organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o169-o170

3-({4-[(2-Methyl­benzyl­­idene)amino]-5-sulfanyl­­idene-1H-1,2,4-triazol-3-yl}meth­yl)-1,3-benzoxazol-2(3H)-one

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Institute of Science and Technology, Kastamonu University, 37100 Kastamonu, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 14 December 2012; accepted 20 December 2012; online 4 January 2013)

In the title compound, C18H15N5O2S, a weak intra­molecular C—H⋯S hydrogen bond results in a small dihedral angle of 3.71 (9)° between the methyl­phenyl and triazole rings, which, in turn, form dihedral angles of 80.09 (8) and 77.32 (8)°, respectively, with the benzoxazolone mean plane. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into chains along [001], and weak C—H⋯N hydrogen bonds and ππ inter­actions between the five- and six-membered rings [centroid–centroid distances = 3.5074 (11) and 3.616 (1) Å] consolidate the crystal packing.

Related literature

For details of the synthesis, see: Urlu-Cicekli et al. (2012[Urlu-Cicekli, S., Onkol, T., Ozgen, S. & Sahin, M. F. (2012). Rev. Roum. Chim. 57, 187-195.]). For related structures, see: Aydın et al. (2005[Aydın, A., Önkol, T., Akkurt, M. & Büyükgüngör, O. (2005). Anal. Sci. 21, x119-x120.], 2012[Aydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1544-o1545.]). For a MOPAC AM1 theoretical full-geometry optimization, see: Dewar et al. (1985[Dewar, M. J. S., Zoebish, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.]); Stewart (1993[Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N5O2S

  • Mr = 365.42

  • Monoclinic, P 21 /c

  • a = 18.0823 (13) Å

  • b = 6.4623 (4) Å

  • c = 15.1892 (11) Å

  • β = 100.821 (6)°

  • V = 1743.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.62 × 0.48 × 0.22 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.881, Tmax = 0.955

  • 10084 measured reflections

  • 3958 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.03

  • 3958 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.86 2.03 2.856 (2) 162
C4—H4⋯N4ii 0.93 2.52 3.387 (3) 155
C11—H11⋯S1 0.93 2.48 3.2159 (18) 136
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our studies of hybrid molecules containing 2(3H)- benzoxazolone fragment (Aydın et al., 2005), herewith we present the title compound, (I). In (I) (Fig. 1), the 2,3-dihydro-1,3-benzoxazole ring (N1/O1/C1—C7) is essentially planar with the maximum deviation of the C7 atom from the mean plane of -0.034 (2) Å. This ring system makes dihedral angles of 77.32 (8) and 80.09 (8)°, with the 4,5-dihydro-1H-1,2,4-triazole ring (N2–N4/C9/C10) and the benzene ring (C12–C17), respectively. The dihedral angle between the 4,5-dihydro-1H-1,2,4-triazole ring and the benzene ring is 3.71 (9)°. All bond lengths and angles are comparable with those observed in similar compounds (Aydın et al., 2005; 2012).

In the crystal, neighbouring molecules are linked by N—H···O and C—H···N hydrogen bonding interactions, forming a two dimensional network parallel to the (101) plane (Table 1, Fig. 2). In addition, the crystal packing is stabilized by a weak C—H···π interaction and two π-π stacking interactions [Cg1···Cg3(1 - x, -y, -z) = 3.5074 (11) Å and Cg2···Cg4(x, -1 + y,z) = 3.6160 (10) Å; where Cg1, Cg2, Cg3 and Cg4 are the centroids of the O1/C1/C6/N1/C7, N2/C9/N4/N3/C10, C1–C6 and C12–C17 rings, respectively].

Molecular orbital calculations using semi-empirical (AM1) have been carried out for the title compound with MOPAC (Dewar et al., 1985; Stewart, 1993). The values of the structural parameters of the title compound obtained by the results of the theoretical calculations (based on isolated molecules) and X-ray structural determinations in the solid state are almost identical within experimental error. The calculated dipole moment of (I) is 3.243 D. The HOMO and LUMO energy levels are -8.65563 and -.31527 eV, respectively.

Related literature top

For details of the synthesis, see: Urlu-Cicekli et al. (2012). For related structures, see: Aydın et al. (2005, 2012). For a MOPAC AM1 theoretical full-geometry optimization, see: Dewar et al. (1985); Stewart (1993).

Experimental top

To a suspension of o-methylbenzaldehyde (0.0022 mol) in glacial acetic acid (3 ml), 0.002 mol [(4-amino-5-sulfanylidene-1,2,4-triazol-3-yl) methyl]-2(3H)-benzoxazolone was added. The reaction mixture was placed in microwave oven and irradiated for minutes changing between 15–30 min at 398 K (300 W). After completion of the reaction by monitoring with TLC, the reaction mixture was kept overnight at room temperature. The precipitate was collected by filtration, washed with water, dried, and crystallized from EtOH-acetone.

Yield, 58%, m.p.: 494–495 K. IR vmax cm-1, 3186, 1772, 1484, 1268. 1H-NMR (DMSO-d6) δ 14.16 (1H, s, NH), 10.28 (1H, s, =CH), 7.84 (1H, d, Ar—H), 7.39 (1H, t, Ar—H), 7.29–7.18 (4H, m, Ar—H, H7, H4), 7.12 (1H, t, H6), 7.06 (1H, t, H5), 5.21 (2H, s, CH2), 2.40 (3H, s, CH3). Elemental analysis: C18H15N5O2S, Calc.(%) / Found (%): C:59.16/59.38, H: 4.14/3.95, N: 19.17/19.15. (Urlu-Cicekli et al., 2012).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93(aromatic), 0.97(methylene) and 0.96 Å (methyl), and refined as riding with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule shown with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewed down the b axis. H atoms not involved in hydrogen bondings are omitted for the sake of clarity.
3-({4-[(2-Methylbenzylidene)amino]-5-sulfanylidene-1H- 1,2,4-triazol-3-yl}methyl)-1,3-benzoxazol-2(3H)-one top
Crystal data top
C18H15N5O2SF(000) = 760
Mr = 365.42Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14230 reflections
a = 18.0823 (13) Åθ = 1.6–28.1°
b = 6.4623 (4) ŵ = 0.21 mm1
c = 15.1892 (11) ÅT = 296 K
β = 100.821 (6)°Prism, colourless
V = 1743.4 (2) Å30.62 × 0.48 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3958 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3034 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scansh = 2323
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.881, Tmax = 0.955l = 1911
10084 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.2998P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3958 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (11)
Crystal data top
C18H15N5O2SV = 1743.4 (2) Å3
Mr = 365.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0823 (13) ŵ = 0.21 mm1
b = 6.4623 (4) ÅT = 296 K
c = 15.1892 (11) Å0.62 × 0.48 × 0.22 mm
β = 100.821 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3958 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3034 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.955Rint = 0.029
10084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3958 reflectionsΔρmin = 0.27 e Å3
237 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82101 (3)0.21261 (9)0.49178 (3)0.0661 (2)
O10.57137 (8)0.3003 (2)0.04586 (9)0.0678 (5)
O20.69462 (8)0.2533 (3)0.04013 (11)0.0879 (6)
N10.63001 (7)0.0347 (2)0.11876 (9)0.0488 (4)
N20.76393 (7)0.19558 (19)0.30855 (8)0.0395 (4)
N30.73011 (8)0.0492 (2)0.38509 (9)0.0502 (4)
N40.69353 (8)0.0842 (2)0.29879 (9)0.0506 (4)
N50.78893 (7)0.3744 (2)0.27189 (9)0.0461 (4)
C10.51976 (10)0.1911 (3)0.08396 (12)0.0528 (5)
C20.44430 (11)0.2291 (3)0.07683 (16)0.0697 (7)
C30.40518 (11)0.0913 (4)0.11896 (16)0.0753 (8)
C40.43962 (11)0.0728 (4)0.16624 (15)0.0715 (7)
C50.51655 (10)0.1116 (3)0.17325 (13)0.0599 (6)
C60.55532 (9)0.0251 (3)0.13032 (10)0.0456 (5)
C70.63901 (11)0.1995 (3)0.06662 (12)0.0596 (6)
C80.69017 (9)0.1059 (3)0.15606 (11)0.0529 (5)
C90.71518 (8)0.0672 (2)0.25402 (10)0.0420 (4)
C100.77295 (8)0.1213 (2)0.39537 (10)0.0434 (4)
C110.84178 (9)0.4744 (3)0.31801 (11)0.0505 (5)
C120.87066 (8)0.6636 (2)0.28379 (11)0.0449 (5)
C130.85106 (10)0.7124 (3)0.19330 (12)0.0565 (6)
C140.87728 (12)0.8909 (3)0.16082 (15)0.0698 (8)
C150.92305 (12)1.0222 (3)0.21815 (18)0.0753 (9)
C160.94356 (11)0.9736 (3)0.30694 (17)0.0674 (8)
C170.91832 (9)0.7942 (3)0.34227 (13)0.0529 (6)
C180.94257 (14)0.7470 (4)0.44018 (16)0.0802 (8)
H20.421000.342000.045200.0840*
H30.353700.110100.115300.0900*
H3A0.725900.129900.428900.0600*
H40.411100.161600.194600.0860*
H50.540000.223900.205300.0720*
H8A0.672700.247600.146600.0630*
H8B0.732300.087100.125700.0630*
H110.863000.427400.375000.0610*
H130.820000.623800.154600.0680*
H140.864100.922900.100200.0840*
H150.940101.144300.196400.0900*
H160.975201.062800.344700.0810*
H18A0.986100.828200.464300.1200*
H18B0.954700.602700.447700.1200*
H18C0.902400.779800.471100.1200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0839 (4)0.0758 (3)0.0346 (2)0.0221 (3)0.0009 (2)0.0032 (2)
O10.0728 (8)0.0642 (8)0.0609 (8)0.0012 (7)0.0013 (6)0.0295 (7)
O20.0712 (9)0.1311 (14)0.0591 (9)0.0311 (9)0.0062 (7)0.0369 (9)
N10.0457 (7)0.0603 (8)0.0389 (7)0.0010 (6)0.0039 (5)0.0145 (6)
N20.0417 (6)0.0436 (7)0.0328 (6)0.0067 (5)0.0059 (5)0.0014 (5)
N30.0569 (8)0.0546 (8)0.0386 (7)0.0128 (6)0.0074 (6)0.0046 (6)
N40.0523 (7)0.0565 (8)0.0421 (7)0.0142 (6)0.0068 (6)0.0025 (6)
N50.0530 (7)0.0443 (7)0.0399 (7)0.0085 (6)0.0057 (5)0.0031 (6)
C10.0567 (10)0.0530 (9)0.0448 (9)0.0032 (8)0.0005 (7)0.0062 (7)
C20.0622 (11)0.0728 (13)0.0676 (13)0.0179 (10)0.0044 (9)0.0032 (10)
C30.0509 (10)0.1009 (17)0.0711 (14)0.0056 (11)0.0034 (9)0.0198 (12)
C40.0624 (11)0.0892 (15)0.0650 (12)0.0249 (11)0.0177 (9)0.0078 (11)
C50.0604 (10)0.0635 (11)0.0539 (10)0.0106 (9)0.0057 (8)0.0113 (9)
C60.0461 (8)0.0506 (9)0.0375 (8)0.0030 (7)0.0011 (6)0.0051 (6)
C70.0599 (10)0.0753 (12)0.0400 (9)0.0120 (9)0.0002 (7)0.0175 (8)
C80.0508 (9)0.0694 (11)0.0367 (8)0.0118 (8)0.0036 (6)0.0021 (7)
C90.0391 (7)0.0498 (8)0.0368 (7)0.0060 (6)0.0067 (6)0.0036 (6)
C100.0455 (8)0.0486 (8)0.0363 (7)0.0028 (7)0.0081 (6)0.0003 (6)
C110.0533 (9)0.0509 (9)0.0434 (8)0.0082 (7)0.0010 (7)0.0060 (7)
C120.0433 (8)0.0419 (8)0.0495 (9)0.0003 (6)0.0086 (6)0.0042 (6)
C130.0614 (10)0.0560 (10)0.0519 (10)0.0004 (8)0.0105 (8)0.0082 (8)
C140.0835 (14)0.0639 (12)0.0674 (13)0.0069 (11)0.0281 (10)0.0218 (10)
C150.0765 (13)0.0500 (11)0.1094 (19)0.0025 (10)0.0431 (13)0.0200 (12)
C160.0590 (11)0.0476 (10)0.0968 (17)0.0087 (8)0.0175 (10)0.0044 (10)
C170.0477 (9)0.0457 (9)0.0638 (11)0.0027 (7)0.0066 (7)0.0027 (8)
C180.0886 (15)0.0728 (14)0.0678 (14)0.0154 (12)0.0146 (11)0.0060 (11)
Geometric parameters (Å, º) top
S1—C101.6643 (15)C11—C121.463 (2)
O1—C11.381 (2)C12—C171.399 (2)
O1—C71.369 (2)C12—C131.390 (2)
O2—C71.202 (3)C13—C141.374 (3)
N1—C61.396 (2)C14—C151.376 (3)
N1—C71.355 (2)C15—C161.367 (4)
N1—C81.449 (2)C16—C171.390 (3)
N2—N51.3944 (18)C17—C181.501 (3)
N2—C91.3701 (19)C2—H20.9300
N2—C101.3839 (19)C3—H30.9300
N3—N41.3716 (19)C4—H40.9300
N3—C101.3391 (19)C5—H50.9300
N4—C91.2934 (19)C8—H8A0.9700
N5—C111.253 (2)C8—H8B0.9700
N3—H3A0.8600C11—H110.9300
C1—C61.375 (3)C13—H130.9300
C1—C21.371 (3)C14—H140.9300
C2—C31.369 (3)C15—H150.9300
C3—C41.364 (3)C16—H160.9300
C4—C51.398 (3)C18—H18A0.9600
C5—C61.367 (3)C18—H18B0.9600
C8—C91.493 (2)C18—H18C0.9600
C1—O1—C7107.77 (14)C12—C13—C14120.31 (17)
C6—N1—C7109.49 (14)C13—C14—C15119.9 (2)
C6—N1—C8126.61 (14)C14—C15—C16120.17 (19)
C7—N1—C8123.90 (14)C15—C16—C17121.7 (2)
N5—N2—C9118.71 (12)C16—C17—C18119.74 (19)
N5—N2—C10132.76 (12)C12—C17—C16117.77 (18)
C9—N2—C10108.26 (12)C12—C17—C18122.50 (18)
N4—N3—C10114.32 (13)C1—C2—H2122.00
N3—N4—C9103.80 (13)C3—C2—H2122.00
N2—N5—C11118.33 (14)C2—C3—H3119.00
N4—N3—H3A123.00C4—C3—H3119.00
C10—N3—H3A123.00C3—C4—H4119.00
C2—C1—C6122.91 (18)C5—C4—H4119.00
O1—C1—C6109.00 (15)C4—C5—H5122.00
O1—C1—C2128.06 (18)C6—C5—H5122.00
C1—C2—C3116.16 (19)N1—C8—H8A110.00
C2—C3—C4121.81 (19)N1—C8—H8B110.00
C3—C4—C5121.9 (2)C9—C8—H8A110.00
C4—C5—C6116.10 (18)C9—C8—H8B110.00
N1—C6—C5133.14 (17)H8A—C8—H8B108.00
N1—C6—C1105.75 (15)N5—C11—H11119.00
C1—C6—C5121.07 (16)C12—C11—H11119.00
O1—C7—N1107.96 (16)C12—C13—H13120.00
O2—C7—N1128.50 (19)C14—C13—H13120.00
O1—C7—O2123.53 (18)C13—C14—H14120.00
N1—C8—C9110.46 (14)C15—C14—H14120.00
N2—C9—C8122.77 (13)C14—C15—H15120.00
N2—C9—N4111.35 (13)C16—C15—H15120.00
N4—C9—C8125.86 (14)C15—C16—H16119.00
N2—C10—N3102.25 (12)C17—C16—H16119.00
S1—C10—N3126.12 (12)C17—C18—H18A109.00
S1—C10—N2131.61 (11)C17—C18—H18B109.00
N5—C11—C12121.20 (15)C17—C18—H18C109.00
C13—C12—C17120.23 (15)H18A—C18—H18B109.00
C11—C12—C13119.96 (14)H18A—C18—H18C110.00
C11—C12—C17119.81 (15)H18B—C18—H18C109.00
C7—O1—C1—C2176.4 (2)N3—N4—C9—N20.12 (17)
C7—O1—C1—C61.5 (2)N2—N5—C11—C12179.86 (14)
C1—O1—C7—O2177.25 (19)C2—C1—C6—C50.7 (3)
C1—O1—C7—N11.76 (19)C2—C1—C6—N1177.42 (18)
C7—N1—C6—C10.53 (19)O1—C1—C2—C3177.6 (2)
C8—N1—C6—C1179.11 (15)C6—C1—C2—C30.1 (3)
C6—N1—C7—O11.43 (19)O1—C1—C6—N10.57 (19)
C8—N1—C7—O22.8 (3)O1—C1—C6—C5178.73 (16)
C8—N1—C7—O1178.22 (14)C1—C2—C3—C40.8 (3)
C6—N1—C7—O2177.5 (2)C2—C3—C4—C51.0 (4)
C8—N1—C6—C53.1 (3)C3—C4—C5—C60.3 (3)
C6—N1—C8—C974.0 (2)C4—C5—C6—C10.5 (3)
C7—N1—C8—C9105.58 (18)C4—C5—C6—N1177.04 (19)
C7—N1—C6—C5177.31 (19)N1—C8—C9—N47.5 (2)
C9—N2—N5—C11169.40 (15)N1—C8—C9—N2170.82 (13)
C9—N2—C10—S1176.79 (12)N5—C11—C12—C1313.5 (2)
N5—N2—C10—S13.0 (3)N5—C11—C12—C17166.92 (16)
C10—N2—C9—C8177.50 (14)C11—C12—C13—C14179.29 (17)
N5—N2—C9—N4175.91 (13)C17—C12—C13—C141.1 (3)
C10—N2—N5—C1117.3 (2)C11—C12—C17—C16179.17 (16)
C9—N2—C10—N31.52 (15)C11—C12—C17—C180.9 (3)
C10—N2—C9—N41.08 (17)C13—C12—C17—C161.2 (2)
N5—N2—C10—N3175.34 (15)C13—C12—C17—C18178.74 (18)
N5—N2—C9—C82.7 (2)C12—C13—C14—C150.1 (3)
C10—N3—N4—C90.95 (18)C13—C14—C15—C161.2 (3)
N4—N3—C10—N21.55 (17)C14—C15—C16—C171.1 (3)
N4—N3—C10—S1176.89 (11)C15—C16—C17—C120.2 (3)
N3—N4—C9—C8178.40 (15)C15—C16—C17—C18179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.862.032.856 (2)162
C4—H4···N4ii0.932.523.387 (3)155
C8—H8B···O20.972.582.924 (3)101
C11—H11···S10.932.483.2159 (18)136
C3—H3···Cg2iii0.932.943.635 (2)132
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H15N5O2S
Mr365.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.0823 (13), 6.4623 (4), 15.1892 (11)
β (°) 100.821 (6)
V3)1743.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.62 × 0.48 × 0.22
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.881, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
10084, 3958, 3034
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.03
No. of reflections3958
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.862.032.856 (2)162
C4—H4···N4ii0.932.523.387 (3)155
C11—H11···S10.932.483.2159 (18)136
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydın, A., Önkol, T., Akkurt, M. & Büyükgüngör, O. (2005). Anal. Sci. 21, x119–x120.  Google Scholar
First citationAydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1544–o1545.  CSD CrossRef IUCr Journals Google Scholar
First citationDewar, M. J. S., Zoebish, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUrlu-Cicekli, S., Onkol, T., Ozgen, S. & Sahin, M. F. (2012). Rev. Roum. Chim. 57, 187–195.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o169-o170
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds