organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R,8R,9S,11R)-2,2,10,10-Tetra­chloro-3,7,7,11-tetra­methyl­tetra­cyclo­[6.5.0.01,3.09,11]trideca­ne

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité "Unité Associée au CNRST(URAC16)", Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 14 January 2013; accepted 16 January 2013; online 23 January 2013)

The title compound, C17H24Cl4, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The mol­ecule is built up from fused six- and seven-membered rings and two three-membered rings from the reaction of β-himachalene with dichloro­carbene. The six-membered ring shows a chair conformation, whereas the seven-membered ring displays a boat conformation.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24Cl4

  • Mr = 370.16

  • Monoclinic, P 21

  • a = 8.8807 (6) Å

  • b = 11.6280 (8) Å

  • c = 9.0596 (6) Å

  • β = 107.665 (2)°

  • V = 891.42 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.41 × 0.35 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 15112 measured reflections

  • 5419 independent reflections

  • 4910 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.03

  • 5419 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.04 (4)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The bicyclic sesquiterpene, β-himachalene is the main constituent (50%) of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of two equivalents of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene leads to a mixture of two diastereisomers: (1S,3R,8R,9S,11R)-2,2,10,10-tetrachloro-3,7,7,11-tetraméthyletetracyclo [6,5,0,01.2,09.11] tridecane (X) and its isomer (1S,3R,8R,9R,11S)-2,2,10,10- tetrachloro-3,7,7,11-tetraméthyletetracyclo [6,5,0,01.2,09.11]tridecane (Y), in an over-all yield of 80% and 85/15 ratio. By single-crystal X-ray diffraction analysis, we have determined the absolute configuration of X and we deduced that from its isomer Y.

The molecule contains a fused six- and seven-membered rings, which is fused to two three-membered rings as schown in Fig. 1. The six-membered ring has a chair conformation, with as indicated by the total puckering amplitude QT = 0.4518 (19) Å and spherical polar angle θ = 140.4 (2)° with ϕ2 = 141.5 (4)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1323 (2) Å, θ2 = 87.3 (1), ϕ2 = -48.94 (9)° and ϕ3 = -125 (2)° (Cremer & Pople, 1975). The dihedral angle between the five- and seven-membered rings is 55.89 (9)°. The three-membered ring (C1, C2, C3) ring is nearly perpendicular to the six-membered ring (C1, C8, C9, C11, C12, C13) with a dihedral angle of 84.24 (19)°. Owing to the presence of Cl atoms, the absolute configuration could be determined from anomalous dispersion effects, by refining the Flack parameter (Flack, 1983) as C1(S), C3(R), C8(R), C9(S), and C11(R).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution containing 6 g (29 mmol) of β-himachalene and 6 mL (75 mmol) of CHCl3 in 40 ml of dichloromethane was added dropwise at 273 K over 30 min to 1.6 g (40 mmol) of pulverized sodium hydroxide and 60 mg of N–benzyltriethylammonium chloride placed in a 100 ml three–necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silicagel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (98–2) used as eluent. The two diastereoisomers (1S,3R,8R,9S,11R)-2,2,10,10-tetrachloro-3,7,7,11-tetraméthyletetracyclo [6,5,0,01.2,09.11] tridecane (X) and (1S,3R,8R,9R,11S)-2,2,10,10-tetrachloro-3,7,7,11-tetraméthyletetracyclo [6,5,0,01.2,09.11]tridecane (Y), were obtained by this procedure in a 85/15 ratio and a combined yield of 80% (8,5 g; 23,2 mmol). The title compound (isomer X) was recrystallized from pentane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl). The space group is not centrosymmetric and the polar axis restraint is generated automatically by the SHELXL program. Friedel pairs were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability. level. H atoms are represented as small spheres of arbitrary radii.
(1S,3R,8R,9S,11R)-2,2,10,10-Tetrachloro-3,7,7,11-tetramethyltetracyclo[6.5.0.01,3.09,11]tridecane top
Crystal data top
C17H24Cl4F(000) = 388
Mr = 370.16Dx = 1.379 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5419 reflections
a = 8.8807 (6) Åθ = 2.8–30.5°
b = 11.6280 (8) ŵ = 0.66 mm1
c = 9.0596 (6) ÅT = 296 K
β = 107.665 (2)°Block, colourless
V = 891.42 (10) Å30.41 × 0.35 × 0.27 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
4910 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 30.5°, θmin = 2.8°
ϕ and ω scansh = 1212
15112 measured reflectionsk = 1616
5419 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.074P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5419 reflectionsΔρmax = 0.32 e Å3
190 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C17H24Cl4V = 891.42 (10) Å3
Mr = 370.16Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.8807 (6) ŵ = 0.66 mm1
b = 11.6280 (8) ÅT = 296 K
c = 9.0596 (6) Å0.41 × 0.35 × 0.27 mm
β = 107.665 (2)°
Data collection top
Bruker X8 APEX
diffractometer
4910 reflections with I > 2σ(I)
15112 measured reflectionsRint = 0.019
5419 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.19 e Å3
5419 reflectionsAbsolute structure: Flack (1983)
190 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38317 (6)0.32772 (6)0.92294 (6)0.06701 (17)
Cl20.52164 (6)0.12723 (5)0.83384 (6)0.05443 (13)
Cl30.78628 (6)0.23092 (5)1.13768 (5)0.05374 (13)
Cl41.12169 (5)0.25246 (4)1.19453 (5)0.04960 (12)
C10.62379 (15)0.35612 (13)0.77816 (16)0.0288 (3)
C20.49711 (18)0.27743 (16)0.80650 (18)0.0391 (4)
C30.47133 (16)0.32604 (17)0.64690 (18)0.0380 (3)
C40.48758 (19)0.24243 (18)0.52377 (18)0.0431 (4)
H4A0.55520.17910.57330.052*
H4B0.38450.21110.46920.052*
C50.5566 (2)0.2997 (2)0.40815 (19)0.0518 (5)
H5A0.47290.33960.33110.062*
H5B0.59800.24080.35520.062*
C60.6879 (2)0.38477 (18)0.48244 (18)0.0442 (4)
H6A0.63930.45060.51560.053*
H6B0.73060.41160.40190.053*
C70.82871 (16)0.34716 (14)0.62113 (16)0.0324 (3)
C80.77955 (14)0.30517 (11)0.76794 (14)0.0244 (2)
H80.77170.22490.75790.029*
C90.91820 (15)0.32805 (12)0.91322 (15)0.0269 (2)
H91.01840.31430.88840.032*
C100.93290 (17)0.29978 (13)1.07857 (15)0.0317 (3)
C110.91735 (18)0.42382 (14)1.02843 (17)0.0350 (3)
C120.7581 (2)0.48145 (17)1.0110 (2)0.0474 (4)
H12A0.77660.56131.04200.057*
H12B0.70950.44461.08120.057*
C130.64262 (19)0.47670 (14)0.84681 (19)0.0377 (3)
H13A0.54020.50440.84880.045*
H13B0.67980.52770.78060.045*
C140.3446 (2)0.4161 (2)0.5839 (2)0.0545 (5)
H14A0.36480.48160.65160.082*
H14B0.24300.38440.57750.082*
H14C0.34570.43950.48260.082*
C150.9169 (2)0.2471 (2)0.57360 (19)0.0469 (4)
H15A0.85130.17980.55500.070*
H15B1.01280.23180.65520.070*
H15C0.94180.26720.48090.070*
C160.9411 (2)0.45147 (18)0.6573 (2)0.0459 (4)
H16A1.02900.43530.74710.069*
H16B0.88540.51770.67670.069*
H16C0.97890.46640.57040.069*
C171.0594 (2)0.50220 (16)1.0855 (2)0.0529 (5)
H17A1.03200.57811.04430.079*
H17B1.14460.47291.05180.079*
H17C1.09170.50531.19670.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0372 (2)0.1166 (5)0.0572 (3)0.0018 (3)0.0294 (2)0.0039 (3)
Cl20.0510 (2)0.0575 (3)0.0527 (3)0.0213 (2)0.0126 (2)0.0075 (2)
Cl30.0529 (2)0.0783 (3)0.03199 (18)0.0149 (2)0.01578 (16)0.00474 (19)
Cl40.0432 (2)0.0512 (2)0.03845 (19)0.00492 (18)0.01151 (15)0.00149 (18)
C10.0203 (5)0.0383 (7)0.0276 (6)0.0004 (5)0.0068 (5)0.0003 (5)
C20.0253 (6)0.0579 (10)0.0358 (7)0.0060 (6)0.0120 (5)0.0007 (7)
C30.0202 (6)0.0576 (10)0.0339 (7)0.0013 (6)0.0046 (5)0.0000 (7)
C40.0305 (7)0.0607 (10)0.0318 (7)0.0065 (7)0.0001 (5)0.0055 (7)
C50.0408 (8)0.0849 (15)0.0247 (7)0.0039 (9)0.0024 (6)0.0019 (8)
C60.0364 (8)0.0666 (12)0.0288 (7)0.0003 (7)0.0089 (6)0.0111 (7)
C70.0268 (6)0.0455 (8)0.0260 (6)0.0005 (6)0.0095 (5)0.0001 (6)
C80.0209 (5)0.0299 (6)0.0212 (5)0.0004 (5)0.0049 (4)0.0022 (5)
C90.0220 (5)0.0327 (6)0.0244 (6)0.0006 (5)0.0048 (4)0.0024 (5)
C100.0295 (6)0.0385 (7)0.0234 (6)0.0007 (6)0.0023 (5)0.0018 (5)
C110.0321 (7)0.0350 (7)0.0317 (7)0.0009 (6)0.0006 (5)0.0070 (6)
C120.0456 (9)0.0486 (9)0.0434 (9)0.0131 (7)0.0066 (7)0.0172 (7)
C130.0319 (7)0.0384 (8)0.0412 (8)0.0100 (6)0.0087 (6)0.0023 (6)
C140.0264 (7)0.0793 (14)0.0513 (10)0.0126 (8)0.0020 (7)0.0039 (10)
C150.0433 (8)0.0676 (11)0.0341 (7)0.0100 (8)0.0184 (6)0.0059 (8)
C160.0372 (8)0.0578 (11)0.0453 (9)0.0095 (7)0.0162 (7)0.0063 (8)
C170.0513 (10)0.0410 (9)0.0527 (10)0.0117 (8)0.0050 (8)0.0085 (8)
Geometric parameters (Å, º) top
Cl1—C21.7682 (17)C8—H80.9380
Cl2—C21.768 (2)C9—C101.5001 (19)
Cl3—C101.7454 (16)C9—C111.528 (2)
Cl4—C101.7744 (14)C9—H90.9951
C1—C131.522 (2)C10—C111.506 (2)
C1—C21.531 (2)C11—C171.515 (2)
C1—C81.5332 (17)C11—C121.529 (2)
C1—C31.5468 (19)C12—C131.530 (2)
C2—C31.504 (2)C12—H12A0.9700
C3—C141.517 (2)C12—H12B0.9700
C3—C41.519 (2)C13—H13A0.9700
C4—C51.519 (3)C13—H13B0.9700
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C5—C61.521 (3)C14—H14C0.9600
C5—H5A0.9700C15—H15A0.9600
C5—H5B0.9700C15—H15B0.9600
C6—C71.543 (2)C15—H15C0.9600
C6—H6A0.9700C16—H16A0.9600
C6—H6B0.9700C16—H16B0.9600
C7—C151.536 (2)C16—H16C0.9600
C7—C161.541 (2)C17—H17A0.9600
C7—C81.5970 (19)C17—H17B0.9600
C8—C91.5283 (17)C17—H17C0.9600
C13—C1—C2118.50 (12)C10—C9—H9112.2
C13—C1—C8113.04 (11)C11—C9—H9117.5
C2—C1—C8120.10 (13)C8—C9—H9108.6
C13—C1—C3118.97 (13)C9—C10—C1161.10 (10)
C2—C1—C358.50 (10)C9—C10—Cl3124.05 (10)
C8—C1—C3117.48 (12)C11—C10—Cl3121.55 (11)
C3—C2—C161.28 (10)C9—C10—Cl4116.07 (10)
C3—C2—Cl2118.84 (13)C11—C10—Cl4117.34 (11)
C1—C2—Cl2123.25 (12)Cl3—C10—Cl4109.57 (8)
C3—C2—Cl1120.10 (13)C10—C11—C17118.86 (14)
C1—C2—Cl1119.01 (12)C10—C11—C959.27 (9)
Cl2—C2—Cl1108.16 (9)C17—C11—C9119.72 (15)
C2—C3—C14120.05 (14)C10—C11—C12116.63 (15)
C2—C3—C4116.41 (16)C17—C11—C12114.83 (15)
C14—C3—C4112.99 (14)C9—C11—C12116.42 (12)
C2—C3—C160.23 (9)C11—C12—C13114.26 (13)
C14—C3—C1120.64 (16)C11—C12—H12A108.7
C4—C3—C1116.95 (12)C13—C12—H12A108.7
C5—C4—C3111.97 (17)C11—C12—H12B108.7
C5—C4—H4A109.2C13—C12—H12B108.7
C3—C4—H4A109.2H12A—C12—H12B107.6
C5—C4—H4B109.2C1—C13—C12112.86 (13)
C3—C4—H4B109.2C1—C13—H13A109.0
H4A—C4—H4B107.9C12—C13—H13A109.0
C4—C5—C6113.30 (13)C1—C13—H13B109.0
C4—C5—H5A108.9C12—C13—H13B109.0
C6—C5—H5A108.9H13A—C13—H13B107.8
C4—C5—H5B108.9C3—C14—H14A109.5
C6—C5—H5B108.9C3—C14—H14B109.5
H5A—C5—H5B107.7H14A—C14—H14B109.5
C5—C6—C7119.92 (16)C3—C14—H14C109.5
C5—C6—H6A107.3H14A—C14—H14C109.5
C7—C6—H6A107.3H14B—C14—H14C109.5
C5—C6—H6B107.3C7—C15—H15A109.5
C7—C6—H6B107.3C7—C15—H15B109.5
H6A—C6—H6B106.9H15A—C15—H15B109.5
C15—C7—C16107.65 (13)C7—C15—H15C109.5
C15—C7—C6110.06 (13)H15A—C15—H15C109.5
C16—C7—C6105.23 (14)H15B—C15—H15C109.5
C15—C7—C8107.07 (13)C7—C16—H16A109.5
C16—C7—C8112.76 (12)C7—C16—H16B109.5
C6—C7—C8113.95 (11)H16A—C16—H16B109.5
C9—C8—C1112.74 (10)C7—C16—H16C109.5
C9—C8—C7108.15 (10)H16A—C16—H16C109.5
C1—C8—C7114.32 (11)H16B—C16—H16C109.5
C9—C8—H8105.9C11—C17—H17A109.5
C1—C8—H8110.4C11—C17—H17B109.5
C7—C8—H8104.7H17A—C17—H17B109.5
C10—C9—C1159.64 (10)C11—C17—H17C109.5
C10—C9—C8128.69 (12)H17A—C17—H17C109.5
C11—C9—C8123.06 (11)H17B—C17—H17C109.5

Experimental details

Crystal data
Chemical formulaC17H24Cl4
Mr370.16
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.8807 (6), 11.6280 (8), 9.0596 (6)
β (°) 107.665 (2)
V3)891.42 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.41 × 0.35 × 0.27
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15112, 5419, 4910
Rint0.019
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.03
No. of reflections5419
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19
Absolute structureFlack (1983)
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds