organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(Z)-[(2,3-Dihy­dr­oxy­prop­yl)amino]­methyl­­idene}naphthalen-2(1H)-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, and eDepartment of Chemistry, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 December 2012; accepted 17 December 2012; online 22 December 2012)

In the title mol­ecule, C14H15NO3, the ring system is essentially planar, with an r.m.s. deviation of 0.003 Å. The atoms of the ethane-1,2-diol group were refined as disordered over two sets of sites in a ratio of 0.815 (3):0.185 (3). The mol­ecular conformation is stabilized in part by an intra­molecular N—H⋯O hydrogen bond, which forms an S(6) ring. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (100). The network also features weak C—H⋯O hydrogen bonds. Weak C—H⋯π inter­actions also observed.

Related literature

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011[Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896.]). For the effect of hydro­philicity on drug properties, see: Lin & Lu (1997[Lin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO3

  • Mr = 245.27

  • Monoclinic, P 21 /c

  • a = 23.452 (16) Å

  • b = 5.809 (4) Å

  • c = 8.739 (6) Å

  • β = 96.445 (7)°

  • V = 1183.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.27 × 0.14 × 0.01 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.999

  • 8146 measured reflections

  • 2650 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.156

  • S = 1.11

  • 2650 reflections

  • 184 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.87 2.560 (3) 135
N1—H1⋯O3Ai 0.88 2.56 3.166 (3) 127
O2A—H2A⋯O1ii 0.84 1.83 2.663 (3) 175
O3A—H3A⋯O2Aiii 0.84 1.91 2.744 (3) 169
C12—H12B⋯O1iv 0.99 2.60 3.174 (3) 117
C4—H4⋯Cg2v 0.95 2.79 3.491 (3) 132
C9—H9⋯Cg1iv 0.95 2.77 3.510 (3) 135
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Azomethine compounds, which were named as Schiff's bases in 1864 are extensively incoporated in many pharmaceutical and food industry applications (Prakash & Adhikari, 2011). Elimination of excess drugs from the bloodstream or body is an essential process to protect against potential toxicity. In most cases the more hydrophilic drugs/pharmacophores are the more they are readily excreted by the kidneys in urine (Lin & Lu, 1997). The existance of conjugated double bonds and more hydroxylic groups in bioactive molecules increases not only their hydrophilicity but also the rate of their membrane absorption. Based on such facts we herein report the crystal structure of a potential bioactive hydrophilic azomethine derivative.

The molecluar structure of the title compound (I) is shown in Fig. 1. The naphthalene ring system (C1—C10) is essentially planar with an r.m.s. deviation of 0.003Å. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, molecules are connected by N—H···O and O—H···O hydrogen bonds to form a two-dimensional network parallel to (100). The network is further stabilized by weak C—H···O hydrogen bonds. Weak C—H···π interactions also observed. The O—H groups of the minor component of disorder are not considered in the description of the hydrogen bonding.

Related literature top

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1 mmol (172 mg) 2-hydroxynaphthalene-1-carbaldehyde and 1 mmol (91 mg) 3-aminopropane-1,2-diol in 40 ml ethanol was refluxed and monitored by TLC till completion after 12 h. On cooling of the reaction mixture at room temperature a quantitaive solid product was deposited, filtered and washed with cold ethanol. The crude product was crystallized from ethanol to afford x-ray quality yellow plates (m.p 505 K) in an excellent yield (90.6%) on a slow evaporation at room temperature for 24 h.

Refinement top

All H-atoms were placed in calculated positions and refined by using a riding model with O—H = 0.84 Å, N—H = 0.88 Å, C—H = 0.95 Å (aromatic), 0.99 Å (methylene) and 1.00 Å (methine), and with Uiso(H) = 1.5Ueq(O) for hydroxyl and Uiso(H) = 1.2Ueq(C) for the other atoms. The atoms of the ethane-1,2-diol group are disordered over two sets of sites with occupancies 0.815 (3) and 0.185 (3).

Structure description top

Azomethine compounds, which were named as Schiff's bases in 1864 are extensively incoporated in many pharmaceutical and food industry applications (Prakash & Adhikari, 2011). Elimination of excess drugs from the bloodstream or body is an essential process to protect against potential toxicity. In most cases the more hydrophilic drugs/pharmacophores are the more they are readily excreted by the kidneys in urine (Lin & Lu, 1997). The existance of conjugated double bonds and more hydroxylic groups in bioactive molecules increases not only their hydrophilicity but also the rate of their membrane absorption. Based on such facts we herein report the crystal structure of a potential bioactive hydrophilic azomethine derivative.

The molecluar structure of the title compound (I) is shown in Fig. 1. The naphthalene ring system (C1—C10) is essentially planar with an r.m.s. deviation of 0.003Å. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, molecules are connected by N—H···O and O—H···O hydrogen bonds to form a two-dimensional network parallel to (100). The network is further stabilized by weak C—H···O hydrogen bonds. Weak C—H···π interactions also observed. The O—H groups of the minor component of disorder are not considered in the description of the hydrogen bonding.

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 50% probability level. Only the major components of disorder are shown.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the b axis. Only the major component of disorder is shown. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.
1-{(Z)-[(2,3-Dihydroxypropyl)amino]methylidene}naphthalen- 2(1H)-one top
Crystal data top
C14H15NO3F(000) = 520
Mr = 245.27Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 2698 reflections
a = 23.452 (16) Åθ = 2.4–27.6°
b = 5.809 (4) ŵ = 0.10 mm1
c = 8.739 (6) ÅT = 100 K
β = 96.445 (7)°Sheet, yellow
V = 1183.0 (14) Å30.27 × 0.14 × 0.01 mm
Z = 4
Data collection top
Rigaku AFC12 (Right)
diffractometer
2650 independent reflections
Radiation source: Rotating Anode2438 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.025
profile data from ω–scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 3030
Tmin = 0.974, Tmax = 0.999k = 77
8146 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.7284P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.67 e Å3
81 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H15NO3V = 1183.0 (14) Å3
Mr = 245.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.452 (16) ŵ = 0.10 mm1
b = 5.809 (4) ÅT = 100 K
c = 8.739 (6) Å0.27 × 0.14 × 0.01 mm
β = 96.445 (7)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
2650 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2438 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.999Rint = 0.025
8146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05881 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.11Δρmax = 0.67 e Å3
2650 reflectionsΔρmin = 0.26 e Å3
184 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30508 (5)0.3921 (2)0.50408 (16)0.0291 (4)
O2A0.37874 (6)1.0576 (3)0.45655 (17)0.0239 (5)0.815 (3)
O3A0.42610 (7)1.3999 (3)0.6847 (2)0.0333 (5)0.815 (3)
N10.32519 (6)0.7647 (3)0.65713 (18)0.0236 (4)
C10.23196 (7)0.5877 (3)0.62006 (19)0.0194 (5)
C20.25288 (7)0.4010 (3)0.5343 (2)0.0222 (5)
C30.21329 (8)0.2228 (3)0.4789 (2)0.0252 (5)
C40.15774 (8)0.2281 (3)0.5059 (2)0.0249 (5)
C50.13503 (7)0.4101 (3)0.59118 (19)0.0211 (5)
C60.07683 (7)0.4098 (3)0.6178 (2)0.0255 (5)
C70.05463 (7)0.5851 (3)0.6992 (2)0.0277 (5)
C80.09095 (7)0.7645 (3)0.7572 (2)0.0257 (5)
C90.14798 (7)0.7680 (3)0.7335 (2)0.0211 (5)
C100.17201 (7)0.5925 (3)0.64858 (19)0.0191 (5)
C110.27077 (7)0.7636 (3)0.67604 (19)0.0205 (5)
C120.36595 (7)0.9416 (3)0.7169 (2)0.0252 (5)
C13A0.40851 (18)0.9966 (7)0.6026 (5)0.0238 (8)0.815 (3)
C14A0.4511 (3)1.1822 (11)0.6651 (7)0.0321 (10)0.815 (3)
O2B0.4314 (4)0.8181 (15)0.5357 (10)0.043 (2)*0.185 (3)
O3B0.4728 (6)1.153 (3)0.8021 (16)0.082 (4)*0.185 (3)
C13B0.4028 (10)1.008 (3)0.591 (2)0.028 (3)*0.185 (3)
C14B0.4461 (17)1.192 (5)0.653 (3)0.032 (3)*0.185 (3)
H40.133000.107100.467000.0300*
H60.052600.287100.579000.0310*
H70.015300.584600.715900.0330*
H80.075900.885600.813800.0310*
H90.171700.890700.775000.0250*
H110.256300.888100.730600.0250*
H12A0.387100.887800.814800.0300*0.815 (3)
H12B0.344801.083200.738700.0300*0.815 (3)
H13A0.430900.853300.587900.0290*0.815 (3)
H14A0.470501.130400.765700.0380*0.815 (3)
H14B0.480701.198700.593800.0380*0.815 (3)
H10.338200.650700.604600.0280*
H2A0.353801.157600.469000.0360*0.815 (3)
H30.226500.098300.421900.0300*
H3A0.416101.409300.773900.0500*0.815 (3)
H2B0.458600.779000.601400.0640*0.185 (3)
H3B0.502101.070900.797700.1230*0.185 (3)
H12C0.392000.879600.804300.0300*0.185 (3)
H12D0.345201.075200.754100.0300*0.185 (3)
H13B0.377201.075500.503000.0330*0.185 (3)
H14C0.476101.204200.582100.0390*0.185 (3)
H14D0.426001.342400.651500.0390*0.185 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0279 (7)0.0284 (7)0.0328 (8)0.0057 (5)0.0117 (5)0.0005 (5)
O2A0.0279 (8)0.0233 (8)0.0218 (8)0.0035 (6)0.0084 (6)0.0008 (6)
O3A0.0305 (9)0.0319 (9)0.0388 (10)0.0010 (7)0.0096 (7)0.0029 (7)
N10.0210 (7)0.0253 (7)0.0253 (8)0.0004 (6)0.0056 (6)0.0002 (6)
C10.0219 (8)0.0192 (8)0.0174 (8)0.0022 (6)0.0038 (6)0.0024 (6)
C20.0258 (8)0.0234 (8)0.0182 (8)0.0032 (6)0.0054 (6)0.0038 (6)
C30.0363 (10)0.0202 (8)0.0193 (9)0.0047 (7)0.0044 (7)0.0015 (6)
C40.0339 (9)0.0191 (8)0.0209 (9)0.0028 (7)0.0003 (7)0.0004 (6)
C50.0246 (8)0.0212 (8)0.0172 (8)0.0013 (6)0.0008 (6)0.0025 (6)
C60.0240 (8)0.0267 (9)0.0252 (9)0.0056 (7)0.0002 (7)0.0005 (7)
C70.0208 (8)0.0346 (10)0.0274 (10)0.0030 (7)0.0021 (6)0.0023 (8)
C80.0233 (8)0.0271 (9)0.0272 (9)0.0042 (7)0.0046 (7)0.0018 (7)
C90.0206 (8)0.0201 (8)0.0222 (8)0.0007 (6)0.0009 (6)0.0013 (6)
C100.0212 (8)0.0194 (8)0.0163 (8)0.0006 (6)0.0006 (6)0.0029 (6)
C110.0219 (8)0.0215 (8)0.0186 (8)0.0022 (6)0.0040 (6)0.0033 (6)
C120.0212 (8)0.0295 (9)0.0251 (9)0.0027 (7)0.0032 (6)0.0002 (7)
C13A0.0181 (13)0.0256 (12)0.0287 (14)0.0030 (9)0.0065 (12)0.0002 (9)
C14A0.0221 (19)0.0333 (15)0.0417 (19)0.0031 (13)0.0076 (12)0.0039 (13)
Geometric parameters (Å, º) top
O1—C21.282 (2)C9—C101.415 (3)
O2A—C13A1.429 (5)C12—C13B1.52 (2)
O2B—C13B1.41 (2)C12—C13A1.523 (5)
O3A—C14A1.412 (7)C13A—C14A1.528 (8)
O3B—C14B1.40 (3)C13B—C14B1.53 (4)
O2A—H2A0.8400C3—H30.9500
O2B—H2B0.8400C4—H40.9500
O3A—H3A0.8400C6—H60.9500
O3B—H3B0.8400C7—H70.9500
N1—C121.460 (3)C8—H80.9500
N1—C111.305 (2)C9—H90.9500
N1—H10.8800C11—H110.9500
C1—C111.418 (3)C12—H12C0.9900
C1—C21.436 (3)C12—H12D0.9900
C1—C101.455 (3)C12—H12A0.9900
C2—C31.438 (3)C12—H12B0.9900
C3—C41.350 (3)C13A—H13A1.0000
C4—C51.430 (3)C13B—H13B1.0000
C5—C101.424 (3)C14A—H14A0.9900
C5—C61.410 (3)C14A—H14B0.9900
C6—C71.377 (3)C14B—H14C0.9900
C7—C81.404 (3)C14B—H14D0.9900
C8—C91.376 (3)
C13A—O2A—H2A109.00C3—C4—H4119.00
C13B—O2B—H2B109.00C5—C4—H4119.00
C14A—O3A—H3A109.00C7—C6—H6120.00
C14B—O3B—H3B109.00C5—C6—H6120.00
C11—N1—C12124.65 (16)C6—C7—H7120.00
C12—N1—H1118.00C8—C7—H7120.00
C11—N1—H1118.00C9—C8—H8119.00
C2—C1—C10119.81 (15)C7—C8—H8119.00
C10—C1—C11121.46 (15)C10—C9—H9119.00
C2—C1—C11118.72 (15)C8—C9—H9119.00
C1—C2—C3118.30 (15)C1—C11—H11118.00
O1—C2—C1121.88 (15)N1—C11—H11118.00
O1—C2—C3119.81 (16)N1—C12—H12C110.00
C2—C3—C4121.61 (16)N1—C12—H12A109.00
C3—C4—C5122.07 (16)N1—C12—H12B109.00
C6—C5—C10120.34 (15)C13A—C12—H12B109.00
C4—C5—C6120.60 (16)H12A—C12—H12B108.00
C4—C5—C10119.06 (15)C13B—C12—H12C107.00
C5—C6—C7120.88 (16)C13B—C12—H12D112.00
C6—C7—C8119.08 (15)H12C—C12—H12D108.00
C7—C8—C9121.13 (16)N1—C12—H12D110.00
C8—C9—C10121.29 (16)C13A—C12—H12A109.00
C5—C10—C9117.27 (15)O2A—C13A—H13A108.00
C1—C10—C9123.57 (15)C14A—C13A—H13A108.00
C1—C10—C5119.15 (15)C12—C13A—H13A108.00
N1—C11—C1123.96 (16)O2B—C13B—H13B108.00
N1—C12—C13B108.8 (7)C12—C13B—H13B108.00
N1—C12—C13A111.4 (2)C14B—C13B—H13B108.00
O2A—C13A—C14A112.2 (4)H14A—C14A—H14B108.00
O2A—C13A—C12110.3 (3)C13A—C14A—H14B109.00
C12—C13A—C14A111.3 (4)O3A—C14A—H14A109.00
C12—C13B—C14B109.2 (15)O3A—C14A—H14B109.00
O2B—C13B—C14B110 (2)C13A—C14A—H14A109.00
O2B—C13B—C12112.4 (12)O3B—C14B—H14C109.00
O3A—C14A—C13A114.3 (5)O3B—C14B—H14D108.00
O3B—C14B—C13B115 (2)C13B—C14B—H14C109.00
C2—C3—H3119.00C13B—C14B—H14D108.00
C4—C3—H3119.00H14C—C14B—H14D107.00
C12—N1—C11—C1178.57 (16)C3—C4—C5—C6179.74 (17)
C11—N1—C12—C13A141.4 (2)C4—C5—C6—C7179.69 (16)
C10—C1—C2—O1178.69 (16)C4—C5—C10—C9179.45 (16)
C11—C1—C2—C3179.61 (16)C10—C5—C6—C70.1 (3)
C10—C1—C2—C30.0 (2)C4—C5—C10—C10.5 (2)
C11—C1—C2—O11.7 (3)C6—C5—C10—C90.8 (2)
C11—C1—C10—C5179.31 (16)C6—C5—C10—C1179.68 (16)
C11—C1—C10—C90.5 (3)C5—C6—C7—C80.6 (3)
C2—C1—C11—N11.4 (3)C6—C7—C8—C90.2 (3)
C10—C1—C11—N1178.20 (16)C7—C8—C9—C100.7 (3)
C2—C1—C10—C50.3 (2)C8—C9—C10—C51.1 (3)
C2—C1—C10—C9179.17 (16)C8—C9—C10—C1180.00 (16)
O1—C2—C3—C4178.79 (17)N1—C12—C13A—O2A54.6 (3)
C1—C2—C3—C40.1 (3)N1—C12—C13A—C14A179.9 (3)
C2—C3—C4—C50.2 (3)O2A—C13A—C14A—O3A58.8 (5)
C3—C4—C5—C100.5 (3)C12—C13A—C14A—O3A65.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.872.560 (3)135
N1—H1···O3Ai0.882.563.166 (3)127
O2A—H2A···O1ii0.841.832.663 (3)175
O3A—H3A···O2Aiii0.841.912.744 (3)169
C12—H12B···O1iv0.992.603.174 (3)117
C4—H4···Cg2v0.952.793.491 (3)132
C9—H9···Cg1iv0.952.773.510 (3)135
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+5/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO3
Mr245.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)23.452 (16), 5.809 (4), 8.739 (6)
β (°) 96.445 (7)
V3)1183.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.14 × 0.01
Data collection
DiffractometerRigaku AFC12 (Right)
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.974, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
8146, 2650, 2438
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 1.11
No. of reflections2650
No. of parameters184
No. of restraints81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.26

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.872.560 (3)135
N1—H1···O3Ai0.882.563.166 (3)127
O2A—H2A···O1ii0.841.832.663 (3)175
O3A—H3A···O2Aiii0.841.912.744 (3)169
C12—H12B···O1iv0.992.603.174 (3)117
C4—H4···Cg2v0.952.793.491 (3)132
C9—H9···Cg1iv0.952.773.510 (3)135
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+5/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Ministry of Higher Education of Egypt under the collaporative PhD program 2012. The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction measurementss. The authors are thankful to Manchester Metropolitan University, Sohag University and Erciyes Universitry for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403–449.  Web of Science CAS PubMed Google Scholar
First citationPrakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891–1896.  Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds