organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,5-Di­methyl-1H-pyrazol-1-yl)-2-hy­dr­oxy­imino-N′-[1-(pyridin-2-yl)ethyl­­idene]acetohydrazide

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland, and cInorganic Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
*Correspondence e-mail: plutenkom@gmail.com

(Received 25 September 2012; accepted 2 November 2012; online 17 November 2012)

In the title compound, C14H16N6O2, the dihedral angles formed by the mean plane of the acetohydrazide group [maximum deviation 0.0629 (12) Å] with the pyrazole and pyridine rings are 81.62 (6) and 38.38 (4)° respectively. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into supra­molecular chains extending parallel to the c-axis direction.

Related literature

For uses of polynuclear complexes, see: Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Wörl et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]). For the use of oximes having additional donor functions as versatile ligands, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]). For related structures, see: Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Swiatek-Kozlowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Y. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]). For the synthesis, see: Kozikowski & Adamczyk (1983[Kozikowski, A. P. & Adamczyk, M. (1983). J. Org. Chem. 48, 366-372.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N6O2

  • Mr = 300.33

  • Monoclinic, C c

  • a = 24.5792 (6) Å

  • b = 7.5795 (2) Å

  • c = 8.3072 (2) Å

  • β = 107.335 (1)°

  • V = 1477.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.36 × 0.28 × 0.21 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.966, Tmax = 0.980

  • 8846 measured reflections

  • 4395 independent reflections

  • 4096 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.03

  • 4395 reflections

  • 204 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N6i 0.88 1.79 2.6686 (13) 175
N3—H3N⋯O1i 0.86 2.17 3.0196 (13) 174
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polynuclear complexes and supramolecular assemblies based on the bridging ligands are widely used in molecular magnetism, crystal engineering, bioinorganic modeling and catalysis (Świątek-Kozłowska et al., 2000; Wörl et al., 2005). One of the most efficient bridging ligands are oximes. Polydentate ligands containing both oxime and other donor functions (e.g., carboxylic, amide, hydroxamic) are of special interest due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Sachse et al., 2008) and for the preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3d-metal ions (e.g., copper(III) and nickel(III)) (Kanderal et al., 2005). As a part of our research study we present the structure of the title compound, which comprises several donor groups: oxime, hydrazone, azomethine, and pyridine. It has been shown previously that structurally similiar strand ligands form mono- and tetranuclear grid-like assemblies with 3d-metal ions (Moroz et al., 2012).

In the title compound (Fig. 1), the N—N, N—C and C—O bond lengths of the acetohydrazide group (1.3814 (14), 1.3607 (14) and 1.2204 (14) Å respectively) are typical for the protonated amide group (Kanderal et al., 2005; Sachse et al., 2008; Moroz et al., 2012). The NC(=NOH)C(O)NH fragment deviates from the planarity because of a twist between the oxime and the amide groups about the C(8)—C9 bond; the O(1)—C(8)—C(9)—N(4) torsion angle is 168.65 (11)°. The N—O and C—N bond lengths of the oxime group are 1.370 (1) and 1.281 (0) Å, respectively, that is typical for the amide derivatives of 2-hydroxypropanoic acid (Sliva et al., 1997; Mokhir et al., 2002). The pyridine nitrogen atom is situated in an anti-position with respect to the azomethine group. The C—C, C—N and N—N' (1.3314 (15)–1.4098 (12) Å) bond lengths in the pyrazole ring have typical values. The N4—C9—N5—N6 torsion angle is 63.95 (15)°. The C—N and C—C bond lengths in the pyridine ring are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Sachse et al., 2008).

In the crystal packing (Fig. 2), the molecules are connected by N—H···O and O—H···N hydrogen bonds (Table 1) to form chains parallel to the c axis, where the amide nitrogen and the oxime oxygen atoms act as donors and the amide oxygen and the pyrazole nitrogen atoms act as acceptors.

Related literature top

For uses of polynuclear complexes, see: Świątek-Kozłowska et al. (2000); Wörl et al. (2005). For the use of oximes having additional donor functions as versatile ligands, see: Krämer & Fritsky (2000); Sachse et al. (2008); Kanderal et al. (2005). For related structures, see: Moroz et al. (2012); Mokhir et al. (2002); Sliva et al. (1997). For the synthesis, see: Kozikowski & Adamczyk (1983).

Experimental top

Synthesis of ethyl 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetate: a mixture of ethyl 2-chloro-2-hydroxyiminoacetate synthesized according to Kozikowski et al. (1983) (0.906 g, 6 mmol) and 3,5-dimethylpyrazole (1.152 g, 12 mmol) in 10 ml of chloroform was left for evaporation in the air overnight. The resulting precipitate was recrystallized from water. Yield: 1.12 g (88%).

Synthesis of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetohydrazide: a solution of hydrazine hydrate (0.57 ml, 60%, 10.6 mmol) in water was added to a solution of ethyl 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetate (1.12 g, 5.3 mmol) in methanol (30 ml). The resulting mixture was heating under reflux for 1.5 h. After that the solvent was evaporated and the product was recrystallized from methanol. Yield 0.5 g (48%).

Synthesis of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]acetohydrazide (1): a solution of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetohydrazide (0.5 g, 2.54 mmol) in methanol (30 ml) was treated with 2-acetylpyridine (0.307 g, 2.54 mmol) and the mixture was heated under reflux for 3 h. After that the solvent was evaporated in vacuum and the product was recrystallized from methanol. Yield 0.65 g (85%).

Refinement top

The crystal was refined as a racemic twin, with the BASF value refined to 0.4 (8) for 1715 Friedel pairs. The oxime H atom was located in a difference Fourier map and refined as riding with Uiso = 1.5 Ueq(O). The hydrazide H atom was also located in a difference Fourier map but not refined; the N—H distance was constrained to be 0.86 (1) Å and the isotropic displacement parameter was set to 1.5 times that of the N parent atom. All other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and Uiso = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity.
2-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-hydroxyimino- N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide top
Crystal data top
C14H16N6O2F(000) = 632
Mr = 300.33Dx = 1.350 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5439 reflections
a = 24.5792 (6) Åθ = 3.5–32.2°
b = 7.5795 (2) ŵ = 0.10 mm1
c = 8.3072 (2) ÅT = 100 K
β = 107.335 (1)°Block, colourless
V = 1477.32 (6) Å30.36 × 0.28 × 0.21 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4395 independent reflections
Radiation source: fine-focus sealed tube4096 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.016
Detector resolution: 16 pixels mm-1θmax = 32.2°, θmin = 1.7°
ϕ scans and ω scans with κ offseth = 2836
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1111
Tmin = 0.966, Tmax = 0.980l = 1212
8846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.467P]
where P = (Fo2 + 2Fc2)/3
4395 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16N6O2V = 1477.32 (6) Å3
Mr = 300.33Z = 4
Monoclinic, CcMo Kα radiation
a = 24.5792 (6) ŵ = 0.10 mm1
b = 7.5795 (2) ÅT = 100 K
c = 8.3072 (2) Å0.36 × 0.28 × 0.21 mm
β = 107.335 (1)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4395 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4096 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.980Rint = 0.016
8846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
4395 reflectionsΔρmin = 0.24 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36481 (4)0.69023 (11)0.54259 (10)0.01537 (16)
O20.22703 (4)0.54704 (12)0.05549 (11)0.01825 (18)
H2O0.22250.45970.01650.027*
N10.56071 (4)0.19215 (14)0.65828 (13)0.01662 (19)
N20.42935 (4)0.41283 (13)0.53143 (12)0.01403 (18)
N30.38561 (4)0.46283 (14)0.39135 (11)0.01331 (17)
H3N0.37780.41530.29370.019 (4)*
N40.27952 (4)0.51059 (13)0.16581 (12)0.01522 (18)
N50.26314 (4)0.76793 (12)0.30874 (11)0.01181 (17)
N60.21438 (4)0.73146 (13)0.35109 (11)0.01289 (18)
C10.51137 (5)0.25530 (15)0.67204 (14)0.01364 (19)
C20.50044 (5)0.27091 (17)0.82763 (15)0.0172 (2)
H20.46480.31420.83330.021*
C30.54243 (6)0.22232 (18)0.97295 (16)0.0202 (2)
H30.53600.23181.07990.024*
C40.59418 (5)0.15935 (17)0.96004 (15)0.0185 (2)
H40.62400.12621.05750.022*
C50.60086 (5)0.14650 (17)0.80058 (15)0.0179 (2)
H50.63600.10260.79160.021*
C60.46826 (5)0.30868 (16)0.51196 (14)0.01365 (19)
C70.47343 (6)0.24075 (18)0.34765 (15)0.0189 (2)
H7A0.44670.14280.30840.028*
H7B0.51240.19940.36340.028*
H7C0.46450.33570.26380.028*
C80.35246 (5)0.59735 (15)0.41689 (13)0.01189 (19)
C90.29671 (5)0.62508 (16)0.28350 (13)0.01239 (19)
C100.19299 (5)0.88846 (16)0.37111 (14)0.0156 (2)
C110.13847 (6)0.89937 (19)0.41554 (17)0.0226 (3)
H11A0.10830.94590.31920.034*
H11B0.14350.97800.51260.034*
H11C0.12780.78150.44400.034*
C120.22777 (6)1.02525 (16)0.34214 (16)0.0191 (2)
H120.22161.14850.34780.023*
C130.27257 (5)0.94425 (15)0.30399 (15)0.0156 (2)
C140.32359 (6)1.01682 (18)0.26595 (17)0.0227 (3)
H0AA0.35551.02280.37000.034*
H0AB0.31511.13550.21820.034*
H0AC0.33380.94010.18460.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (4)0.0166 (4)0.0135 (4)0.0014 (3)0.0026 (3)0.0019 (3)
O20.0122 (4)0.0191 (4)0.0188 (4)0.0038 (3)0.0025 (3)0.0061 (3)
N10.0132 (4)0.0191 (5)0.0162 (4)0.0036 (4)0.0025 (4)0.0002 (4)
N20.0111 (4)0.0165 (4)0.0129 (4)0.0010 (3)0.0012 (3)0.0014 (3)
N30.0116 (4)0.0160 (4)0.0110 (4)0.0033 (3)0.0013 (3)0.0007 (3)
N40.0110 (4)0.0163 (4)0.0161 (4)0.0018 (4)0.0007 (3)0.0024 (4)
N50.0111 (4)0.0104 (4)0.0139 (4)0.0001 (3)0.0036 (3)0.0001 (3)
N60.0108 (4)0.0134 (4)0.0147 (4)0.0011 (3)0.0040 (3)0.0013 (3)
C10.0126 (5)0.0130 (5)0.0145 (5)0.0012 (4)0.0028 (4)0.0005 (4)
C20.0148 (5)0.0221 (6)0.0151 (5)0.0044 (4)0.0052 (4)0.0023 (4)
C30.0199 (6)0.0250 (6)0.0153 (5)0.0036 (5)0.0048 (5)0.0035 (4)
C40.0166 (5)0.0189 (5)0.0168 (5)0.0021 (4)0.0001 (4)0.0041 (4)
C50.0119 (5)0.0203 (5)0.0197 (5)0.0045 (4)0.0018 (4)0.0005 (4)
C60.0113 (5)0.0155 (5)0.0133 (5)0.0008 (4)0.0024 (4)0.0002 (4)
C70.0161 (5)0.0242 (6)0.0151 (5)0.0072 (5)0.0027 (4)0.0004 (4)
C80.0101 (5)0.0129 (5)0.0128 (4)0.0001 (4)0.0034 (4)0.0013 (4)
C90.0111 (4)0.0125 (5)0.0135 (5)0.0016 (4)0.0035 (4)0.0003 (4)
C100.0155 (5)0.0154 (5)0.0156 (5)0.0037 (4)0.0039 (4)0.0009 (4)
C110.0183 (6)0.0264 (6)0.0249 (6)0.0057 (5)0.0094 (5)0.0016 (5)
C120.0215 (6)0.0115 (5)0.0237 (6)0.0026 (4)0.0056 (5)0.0001 (4)
C130.0165 (5)0.0126 (5)0.0170 (5)0.0014 (4)0.0039 (4)0.0018 (4)
C140.0208 (6)0.0207 (6)0.0277 (6)0.0052 (5)0.0087 (5)0.0048 (5)
Geometric parameters (Å, º) top
O1—C81.2204 (14)C4—C51.3859 (17)
O2—N41.3697 (13)C4—H40.9500
O2—H2O0.8763C5—H50.9500
N1—C11.3400 (15)C6—C71.4991 (16)
N1—C51.3401 (15)C7—H7A0.9800
N2—C61.2870 (15)C7—H7B0.9800
N2—N31.3814 (13)C7—H7C0.9800
N3—C81.3607 (14)C8—C91.4982 (15)
N3—H3N0.8555C10—C121.4094 (18)
N4—C91.2811 (15)C10—C111.4943 (17)
N5—C131.3589 (14)C11—H11A0.9800
N5—N61.3738 (13)C11—H11B0.9800
N5—C91.4144 (14)C11—H11C0.9800
N6—C101.3314 (15)C12—C131.3775 (18)
C1—C21.4013 (16)C12—H120.9500
C1—C61.4884 (15)C13—C141.4870 (18)
C2—C31.3841 (17)C14—H0AA0.9800
C2—H20.9500C14—H0AB0.9800
C3—C41.3922 (18)C14—H0AC0.9800
C3—H30.9500
N4—O2—H2O102.0H7A—C7—H7B109.5
C1—N1—C5117.66 (10)C6—C7—H7C109.5
C6—N2—N3118.91 (9)H7A—C7—H7C109.5
C8—N3—N2115.22 (9)H7B—C7—H7C109.5
C8—N3—H3N119.2O1—C8—N3123.90 (10)
N2—N3—H3N125.6O1—C8—C9119.44 (10)
C9—N4—O2113.87 (9)N3—C8—C9116.61 (9)
C13—N5—N6112.00 (9)N4—C9—N5123.87 (10)
C13—N5—C9129.53 (10)N4—C9—C8119.37 (10)
N6—N5—C9118.41 (9)N5—C9—C8116.30 (9)
C10—N6—N5105.03 (9)N6—C10—C12110.72 (10)
N1—C1—C2122.41 (11)N6—C10—C11119.80 (11)
N1—C1—C6116.25 (10)C12—C10—C11129.47 (11)
C2—C1—C6121.34 (10)C10—C11—H11A109.5
C3—C2—C1118.94 (11)C10—C11—H11B109.5
C3—C2—H2120.5H11A—C11—H11B109.5
C1—C2—H2120.5C10—C11—H11C109.5
C2—C3—C4119.01 (11)H11A—C11—H11C109.5
C2—C3—H3120.5H11B—C11—H11C109.5
C4—C3—H3120.5C13—C12—C10106.18 (10)
C5—C4—C3117.96 (11)C13—C12—H12126.9
C5—C4—H4121.0C10—C12—H12126.9
C3—C4—H4121.0N5—C13—C12106.06 (10)
N1—C5—C4124.00 (11)N5—C13—C14122.13 (11)
N1—C5—H5118.0C12—C13—C14131.80 (11)
C4—C5—H5118.0C13—C14—H0AA109.5
N2—C6—C1114.35 (9)C13—C14—H0AB109.5
N2—C6—C7126.36 (10)H0AA—C14—H0AB109.5
C1—C6—C7119.29 (10)C13—C14—H0AC109.5
C6—C7—H7A109.5H0AA—C14—H0AC109.5
C6—C7—H7B109.5H0AB—C14—H0AC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N6i0.881.792.6686 (13)175
N3—H3N···O1i0.862.173.0196 (13)174
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H16N6O2
Mr300.33
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)24.5792 (6), 7.5795 (2), 8.3072 (2)
β (°) 107.335 (1)
V3)1477.32 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.28 × 0.21
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.966, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8846, 4395, 4096
Rint0.016
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.03
No. of reflections4395
No. of parameters204
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N6i0.881.792.6686 (13)175.2
N3—H3N···O1i0.862.173.0196 (13)174.4
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKozikowski, A. P. & Adamczyk, M. (1983). J. Org. Chem. 48, 366–372.  CrossRef CAS Web of Science Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Swiatek-Kozlowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Y. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds