)0.0006 (13)0.0063 (13)
O4A0.0187 (15)0.0370 (18)0.0491 (19)0.0033 (13)0.0001 (14)0.0041 (15)
Cl1A0.0219 (5)0.0543 (7)0.0379 (6)0.0016 (5)0.0044 (5)0.0037 (5)
Cl2A0.0167 (5)0.0340 (6)0.0447 (6)0.0060 (4)0.0047 (4)0.0021 (5)
Cl3A0.0279 (6)0.0455 (7)0.0399 (6)0.0032 (5)0.0037 (5)0.0000 (6)
Cl4A0.0802 (11)0.0341 (6)0.0545 (8)0.0139 (7)0.0252 (7)0.0035 (5)
Cl5A0.0709 (11)0.0286 (7)0.0465 (9)0.0093 (7)0.0109 (8)0.0067 (7)
Cl6A0.0715 (11)0.0299 (8)0.0454 (9)0.0031 (7)0.0054 (8)0.0030 (7)
C1A0.018 (2)0.0134 (18)0.040 (2)0.0007 (16)0.0015 (18)0.0006 (17)
C2A0.0137 (19)0.023 (2)0.045 (3)0.0001 (16)0.0014 (17)0.0013 (19)
C3A0.019 (2)0.020 (2)0.044 (2)0.0014 (17)0.0017 (18)0.0002 (18)
C4A0.0122 (18)0.0156 (19)0.048 (3)0.0009 (15)0.0002 (18)0.0014 (17)
C5A0.017 (2)0.0120 (18)0.048 (3)0.0000 (16)0.0010 (18)0.0004 (17)
C6A0.020 (2)0.022 (2)0.040 (2)0.0008 (17)0.0039 (18)0.0016 (18)
C7A0.033 (2)0.027 (2)0.038 (2)0.001 (2)0.002 (2)0.0039 (19)
C8A0.060 (3)0.028 (2)0.041 (3)0.002 (2)0.007 (3)0.000 (2)
C1'A0.017 (2)0.024 (2)0.044 (2)0.0023 (17)0.0018 (18)0.0069 (19)
C2'A0.017 (2)0.034 (3)0.043 (2)0.0000 (19)0.0038 (19)0.000 (2)
C3'A0.025 (2)0.030 (2)0.037 (2)0.002 (2)0.005 (2)0.000 (2)
C4'A0.019 (2)0.026 (2)0.040 (2)0.0023 (18)0.0028 (18)0.0037 (19)
C5'A0.019 (2)0.026 (2)0.043 (3)0.0008 (18)0.0034 (18)0.003 (2)
C6'A0.019 (2)0.023 (2)0.042 (3)0.0013 (17)0.0001 (19)0.001 (2)
S1B0.0183 (5)0.0276 (5)0.0392 (6)0.0017 (4)0.0002 (4)0.0039 (4)
O1B0.0202 (14)0.0205 (15)0.0411 (17)0.0046 (12)0.0037 (13)0.0031 (12)
O2B0.0285 (16)0.0267 (16)0.0386 (17)0.0036 (13)0.0023 (13)0.0059 (13)
O3B0.0248 (17)0.0217 (16)0.0442 (18)0.0022 (12)0.0006 (13)0.0063 (13)
O4B0.0187 (15)0.0370 (18)0.0491 (19)0.0033 (13)0.0001 (14)0.0041 (15)
Cl1B0.0219 (5)0.0543 (7)0.0379 (6)0.0016 (5)0.0044 (5)0.0037 (5)
Cl2B0.0167 (5)0.0340 (6)0.0447 (6)0.0060 (4)0.0047 (4)0.0021 (5)
Cl3B0.0279 (6)0.0455 (7)0.0399 (6)0.0032 (5)0.0037 (5)0.0000 (6)
Cl4B0.0802 (11)0.0341 (6)0.0545 (8)0.0139 (7)0.0252 (7)0.0035 (5)
Cl5B0.0709 (11)0.0286 (7)0.0465 (9)0.0093 (7)0.0109 (8)0.0067 (7)
Cl6B0.0715 (11)0.0299 (8)0.0454 (9)0.0031 (7)0.0054 (8)0.0030 (7)
C1B0.018 (2)0.0134 (18)0.040 (2)0.0007 (16)0.0015 (18)0.0006 (17)
C2B0.0137 (19)0.023 (2)0.045 (3)0.0001 (16)0.0014 (17)0.0013 (19)
C3B0.019 (2)0.020 (2)0.044 (2)0.0014 (17)0.0017 (18)0.0002 (18)
C4B0.0122 (18)0.0156 (19)0.048 (3)0.0009 (15)0.0002 (18)0.0014 (17)
C5B0.017 (2)0.0120 (18)0.048 (3)0.0000 (16)0.0010 (18)0.0004 (17)
C6B0.020 (2)0.022 (2)0.040 (2)0.0008 (17)0.0039 (18)0.0016 (18)
C7B0.033 (2)0.027 (2)0.038 (2)0.001 (2)0.002 (2)0.0039 (19)
C8B0.060 (3)0.028 (2)0.041 (3)0.002 (2)0.007 (3)0.000 (2)
C1'B0.017 (2)0.024 (2)0.044 (2)0.0023 (17)0.0018 (18)0.0069 (19)
C2'B0.017 (2)0.034 (3)0.043 (2)0.0000 (19)0.0038 (19)0.000 (2)
C3'B0.025 (2)0.030 (2)0.037 (2)0.002 (2)0.005 (2)0.000 (2)
C4'B0.019 (2)0.026 (2)0.040 (2)0.0023 (18)0.0028 (18)0.0037 (19)
C5'B0.019 (2)0.026 (2)0.043 (3)0.0008 (18)0.0034 (18)0.003 (2)
C6'B0.019 (2)0.023 (2)0.042 (3)0.0013 (17)0.0001 (19)0.001 (2)
Geometric parameters (Å, º) top
S1A—O4A1.408 (5)S1B—O3B1.396 (6)
S1A—O3A1.414 (6)S1B—O4B1.409 (5)
S1A—O2A1.563 (6)S1B—O2B1.563 (6)
S1A—O1A1.600 (5)S1B—O1B1.590 (5)
O1A—C4A1.393 (9)O1B—C4B1.397 (9)
O2A—C7A1.464 (9)O2B—C7B1.434 (9)
Cl1A—C3A1.722 (9)Cl1B—C3B1.720 (8)
Cl2A—C5A1.749 (7)Cl2B—C5B1.726 (7)
Cl3A—C4'A1.730 (8)Cl3B—C4'B1.739 (8)
Cl4A—C8A1.783 (10)Cl4B—C8B1.793 (10)
Cl5A—C8A1.772 (10)Cl5B—C8B1.755 (9)
Cl6A—C8A1.774 (9)Cl6B—C8B1.774 (10)
C1A—C2A1.391 (11)C1B—C2B1.378 (11)
C1A—C6A1.400 (10)C1B—C6B1.412 (10)
C1A—C1'A1.467 (10)C1B—C1'B1.510 (10)
C2A—C3A1.390 (11)C2B—C3B1.389 (11)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.390 (10)C3B—C4B1.401 (10)
C4A—C5A1.373 (11)C4B—C5B1.370 (11)
C5A—C6A1.381 (11)C5B—C6B1.384 (11)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.500 (12)C7B—C8B1.509 (12)
C7A—H7A10.9900C7B—H7B10.9900
C7A—H7A20.9900C7B—H7B20.9900
C1'A—C6'A1.399 (10)C1'B—C2'B1.373 (12)
C1'A—C2'A1.400 (12)C1'B—C6'B1.393 (10)
C2'A—C3'A1.380 (12)C2'B—C3'B1.391 (12)
C2'A—H2'A0.9500C2'B—H2'B0.9500
C3'A—C4'A1.389 (11)C3'B—C4'B1.364 (10)
C3'A—H3'A0.9500C3'B—H3'B0.9500
C4'A—C5'A1.369 (12)C4'B—C5'B1.392 (12)
C5'A—C6'A1.388 (11)C5'B—C6'B1.399 (11)
C5'A—H5'A0.9500C5'B—H5'B0.9500
C6'A—H6'A0.9500C6'B—H6'B0.9500
O4A—S1A—O3A121.2 (3)O3B—S1B—O4B122.7 (3)
O4A—S1A—O2A109.9 (3)O3B—S1B—O2B105.6 (3)
O3A—S1A—O2A106.0 (3)O4B—S1B—O2B110.3 (3)
O4A—S1A—O1A106.0 (3)O3B—S1B—O1B109.4 (3)
O3A—S1A—O1A110.5 (3)O4B—S1B—O1B105.4 (3)
O2A—S1A—O1A101.4 (3)O2B—S1B—O1B101.4 (3)
C4A—O1A—S1A119.3 (4)C4B—O1B—S1B120.0 (4)
C7A—O2A—S1A117.1 (5)C7B—O2B—S1B117.5 (5)
C2A—C1A—C6A118.1 (7)C2B—C1B—C6B120.1 (7)
C2A—C1A—C1'A121.5 (7)C2B—C1B—C1'B119.9 (6)
C6A—C1A—C1'A120.3 (7)C6B—C1B—C1'B120.0 (7)
C3A—C2A—C1A121.1 (7)C1B—C2B—C3B120.8 (7)
C3A—C2A—H2A119.5C1B—C2B—H2B119.6
C1A—C2A—H2A119.5C3B—C2B—H2B119.6
C4A—C3A—C2A120.0 (8)C2B—C3B—C4B119.3 (8)
C4A—C3A—Cl1A120.1 (6)C2B—C3B—Cl1B119.9 (6)
C2A—C3A—Cl1A119.8 (6)C4B—C3B—Cl1B120.7 (6)
C5A—C4A—C3A119.0 (7)C5B—C4B—O1B120.6 (6)
C5A—C4A—O1A120.1 (6)C5B—C4B—C3B119.5 (7)
C3A—C4A—O1A120.5 (7)O1B—C4B—C3B119.8 (7)
C4A—C5A—C6A121.5 (7)C4B—C5B—C6B122.2 (7)
C4A—C5A—Cl2A118.8 (6)C4B—C5B—Cl2B118.7 (6)
C6A—C5A—Cl2A119.7 (6)C6B—C5B—Cl2B119.0 (6)
C5A—C6A—C1A120.3 (8)C5B—C6B—C1B118.1 (7)
C5A—C6A—H6A119.9C5B—C6B—H6B121.0
C1A—C6A—H6A119.9C1B—C6B—H6B121.0
O2A—C7A—C8A105.4 (6)O2B—C7B—C8B108.2 (7)
O2A—C7A—H7A1110.7O2B—C7B—H7B1110.0
C8A—C7A—H7A1110.7C8B—C7B—H7B1110.0
O2A—C7A—H7A2110.7O2B—C7B—H7B2110.0
C8A—C7A—H7A2110.7C8B—C7B—H7B2110.0
H7A1—C7A—H7A2108.8H7B1—C7B—H7B2108.4
C7A—C8A—Cl5A112.5 (6)C7B—C8B—Cl5B108.6 (6)
C7A—C8A—Cl6A106.7 (6)C7B—C8B—Cl6B108.2 (6)
Cl5A—C8A—Cl6A109.3 (5)Cl5B—C8B—Cl6B110.8 (6)
C7A—C8A—Cl4A110.8 (7)C7B—C8B—Cl4B109.5 (7)
Cl5A—C8A—Cl4A108.6 (5)Cl5B—C8B—Cl4B110.0 (5)
Cl6A—C8A—Cl4A108.8 (5)Cl6B—C8B—Cl4B109.7 (5)
C6'A—C1'A—C2'A118.2 (7)C2'B—C1'B—C6'B118.9 (7)
C6'A—C1'A—C1A120.1 (7)C2'B—C1'B—C1B120.7 (6)
C2'A—C1'A—C1A121.6 (6)C6'B—C1'B—C1B120.4 (7)
C3'A—C2'A—C1'A121.3 (7)C1'B—C2'B—C3'B121.2 (7)
C3'A—C2'A—H2'A119.3C1'B—C2'B—H2'B119.4
C1'A—C2'A—H2'A119.3C3'B—C2'B—H2'B119.4
C2'A—C3'A—C4'A119.3 (8)C4'B—C3'B—C2'B119.4 (8)
C2'A—C3'A—H3'A120.3C4'B—C3'B—H3'B120.3
C4'A—C3'A—H3'A120.3C2'B—C3'B—H3'B120.3
C5'A—C4'A—C3'A120.3 (7)C3'B—C4'B—C5'B121.3 (8)
C5'A—C4'A—Cl3A120.7 (6)C3'B—C4'B—Cl3B120.7 (7)
C3'A—C4'A—Cl3A118.9 (7)C5'B—C4'B—Cl3B118.0 (6)
C4'A—C5'A—C6'A120.7 (7)C4'B—C5'B—C6'B118.5 (7)
C4'A—C5'A—H5'A119.6C4'B—C5'B—H5'B120.8
C6'A—C5'A—H5'A119.6C6'B—C5'B—H5'B120.8
C5'A—C6'A—C1'A120.0 (8)C1'B—C6'B—C5'B120.6 (8)
C5'A—C6'A—H6'A120.0C1'B—C6'B—H6'B119.7
C1'A—C6'A—H6'A120.0C5'B—C6'B—H6'B119.7
O4A—S1A—O1A—C4A138.7 (5)O3B—S1B—O1B—C4B4.9 (6)
O3A—S1A—O1A—C4A5.6 (6)O4B—S1B—O1B—C4B138.6 (6)
O2A—S1A—O1A—C4A106.4 (5)O2B—S1B—O1B—C4B106.3 (6)
O4A—S1A—O2A—C7A45.2 (6)O3B—S1B—O2B—C7B177.9 (5)
O3A—S1A—O2A—C7A177.8 (5)O4B—S1B—O2B—C7B43.3 (6)
O1A—S1A—O2A—C7A66.7 (5)O1B—S1B—O2B—C7B68.0 (6)
C6A—C1A—C2A—C3A1.2 (11)C6B—C1B—C2B—C3B3.1 (11)
C1'A—C1A—C2A—C3A177.5 (7)C1'B—C1B—C2B—C3B178.2 (7)
C1A—C2A—C3A—C4A0.9 (11)C1B—C2B—C3B—C4B2.3 (11)
C1A—C2A—C3A—Cl1A178.0 (6)C1B—C2B—C3B—Cl1B179.7 (6)
C2A—C3A—C4A—C5A1.0 (11)S1B—O1B—C4B—C5B91.6 (8)
Cl1A—C3A—C4A—C5A179.9 (5)S1B—O1B—C4B—C3B92.2 (7)
C2A—C3A—C4A—O1A174.4 (6)C2B—C3B—C4B—C5B1.6 (11)
Cl1A—C3A—C4A—O1A6.7 (10)Cl1B—C3B—C4B—C5B179.5 (6)
S1A—O1A—C4A—C5A92.0 (7)C2B—C3B—C4B—O1B174.6 (6)
S1A—O1A—C4A—C3A94.7 (7)Cl1B—C3B—C4B—O1B3.3 (10)
C3A—C4A—C5A—C6A2.6 (11)O1B—C4B—C5B—C6B174.4 (6)
O1A—C4A—C5A—C6A176.0 (6)C3B—C4B—C5B—C6B1.8 (11)
C3A—C4A—C5A—Cl2A177.1 (5)O1B—C4B—C5B—Cl2B2.3 (10)
O1A—C4A—C5A—Cl2A3.7 (9)C3B—C4B—C5B—Cl2B178.5 (5)
C4A—C5A—C6A—C1A2.3 (11)C4B—C5B—C6B—C1B2.5 (11)
Cl2A—C5A—C6A—C1A177.4 (5)Cl2B—C5B—C6B—C1B179.2 (5)
C2A—C1A—C6A—C5A0.4 (11)C2B—C1B—C6B—C5B3.2 (11)
C1'A—C1A—C6A—C5A179.1 (6)C1'B—C1B—C6B—C5B178.2 (6)
S1A—O2A—C7A—C8A148.3 (6)S1B—O2B—C7B—C8B148.2 (6)
O2A—C7A—C8A—Cl5A58.7 (8)O2B—C7B—C8B—Cl5B180.0 (5)
O2A—C7A—C8A—Cl6A178.5 (5)O2B—C7B—C8B—Cl6B59.6 (8)
O2A—C7A—C8A—Cl4A63.2 (7)O2B—C7B—C8B—Cl4B59.9 (8)
C2A—C1A—C1'A—C6'A36.2 (11)C2B—C1B—C1'B—C2'B145.8 (8)
C6A—C1A—C1'A—C6'A145.1 (7)C6B—C1B—C1'B—C2'B35.5 (11)
C2A—C1A—C1'A—C2'A140.7 (8)C2B—C1B—C1'B—C6'B34.4 (11)
C6A—C1A—C1'A—C2'A38.0 (11)C6B—C1B—C1'B—C6'B144.2 (7)
C6'A—C1'A—C2'A—C3'A0.1 (12)C6'B—C1'B—C2'B—C3'B0.8 (12)
C1A—C1'A—C2'A—C3'A177.0 (7)C1B—C1'B—C2'B—C3'B179.4 (7)
C1'A—C2'A—C3'A—C4'A0.5 (12)C1'B—C2'B—C3'B—C4'B0.0 (13)
C2'A—C3'A—C4'A—C5'A1.7 (12)C2'B—C3'B—C4'B—C5'B0.5 (12)
C2'A—C3'A—C4'A—Cl3A177.9 (6)C2'B—C3'B—C4'B—Cl3B178.5 (6)
C3'A—C4'A—C5'A—C6'A2.4 (12)C3'B—C4'B—C5'B—C6'B0.3 (12)
Cl3A—C4'A—C5'A—C6'A177.1 (6)Cl3B—C4'B—C5'B—C6'B178.8 (6)
C4'A—C5'A—C6'A—C1'A2.0 (12)C2'B—C1'B—C6'B—C5'B1.1 (12)
C2'A—C1'A—C6'A—C5'A0.8 (11)C1B—C1'B—C6'B—C5'B179.2 (7)
C1A—C1'A—C6'A—C5'A177.8 (7)C4'B—C5'B—C6'B—C1'B0.5 (11)

Experimental details

Crystal data
Chemical formulaC14H8Cl6O4S
Mr484.96
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)90
a, b, c (Å)13.993 (3), 9.1890 (18), 28.778 (6)
V3)3700.3 (13)
Z8
Radiation typeCu Kα
µ (mm1)9.71
Crystal size (mm)0.17 × 0.09 × 0.02
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.504, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
45894, 6651, 6238
Rint0.062
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.161, 1.15
No. of reflections6651
No. of parameters302
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0514P)2 + 21.3733P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.96, 0.85
Absolute structureFlack (1983), 3176 Friedel pairs
Absolute structure parameter0.15 (3)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, NIH.

References

First citationBrandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzi, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct. 734, 205–209.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314–316.  Web of Science CSD CrossRef Google Scholar
First citationDhakal, K., He, X., Lehmler, H. J., Teesch, L. M., Duffel, M. W. & Robertson, L. W. (2012). Chem. Res. Toxicol. 25, 2796–2804.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010b). Environ. Int. 36, 843–848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010c). Acta Cryst. E66, o1615–o1616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol. 19, 1420–1425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos. 37, 1065–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Q., Lehmler, H.-J., Robertson, L. W. & James, M. O. (2006). Chem. Biol. Interact. 159, 235–246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, G., Lehmler, H. J. & Schnoor, J. L. (2013). Environ. Sci. Technol. 47, 557–562.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds