metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ2-m-Xylylenebis(salicylaldiminato)-bis­­(η4-1,5-cyclo­octa­diene)dirhodium(I) di­chloro­methane solvate

aDepartment of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804 USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 23 August 2012; accepted 25 September 2012; online 29 September 2012)

In the title solvate, [Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2, each organometallic mol­ecule is composed of two RhI cations, the tetra­dentate dianion α,α′-bis­(salicylaldiminato)-m-xylene and two 1,5-cyclo­octa­diene (COD) ligands. Each RhI atom is coordinated by one O atom [Rh—O = 2.044 (2) and 2.026 (2) Å], one N atom [Rh—N = 2.083 (2) and 2.090 (2) Å], and one COD ligand via two η2-bonds, each directed toward the mid-point of a C=C bond (Cg): Rh—Cg = 2.007 (2), 2.013 (2), 2.000 (2) and 2.021 (2) Å. Each RhI atom has a quasi-square-planar coordination geometry, with average r.m.s. deviations of 0.159 (1) and 0.204 (1) Å from the mean planes defined by Rh and the termini of its four coordinating bonds. The two COD ligands have quasi-C2 symmetry, twisted from ideal C2v symmetry by 30.0 (3) and −33.1 (3)°, and are quasi-enanti­omers of one another. The intra­molecular Rh⋯Rh distance of 5.9432 (3) Å suggests that there is no direct metal–metal inter­action.

Related literature

For related structures, see: Mosae Selvakumar et al. (2011[Mosae Selvakumar, P., Nadella, S., Jeya Prathap, K., Kureshy, R. I., Suresh, E. & Subramanian, P. S. (2011). Inorg. Chim. Acta, 375, 106-113.]); Maverick et al. (2005[Maverick, A. W., Laxman, R. K., Hawkins, M. A., Martone, D. P. & Fronczek, F. R. (2005). Dalton Trans. pp. 200-206.]); Nakamura et al. (2001[Nakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191-201.]). For the synthesis, see: Brunner & Fisch (1987[Brunner, H. & Fisch, H. J. (1987). Organomet. Chem. 335, 1-14.]). For the Universal Force Field procedure, see: Rappe et al. (1992[Rappe, A. K., Casewit, C. J., Colwell, K. S., Skiff, W. A. G. III & Skiff, W. M. (1992). J. Am. Chem. Soc. 114, 10024-10035.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2

  • Mr = 849.48

  • Monoclinic, P 21 /c

  • a = 16.0829 (4) Å

  • b = 18.8607 (4) Å

  • c = 11.2352 (2) Å

  • β = 99.081 (1)°

  • V = 3365.31 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 90 K

  • 0.30 × 0.12 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.631, Tmax = 0.912

  • 17250 measured reflections

  • 10328 independent reflections

  • 8682 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.02

  • 10328 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.96 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J. et al. (2009). Gaussian09. Gaussian Inc., Wallingford CT, USA.]).

Supporting information


Comment top

Schiff-base ligands such as SIXH2 (C22H20N2O2, CAS 51540–97–7, Maverick et al., 2005) are typically formed by condensation of a primary amine with an aldehyde, resulting in an imine, R1HC=N—R2, which is particularly useful for binding metal ions. The title compound, (SIX)Rh2(COD)2.DCM, C38H42N2O2Rh2.CH2Cl2, consists of one DCM molecule for each organometallic dimer. The latter is composed of tetradentate dianion α,α'-bis(salicylimino)-m-xylene (SIX) coordinated to two Rh(I) ions. Each Rh is bonded to an oxygen (Rh1—O1 = 2.044 (2), Rh2—O2 = 2.026 (2) Å), a nitrogen (Rh1—N1 = 2.083 (2), Rh2—N2 = 2.090 (2) Å), and a 1,5-cyclooctadiene (COD) ligand via two η2-bonds (each directed toward the center of a CC bond): Rh1—(C1 & C2) = 2.007 (2), Rh1— (C5 & C6) = 2.013 (2), Rh2—(C9 & C10) = 2.000 (2), Rh2—(C13 & C14) = 2.021 (2) Å.

Each COD has quasi-C2 molecular symmetry as judged by close equivalencies of putatively equal intraannular bond lengths, bond angles and torsion angles. One measure of the twist of each ring from idealized C2v molecular symmetry is the torsion angle of four atom-pair centroids: C1 & C2, C3 & C8, C4 & C7, C5 & C6 (+30.0 (3)°) and C9 & C10, C11 & C16, C12 & C15, C13 & C14 (-33.1 (3)°). The signs of the two twist angles, together with the signs of equivalent intraannular torsion angles, indicates that the two COD moieties are near enantiomorphs. The observed molecular measurements are very close to those for the minimum energy conformer calculated in Gaussian09 (Frisch et al., 2009) using the UFF procedure (Rappe et al., 1992). This conformer has exact C2 symmetry and twist angle ±30.8°.

The four bonds about each Rh form a quasi-square planar environment. For example, deviations δr.m.s. from the mean planes defined by each metal atom and the termini of its four bonds are Rh1: 0.159 (1) and Rh2: 0.204 (1) Å. The intramolecular Rh···Rh distance of 5.943 (1) Å suggests that there is no direct metal-metal interaction.

Related literature top

For related structures, see: Mosae Selvakumar et al. (2011); Maverick et al. (2005); Nakamura et al. (2001). For the synthesis, see: Brunner & Fisch (1987). For the UFF procedure, see: Rappe et al. (1992).

Experimental top

The synthesis of (SIX)Rh2(COD)2 was similar to that employed for (salicylimino)Rh(COD) complexes (Brunner & Fisch, 1987). Rh2(COD)2Cl2 was suspended in diethyl ether and a stoichiometric amount of solid SIXH2 (Maverick et al., 2005) was added. The mixture was cooled to 0 °C, a slight excess of 1M NaOH(aq) was added, and the mixture stirred for 1 h. The organic layer was dried over anhydrous NaSO4, filtered, and the solvent was removed to give bright yellow flaky solid. Crystals were obtained by slow evaporation from dichloromethane.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (Csp2) and 0.99 (Csp3) Å, and Uiso=1.2Ueq, thereafter refined as riding.

Structure description top

Schiff-base ligands such as SIXH2 (C22H20N2O2, CAS 51540–97–7, Maverick et al., 2005) are typically formed by condensation of a primary amine with an aldehyde, resulting in an imine, R1HC=N—R2, which is particularly useful for binding metal ions. The title compound, (SIX)Rh2(COD)2.DCM, C38H42N2O2Rh2.CH2Cl2, consists of one DCM molecule for each organometallic dimer. The latter is composed of tetradentate dianion α,α'-bis(salicylimino)-m-xylene (SIX) coordinated to two Rh(I) ions. Each Rh is bonded to an oxygen (Rh1—O1 = 2.044 (2), Rh2—O2 = 2.026 (2) Å), a nitrogen (Rh1—N1 = 2.083 (2), Rh2—N2 = 2.090 (2) Å), and a 1,5-cyclooctadiene (COD) ligand via two η2-bonds (each directed toward the center of a CC bond): Rh1—(C1 & C2) = 2.007 (2), Rh1— (C5 & C6) = 2.013 (2), Rh2—(C9 & C10) = 2.000 (2), Rh2—(C13 & C14) = 2.021 (2) Å.

Each COD has quasi-C2 molecular symmetry as judged by close equivalencies of putatively equal intraannular bond lengths, bond angles and torsion angles. One measure of the twist of each ring from idealized C2v molecular symmetry is the torsion angle of four atom-pair centroids: C1 & C2, C3 & C8, C4 & C7, C5 & C6 (+30.0 (3)°) and C9 & C10, C11 & C16, C12 & C15, C13 & C14 (-33.1 (3)°). The signs of the two twist angles, together with the signs of equivalent intraannular torsion angles, indicates that the two COD moieties are near enantiomorphs. The observed molecular measurements are very close to those for the minimum energy conformer calculated in Gaussian09 (Frisch et al., 2009) using the UFF procedure (Rappe et al., 1992). This conformer has exact C2 symmetry and twist angle ±30.8°.

The four bonds about each Rh form a quasi-square planar environment. For example, deviations δr.m.s. from the mean planes defined by each metal atom and the termini of its four bonds are Rh1: 0.159 (1) and Rh2: 0.204 (1) Å. The intramolecular Rh···Rh distance of 5.943 (1) Å suggests that there is no direct metal-metal interaction.

For related structures, see: Mosae Selvakumar et al. (2011); Maverick et al. (2005); Nakamura et al. (2001). For the synthesis, see: Brunner & Fisch (1987). For the UFF procedure, see: Rappe et al. (1992).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN09 (Frisch et al., 2009).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic labeling and 50% probability displacement ellipsoids. The solvent molecule and H atoms were omitted for clarity.
µ2-m-Xylylenebis(salicylaldiminato)- bis(η4-1,5-cyclooctadiene)dirhodium(I) dichloromethane solvate top
Crystal data top
[Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2F(000) = 1728
Mr = 849.48Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9881 reflections
a = 16.0829 (4) Åθ = 2.6–31.0°
b = 18.8607 (4) ŵ = 1.18 mm1
c = 11.2352 (2) ÅT = 90 K
β = 99.081 (1)°Lath, yellow
V = 3365.31 (13) Å30.30 × 0.12 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
10328 independent reflections
Radiation source: Enraf Nonius FR5908682 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 30.8°, θmin = 2.6°
CCD rotation images, thick slices scansh = 2323
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
k = 2720
Tmin = 0.631, Tmax = 0.912l = 1515
17250 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0322P)2 + 4.6131P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
10328 reflectionsΔρmax = 0.93 e Å3
425 parametersΔρmin = 0.96 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00049 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2V = 3365.31 (13) Å3
Mr = 849.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0829 (4) ŵ = 1.18 mm1
b = 18.8607 (4) ÅT = 90 K
c = 11.2352 (2) Å0.30 × 0.12 × 0.12 mm
β = 99.081 (1)°
Data collection top
Nonius KappaCCD
diffractometer
10328 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
8682 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.912Rint = 0.025
17250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.02Δρmax = 0.93 e Å3
10328 reflectionsΔρmin = 0.96 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32235 (14)0.67047 (12)0.42132 (19)0.0144 (4)
H10.3160.64930.49610.017*
C20.40469 (14)0.68544 (12)0.40159 (19)0.0144 (4)
H20.45040.67140.46110.017*
C30.42401 (15)0.72324 (13)0.2890 (2)0.0180 (4)
H3A0.47440.75350.31110.022*
H3B0.37610.75450.25730.022*
C40.43978 (15)0.67113 (13)0.1897 (2)0.0183 (4)
H4A0.42260.69360.110.022*
H4B0.50080.66080.19860.022*
C50.39205 (15)0.60237 (12)0.19427 (18)0.0147 (4)
H50.42240.55940.19110.018*
C60.30668 (15)0.59744 (12)0.20276 (18)0.0150 (4)
H60.28320.55160.20850.018*
C70.24899 (15)0.66143 (13)0.2033 (2)0.0181 (4)
H7A0.19210.64920.16080.022*
H7B0.27090.7010.15940.022*
C80.24272 (14)0.68541 (13)0.3328 (2)0.0179 (4)
H8A0.23090.73690.33250.022*
H8B0.19480.66070.36020.022*
C90.03645 (14)0.67669 (13)0.53838 (19)0.0156 (4)
H90.040.63010.56950.019*
C100.04403 (14)0.70502 (12)0.53404 (19)0.0148 (4)
H100.09150.67720.56660.018*
C110.06048 (15)0.77664 (13)0.4812 (2)0.0169 (4)
H11A0.12040.77950.4710.02*
H11B0.04990.81430.53830.02*
C120.00494 (15)0.79022 (13)0.3585 (2)0.0192 (4)
H12A0.04820.81320.37180.023*
H12B0.03450.8230.31050.023*
C130.01528 (15)0.72200 (13)0.28883 (19)0.0169 (4)
H130.02420.70590.24020.02*
C140.08689 (14)0.68111 (13)0.2903 (2)0.0168 (4)
H140.09360.64030.24020.02*
C150.15524 (15)0.69641 (14)0.3656 (2)0.0206 (5)
H15A0.19130.65390.36660.025*
H15B0.1910.73570.32830.025*
C160.11809 (15)0.71664 (14)0.4959 (2)0.0198 (5)
H16A0.10710.76830.50040.024*
H16B0.15940.70550.54980.024*
C170.40803 (14)0.58867 (13)0.65856 (19)0.0156 (4)
H17A0.42150.63720.63390.019*
H17B0.45470.57250.72070.019*
C180.32686 (14)0.59036 (12)0.71220 (18)0.0128 (4)
C190.32798 (14)0.61215 (12)0.83111 (19)0.0149 (4)
H190.37920.62780.87770.018*
C200.25437 (15)0.61109 (13)0.88182 (19)0.0175 (4)
H200.25550.62610.96280.021*
C210.17942 (14)0.58825 (12)0.81466 (19)0.0158 (4)
H210.12980.58630.85060.019*
C220.17638 (14)0.56802 (12)0.69440 (19)0.0133 (4)
C230.25022 (14)0.56963 (12)0.64469 (19)0.0136 (4)
H230.24850.55630.56280.016*
C240.09392 (14)0.54057 (13)0.62580 (19)0.0157 (4)
H24A0.08820.48980.64560.019*
H24B0.0470.56640.65370.019*
C250.40126 (14)0.47439 (13)0.5820 (2)0.0157 (4)
H250.41120.46480.66610.019*
C260.38851 (14)0.41316 (12)0.5056 (2)0.0154 (4)
C270.38728 (13)0.41557 (12)0.3777 (2)0.0144 (4)
C280.38042 (15)0.34953 (13)0.3159 (2)0.0181 (4)
H280.38380.34880.23230.022*
C290.36906 (15)0.28658 (13)0.3732 (2)0.0206 (5)
H290.36360.24370.32830.025*
C300.36537 (16)0.28506 (13)0.4979 (2)0.0221 (5)
H300.35540.24190.5370.027*
C310.37645 (15)0.34719 (13)0.5613 (2)0.0193 (4)
H310.37610.34620.64570.023*
C320.12119 (14)0.49715 (12)0.4418 (2)0.0157 (4)
H320.1480.46180.49470.019*
C330.12575 (14)0.48665 (12)0.3159 (2)0.0157 (4)
C340.17486 (15)0.42879 (13)0.2857 (2)0.0193 (4)
H340.2040.40040.34870.023*
C350.18162 (16)0.41255 (13)0.1683 (2)0.0215 (5)
H350.2150.37360.15040.026*
C360.13822 (16)0.45477 (14)0.0750 (2)0.0219 (5)
H360.14190.44380.00650.026*
C370.09040 (15)0.51187 (13)0.1008 (2)0.0191 (4)
H370.06240.540.03660.023*
C380.08211 (14)0.52949 (13)0.22172 (19)0.0161 (4)
N10.40120 (11)0.54087 (10)0.55282 (16)0.0130 (3)
N20.08572 (12)0.54799 (11)0.49311 (16)0.0144 (3)
O10.39194 (10)0.47352 (9)0.31685 (13)0.0155 (3)
O20.03491 (11)0.58322 (9)0.23851 (14)0.0174 (3)
Rh10.379269 (10)0.575178 (9)0.374373 (14)0.01104 (5)
Rh20.017893 (10)0.629409 (9)0.395686 (14)0.01219 (5)
C390.35225 (17)0.44841 (14)0.0064 (2)0.0236 (5)
H39A0.32580.44640.06730.028*
H39B0.35660.49880.02910.028*
Cl10.28848 (5)0.40257 (4)0.12430 (7)0.03484 (16)
Cl20.45414 (4)0.41086 (4)0.02361 (6)0.03307 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (10)0.0127 (10)0.0140 (9)0.0003 (8)0.0040 (8)0.0027 (8)
C20.0174 (10)0.0132 (10)0.0127 (9)0.0001 (8)0.0029 (8)0.0017 (8)
C30.0198 (11)0.0155 (10)0.0195 (11)0.0041 (9)0.0057 (8)0.0009 (8)
C40.0216 (11)0.0188 (11)0.0159 (10)0.0029 (9)0.0076 (8)0.0007 (8)
C50.0202 (11)0.0146 (10)0.0091 (9)0.0011 (8)0.0018 (8)0.0006 (8)
C60.0200 (11)0.0153 (10)0.0089 (9)0.0004 (8)0.0009 (8)0.0009 (8)
C70.0166 (10)0.0201 (11)0.0167 (10)0.0016 (9)0.0004 (8)0.0018 (9)
C80.0162 (10)0.0188 (11)0.0192 (10)0.0017 (9)0.0040 (8)0.0001 (9)
C90.0167 (10)0.0175 (11)0.0127 (9)0.0003 (8)0.0030 (8)0.0005 (8)
C100.0160 (10)0.0174 (10)0.0108 (9)0.0000 (8)0.0015 (7)0.0008 (8)
C110.0172 (10)0.0185 (11)0.0149 (10)0.0033 (9)0.0016 (8)0.0008 (8)
C120.0220 (11)0.0175 (11)0.0175 (10)0.0022 (9)0.0015 (9)0.0006 (9)
C130.0185 (10)0.0190 (11)0.0122 (9)0.0023 (9)0.0007 (8)0.0031 (8)
C140.0162 (10)0.0187 (11)0.0136 (10)0.0009 (8)0.0033 (8)0.0002 (8)
C150.0147 (10)0.0236 (12)0.0223 (11)0.0009 (9)0.0009 (8)0.0004 (9)
C160.0154 (10)0.0247 (12)0.0199 (11)0.0007 (9)0.0042 (8)0.0008 (9)
C170.0139 (10)0.0221 (11)0.0105 (9)0.0023 (8)0.0013 (7)0.0032 (8)
C180.0133 (9)0.0148 (10)0.0108 (9)0.0005 (8)0.0031 (7)0.0011 (7)
C190.0162 (10)0.0174 (10)0.0105 (9)0.0012 (8)0.0003 (8)0.0005 (8)
C200.0229 (11)0.0203 (11)0.0092 (9)0.0040 (9)0.0023 (8)0.0007 (8)
C210.0161 (10)0.0197 (11)0.0121 (9)0.0040 (8)0.0034 (8)0.0026 (8)
C220.0130 (9)0.0147 (10)0.0122 (9)0.0015 (8)0.0020 (7)0.0027 (7)
C230.0143 (10)0.0158 (10)0.0110 (9)0.0008 (8)0.0026 (7)0.0007 (8)
C240.0130 (10)0.0214 (11)0.0128 (9)0.0018 (8)0.0021 (7)0.0032 (8)
C250.0125 (10)0.0196 (11)0.0150 (10)0.0003 (8)0.0021 (8)0.0011 (8)
C260.0128 (10)0.0153 (10)0.0179 (10)0.0017 (8)0.0017 (8)0.0021 (8)
C270.0104 (9)0.0143 (10)0.0185 (10)0.0007 (8)0.0026 (8)0.0005 (8)
C280.0169 (11)0.0162 (11)0.0218 (11)0.0006 (8)0.0048 (8)0.0021 (9)
C290.0180 (11)0.0148 (11)0.0289 (12)0.0002 (9)0.0041 (9)0.0018 (9)
C300.0222 (12)0.0162 (11)0.0288 (12)0.0007 (9)0.0066 (10)0.0050 (9)
C310.0183 (11)0.0184 (11)0.0215 (11)0.0012 (9)0.0040 (9)0.0050 (9)
C320.0122 (9)0.0180 (11)0.0157 (10)0.0035 (8)0.0013 (8)0.0001 (8)
C330.0124 (9)0.0175 (10)0.0173 (10)0.0041 (8)0.0026 (8)0.0021 (8)
C340.0144 (10)0.0184 (11)0.0247 (11)0.0029 (9)0.0018 (9)0.0014 (9)
C350.0181 (11)0.0199 (12)0.0274 (12)0.0034 (9)0.0061 (9)0.0089 (9)
C360.0210 (12)0.0261 (13)0.0195 (11)0.0054 (10)0.0057 (9)0.0082 (9)
C370.0180 (11)0.0229 (12)0.0163 (10)0.0043 (9)0.0023 (8)0.0034 (9)
C380.0129 (10)0.0199 (11)0.0154 (10)0.0041 (8)0.0015 (8)0.0030 (8)
N10.0102 (8)0.0178 (9)0.0108 (8)0.0006 (7)0.0018 (6)0.0019 (7)
N20.0120 (8)0.0183 (9)0.0125 (8)0.0030 (7)0.0007 (6)0.0013 (7)
O10.0190 (8)0.0139 (7)0.0141 (7)0.0012 (6)0.0042 (6)0.0003 (6)
O20.0192 (8)0.0197 (8)0.0130 (7)0.0020 (6)0.0017 (6)0.0014 (6)
Rh10.01149 (8)0.01228 (8)0.00945 (8)0.00042 (6)0.00196 (5)0.00103 (6)
Rh20.01157 (8)0.01501 (8)0.00967 (8)0.00147 (6)0.00068 (6)0.00002 (6)
C390.0268 (13)0.0208 (12)0.0216 (11)0.0053 (10)0.0014 (9)0.0037 (9)
Cl10.0298 (3)0.0381 (4)0.0335 (3)0.0075 (3)0.0045 (3)0.0158 (3)
Cl20.0229 (3)0.0498 (4)0.0269 (3)0.0069 (3)0.0051 (2)0.0056 (3)
Geometric parameters (Å, º) top
C1—C21.405 (3)C17—H17B0.99
C1—C81.519 (3)C18—C191.395 (3)
C1—Rh12.121 (2)C18—C231.397 (3)
C1—H10.95C19—C201.393 (3)
C2—C31.526 (3)C19—H190.95
C2—Rh12.132 (2)C20—C211.386 (3)
C2—H20.95C20—H200.95
C3—C41.538 (3)C21—C221.397 (3)
C3—H3A0.99C21—H210.95
C3—H3B0.99C22—C231.390 (3)
C4—C51.512 (3)C22—C241.516 (3)
C4—H4A0.99C23—H230.95
C4—H4B0.99C24—N21.482 (3)
C5—C61.394 (3)C24—H24A0.99
C5—Rh12.129 (2)C24—H24B0.99
C5—H50.95C25—N11.296 (3)
C6—C71.523 (3)C25—C261.434 (3)
C6—Rh12.132 (2)C25—H250.95
C6—H60.95C26—C311.420 (3)
C7—C81.541 (3)C26—C271.434 (3)
C7—H7A0.99C27—O11.298 (3)
C7—H7B0.99C27—C281.422 (3)
C8—H8A0.99C28—C291.376 (3)
C8—H8B0.99C28—H280.95
C9—C101.408 (3)C29—C301.413 (3)
C9—C161.524 (3)C29—H290.95
C9—Rh22.138 (2)C30—C311.368 (3)
C9—H90.95C30—H300.95
C10—C111.516 (3)C31—H310.95
C10—Rh22.102 (2)C32—N21.297 (3)
C10—H100.95C32—C331.442 (3)
C11—C121.540 (3)C32—H320.95
C11—H11A0.99C33—C341.419 (3)
C11—H11B0.99C33—C381.425 (3)
C12—C131.515 (3)C34—C351.375 (3)
C12—H12A0.99C34—H340.95
C12—H12B0.99C35—C361.411 (4)
C13—C141.388 (3)C35—H350.95
C13—Rh22.139 (2)C36—C371.380 (4)
C13—H130.95C36—H360.95
C14—C151.517 (3)C37—C381.425 (3)
C14—Rh22.136 (2)C37—H370.95
C14—H140.95C38—O21.298 (3)
C15—C161.540 (3)N1—Rh12.0831 (18)
C15—H15A0.99N2—Rh22.0903 (19)
C15—H15B0.99O1—Rh12.0437 (16)
C16—H16A0.99O2—Rh22.0260 (16)
C16—H16B0.99C39—Cl11.768 (3)
C17—N11.482 (3)C39—Cl21.768 (3)
C17—C181.522 (3)C39—H39A0.99
C17—H17A0.99C39—H39B0.99
C2—C1—C8125.3 (2)C20—C19—H19119.9
C2—C1—Rh171.13 (12)C18—C19—H19119.9
C8—C1—Rh1110.28 (14)C21—C20—C19120.3 (2)
C2—C1—H1117.4C21—C20—H20119.9
C8—C1—H1117.4C19—C20—H20119.9
Rh1—C1—H188.6C20—C21—C22120.4 (2)
C1—C2—C3123.0 (2)C20—C21—H21119.8
C1—C2—Rh170.28 (13)C22—C21—H21119.8
C3—C2—Rh1113.35 (14)C23—C22—C21118.7 (2)
C1—C2—H2118.5C23—C22—C24122.51 (19)
C3—C2—H2118.5C21—C22—C24118.62 (19)
Rh1—C2—H286.5C22—C23—C18121.6 (2)
C2—C3—C4112.42 (19)C22—C23—H23119.2
C2—C3—H3A109.1C18—C23—H23119.2
C4—C3—H3A109.1N2—C24—C22114.26 (17)
C2—C3—H3B109.1N2—C24—H24A108.7
C4—C3—H3B109.1C22—C24—H24A108.7
H3A—C3—H3B107.9N2—C24—H24B108.7
C5—C4—C3112.38 (18)C22—C24—H24B108.7
C5—C4—H4A109.1H24A—C24—H24B107.6
C3—C4—H4A109.1N1—C25—C26129.3 (2)
C5—C4—H4B109.1N1—C25—H25115.4
C3—C4—H4B109.1C26—C25—H25115.4
H4A—C4—H4B107.9C31—C26—C27119.2 (2)
C6—C5—C4124.8 (2)C31—C26—C25117.3 (2)
C6—C5—Rh171.03 (12)C27—C26—C25123.5 (2)
C4—C5—Rh1111.38 (14)O1—C27—C28119.1 (2)
C6—C5—H5117.6O1—C27—C26124.2 (2)
C4—C5—H5117.6C28—C27—C26116.7 (2)
Rh1—C5—H587.6C29—C28—C27122.2 (2)
C5—C6—C7123.7 (2)C29—C28—H28118.9
C5—C6—Rh170.76 (12)C27—C28—H28118.9
C7—C6—Rh1113.52 (14)C28—C29—C30120.7 (2)
C5—C6—H6118.2C28—C29—H29119.6
C7—C6—H6118.2C30—C29—H29119.6
Rh1—C6—H685.8C31—C30—C29118.4 (2)
C6—C7—C8111.54 (18)C31—C30—H30120.8
C6—C7—H7A109.3C29—C30—H30120.8
C8—C7—H7A109.3C30—C31—C26122.5 (2)
C6—C7—H7B109.3C30—C31—H31118.8
C8—C7—H7B109.3C26—C31—H31118.8
H7A—C7—H7B108N2—C32—C33129.2 (2)
C1—C8—C7112.93 (18)N2—C32—H32115.4
C1—C8—H8A109C33—C32—H32115.4
C7—C8—H8A109C34—C33—C38119.1 (2)
C1—C8—H8B109C34—C33—C32117.2 (2)
C7—C8—H8B109C38—C33—C32123.7 (2)
H8A—C8—H8B107.8C35—C34—C33122.1 (2)
C10—C9—C16123.6 (2)C35—C34—H34118.9
C10—C9—Rh269.24 (12)C33—C34—H34118.9
C16—C9—Rh2113.92 (15)C34—C35—C36118.8 (2)
C10—C9—H9118.2C34—C35—H35120.6
C16—C9—H9118.2C36—C35—H35120.6
Rh2—C9—H986.9C37—C36—C35120.7 (2)
C9—C10—C11124.7 (2)C37—C36—H36119.6
C9—C10—Rh271.98 (13)C35—C36—H36119.6
C11—C10—Rh2109.97 (14)C36—C37—C38121.4 (2)
C9—C10—H10117.6C36—C37—H37119.3
C11—C10—H10117.6C38—C37—H37119.3
Rh2—C10—H1088O2—C38—C33124.5 (2)
C10—C11—C12112.72 (19)O2—C38—C37117.8 (2)
C10—C11—H11A109C33—C38—C37117.8 (2)
C12—C11—H11A109C25—N1—C17112.87 (18)
C10—C11—H11B109C25—N1—Rh1122.51 (15)
C12—C11—H11B109C17—N1—Rh1124.24 (15)
H11A—C11—H11B107.8C32—N2—C24113.69 (19)
C13—C12—C11111.59 (19)C32—N2—Rh2122.71 (15)
C13—C12—H12A109.3C24—N2—Rh2123.52 (15)
C11—C12—H12A109.3C27—O1—Rh1127.33 (14)
C13—C12—H12B109.3C38—O2—Rh2128.69 (14)
C11—C12—H12B109.3O1—Rh1—N190.16 (7)
H12A—C12—H12B108O1—Rh1—C1160.40 (8)
C14—C13—C12125.2 (2)N1—Rh1—C192.18 (8)
C14—C13—Rh270.94 (13)O1—Rh1—C584.03 (7)
C12—C13—Rh2112.91 (15)N1—Rh1—C5164.29 (8)
C14—C13—H13117.4C1—Rh1—C598.19 (8)
C12—C13—H13117.4O1—Rh1—C688.08 (8)
Rh2—C13—H1386.1N1—Rh1—C6156.47 (8)
C13—C14—C15125.2 (2)C1—Rh1—C682.06 (9)
C13—C14—Rh271.15 (13)C5—Rh1—C638.20 (9)
C15—C14—Rh2110.83 (15)O1—Rh1—C2159.06 (7)
C13—C14—H14117.4N1—Rh1—C299.52 (8)
C15—C14—H14117.4C1—Rh1—C238.59 (8)
Rh2—C14—H1488C5—Rh1—C281.73 (8)
C14—C15—C16111.77 (19)C6—Rh1—C290.16 (9)
C14—C15—H15A109.3O2—Rh2—N290.54 (7)
C16—C15—H15A109.3O2—Rh2—C10153.81 (8)
C14—C15—H15B109.3N2—Rh2—C1094.83 (8)
C16—C15—H15B109.3O2—Rh2—C1485.21 (8)
H15A—C15—H15B107.9N2—Rh2—C14157.89 (8)
C9—C16—C15111.17 (19)C10—Rh2—C1498.53 (9)
C9—C16—H16A109.4O2—Rh2—C9163.81 (8)
C15—C16—H16A109.4N2—Rh2—C998.92 (8)
C9—C16—H16B109.4C10—Rh2—C938.78 (8)
C15—C16—H16B109.4C14—Rh2—C981.09 (9)
H16A—C16—H16B108O2—Rh2—C1385.29 (8)
N1—C17—C18111.75 (18)N2—Rh2—C13163.18 (8)
N1—C17—H17A109.3C10—Rh2—C1382.20 (9)
C18—C17—H17A109.3C14—Rh2—C1337.91 (9)
N1—C17—H17B109.3C9—Rh2—C1389.14 (9)
C18—C17—H17B109.3Cl1—C39—Cl2110.95 (14)
H17A—C17—H17B107.9Cl1—C39—H39A109.4
C19—C18—C23118.6 (2)Cl2—C39—H39A109.4
C19—C18—C17120.20 (19)Cl1—C39—H39B109.4
C23—C18—C17121.16 (18)Cl2—C39—H39B109.4
C20—C19—C18120.3 (2)H39A—C39—H39B108
C8—C1—C2—C33.7 (3)C25—N1—Rh1—C579.9 (4)
Rh1—C1—C2—C3105.6 (2)C17—N1—Rh1—C5107.7 (3)
C8—C1—C2—Rh1101.9 (2)C25—N1—Rh1—C673.6 (3)
C1—C2—C3—C493.4 (3)C17—N1—Rh1—C698.7 (2)
Rh1—C2—C3—C412.5 (2)C25—N1—Rh1—C2173.26 (17)
C2—C3—C4—C529.4 (3)C17—N1—Rh1—C214.36 (17)
C3—C4—C5—C648.7 (3)C2—C1—Rh1—O1160.82 (19)
C3—C4—C5—Rh132.5 (2)C8—C1—Rh1—O139.2 (3)
C4—C5—C6—C72.6 (3)C2—C1—Rh1—N1102.58 (13)
Rh1—C5—C6—C7106.0 (2)C8—C1—Rh1—N1135.81 (15)
C4—C5—C6—Rh1103.3 (2)C2—C1—Rh1—C565.59 (14)
C5—C6—C7—C893.9 (2)C8—C1—Rh1—C556.03 (16)
Rh1—C6—C7—C812.1 (2)C2—C1—Rh1—C6100.34 (14)
C2—C1—C8—C746.4 (3)C8—C1—Rh1—C621.28 (15)
Rh1—C1—C8—C734.3 (2)C8—C1—Rh1—C2121.6 (2)
C6—C7—C8—C130.5 (3)C6—C5—Rh1—O194.49 (14)
C16—C9—C10—C113.4 (3)C4—C5—Rh1—O1144.64 (17)
Rh2—C9—C10—C11102.2 (2)C6—C5—Rh1—N1163.3 (3)
C16—C9—C10—Rh2105.6 (2)C4—C5—Rh1—N175.8 (3)
C9—C10—C11—C1245.4 (3)C6—C5—Rh1—C165.89 (14)
Rh2—C10—C11—C1236.1 (2)C4—C5—Rh1—C154.98 (17)
C10—C11—C12—C1331.3 (3)C4—C5—Rh1—C6120.9 (2)
C11—C12—C13—C1493.8 (3)C6—C5—Rh1—C2100.91 (14)
C11—C12—C13—Rh211.6 (2)C4—C5—Rh1—C219.96 (16)
C12—C13—C14—C152.4 (4)C5—C6—Rh1—O182.79 (13)
Rh2—C13—C14—C15102.7 (2)C7—C6—Rh1—O1157.97 (17)
C12—C13—C14—Rh2105.1 (2)C5—C6—Rh1—N1168.77 (18)
C13—C14—C15—C1644.8 (3)C7—C6—Rh1—N172.0 (3)
Rh2—C14—C15—C1636.3 (2)C5—C6—Rh1—C1114.19 (14)
C10—C9—C16—C1596.1 (3)C7—C6—Rh1—C15.05 (16)
Rh2—C9—C16—C1515.9 (2)C7—C6—Rh1—C5119.2 (2)
C14—C15—C16—C934.0 (3)C5—C6—Rh1—C276.34 (14)
N1—C17—C18—C19158.9 (2)C7—C6—Rh1—C242.90 (17)
N1—C17—C18—C2320.4 (3)C1—C2—Rh1—O1162.04 (18)
C23—C18—C19—C201.9 (3)C3—C2—Rh1—O143.6 (3)
C17—C18—C19—C20177.5 (2)C1—C2—Rh1—N181.46 (13)
C18—C19—C20—C210.1 (4)C3—C2—Rh1—N1160.13 (16)
C19—C20—C21—C221.9 (4)C3—C2—Rh1—C1118.4 (2)
C20—C21—C22—C231.6 (3)C1—C2—Rh1—C5114.39 (14)
C20—C21—C22—C24177.6 (2)C3—C2—Rh1—C54.02 (16)
C21—C22—C23—C180.5 (3)C1—C2—Rh1—C676.99 (13)
C24—C22—C23—C18175.4 (2)C3—C2—Rh1—C641.41 (17)
C19—C18—C23—C222.2 (3)C38—O2—Rh2—N28.29 (19)
C17—C18—C23—C22177.2 (2)C38—O2—Rh2—C1093.8 (2)
C23—C22—C24—N227.7 (3)C38—O2—Rh2—C14166.6 (2)
C21—C22—C24—N2156.5 (2)C38—O2—Rh2—C9134.3 (3)
N1—C25—C26—C31168.7 (2)C38—O2—Rh2—C13155.4 (2)
N1—C25—C26—C2711.2 (4)C32—N2—Rh2—O23.22 (18)
C31—C26—C27—O1175.1 (2)C24—N2—Rh2—O2173.31 (17)
C25—C26—C27—O14.7 (3)C32—N2—Rh2—C10151.12 (18)
C31—C26—C27—C284.8 (3)C24—N2—Rh2—C1032.36 (17)
C25—C26—C27—C28175.3 (2)C32—N2—Rh2—C1481.8 (3)
O1—C27—C28—C29175.2 (2)C24—N2—Rh2—C1494.8 (3)
C26—C27—C28—C294.8 (3)C32—N2—Rh2—C9170.02 (18)
C27—C28—C29—C301.3 (4)C24—N2—Rh2—C96.50 (18)
C28—C29—C30—C312.4 (4)C32—N2—Rh2—C1372.1 (3)
C29—C30—C31—C262.2 (4)C24—N2—Rh2—C13111.3 (3)
C27—C26—C31—C301.4 (4)C9—C10—Rh2—O2160.62 (16)
C25—C26—C31—C30178.7 (2)C11—C10—Rh2—O239.3 (3)
N2—C32—C33—C34175.0 (2)C9—C10—Rh2—N298.24 (13)
N2—C32—C33—C386.9 (4)C11—C10—Rh2—N2140.46 (15)
C38—C33—C34—C350.1 (3)C9—C10—Rh2—C1464.10 (14)
C32—C33—C34—C35178.0 (2)C11—C10—Rh2—C1457.21 (17)
C33—C34—C35—C360.1 (4)C11—C10—Rh2—C9121.3 (2)
C34—C35—C36—C370.6 (4)C9—C10—Rh2—C1398.42 (14)
C35—C36—C37—C381.0 (4)C11—C10—Rh2—C1322.88 (16)
C34—C33—C38—O2179.4 (2)C13—C14—Rh2—O288.47 (14)
C32—C33—C38—O21.3 (4)C15—C14—Rh2—O2150.06 (17)
C34—C33—C38—C370.2 (3)C13—C14—Rh2—N2168.04 (18)
C32—C33—C38—C37178.2 (2)C15—C14—Rh2—N270.5 (3)
C36—C37—C38—O2178.9 (2)C13—C14—Rh2—C1065.42 (14)
C36—C37—C38—C330.7 (3)C15—C14—Rh2—C1056.05 (18)
C26—C25—N1—C17174.0 (2)C13—C14—Rh2—C9100.18 (14)
C26—C25—N1—Rh10.9 (3)C15—C14—Rh2—C921.28 (17)
C18—C17—N1—C2572.5 (2)C15—C14—Rh2—C13121.5 (2)
C18—C17—N1—Rh1100.54 (19)C10—C9—Rh2—O2148.3 (3)
C33—C32—N2—C24179.8 (2)C16—C9—Rh2—O229.7 (4)
C33—C32—N2—Rh23.0 (3)C10—C9—Rh2—N286.60 (14)
C22—C24—N2—C3283.3 (2)C16—C9—Rh2—N2154.80 (16)
C22—C24—N2—Rh299.9 (2)C16—C9—Rh2—C10118.6 (2)
C28—C27—O1—Rh1167.14 (15)C10—C9—Rh2—C14115.78 (14)
C26—C27—O1—Rh112.8 (3)C16—C9—Rh2—C142.82 (17)
C33—C38—O2—Rh27.2 (3)C10—C9—Rh2—C1378.57 (14)
C37—C38—O2—Rh2173.22 (15)C16—C9—Rh2—C1340.03 (17)
C27—O1—Rh1—N118.17 (18)C14—C13—Rh2—O288.26 (14)
C27—O1—Rh1—C178.8 (3)C12—C13—Rh2—O2150.67 (17)
C27—O1—Rh1—C5176.45 (19)C14—C13—Rh2—N2164.4 (2)
C27—O1—Rh1—C6138.36 (19)C12—C13—Rh2—N274.6 (3)
C27—O1—Rh1—C2136.2 (2)C14—C13—Rh2—C10114.81 (14)
C25—N1—Rh1—O111.91 (17)C12—C13—Rh2—C106.26 (16)
C17—N1—Rh1—O1175.71 (16)C12—C13—Rh2—C14121.1 (2)
C25—N1—Rh1—C1148.62 (18)C14—C13—Rh2—C976.52 (14)
C17—N1—Rh1—C123.75 (17)C12—C13—Rh2—C944.55 (17)

Experimental details

Crystal data
Chemical formula[Rh2(C22H18N2O2)(C8H12)2]·CH2Cl2
Mr849.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)16.0829 (4), 18.8607 (4), 11.2352 (2)
β (°) 99.081 (1)
V3)3365.31 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.30 × 0.12 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.631, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
17250, 10328, 8682
Rint0.025
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.02
No. of reflections10328
No. of parameters425
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.96

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and GAUSSIAN09 (Frisch et al., 2009).

 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. Part of this work was also supported by an ACS–PRF grant to AWM.

References

First citationBrunner, H. & Fisch, H. J. (1987). Organomet. Chem. 335, 1–14.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J. et al. (2009). Gaussian09. Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationMaverick, A. W., Laxman, R. K., Hawkins, M. A., Martone, D. P. & Fronczek, F. R. (2005). Dalton Trans. pp. 200–206.  Web of Science CSD CrossRef Google Scholar
First citationMosae Selvakumar, P., Nadella, S., Jeya Prathap, K., Kureshy, R. I., Suresh, E. & Subramanian, P. S. (2011). Inorg. Chim. Acta, 375, 106–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRappe, A. K., Casewit, C. J., Colwell, K. S., Skiff, W. A. G. III & Skiff, W. M. (1992). J. Am. Chem. Soc. 114, 10024–10035.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds