organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfinyl-2-(3-fluoro­phen­yl)-5-iodo-7-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 19 July 2012; accepted 16 September 2012; online 22 September 2012)

In the title compound, C17H14FIO2S, the 3-fluoro­phenyl ring makes a dihedral angle of 14.56 (5)° with the mean plane [r.m.s. deviation = 0.012 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked via pairs of I⋯O contacts [3.038 (2) Å], forming inversion dimers. In the 3-fluoro­phenyl ring, the F atom is disordered over two positions, with site-occupancy factors of 0.747 (3) and 0.253 (3).

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o629.], 2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o65.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14FIO2S

  • Mr = 428.24

  • Triclinic, [P \overline 1]

  • a = 7.3338 (2) Å

  • b = 10.3610 (2) Å

  • c = 10.9799 (2) Å

  • α = 104.644 (1)°

  • β = 92.926 (1)°

  • γ = 102.035 (1)°

  • V = 784.71 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 173 K

  • 0.35 × 0.29 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.556, Tmax = 0.746

  • 14623 measured reflections

  • 3918 independent reflections

  • 3731 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.08

  • 3918 reflections

  • 211 parameters

  • 164 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 3-ethylsulfinyl-5-iodo-7-methyl-1-benzofuran derivatives containing 2-(4-fluorophenyl) (Choi et al., 2010) and 2-(4-chlorophenyl) (Choi et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. In the 3-fluorophenyl ring, the F atom is disordered over two positions with site-occupancy factors of 0.747 (3) (part A) and 0.253 (3) (part B). The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofuran ring is 14.56 (5)°. In the crystal structure, molecules are connected by an I···O halogen-bonding between the iodine and the oxygen of the SO unit [I···O2 = 3.038 (2) Å, C4–I1···O2i = 168.18 (6)°, (i): -x, -y + 1, -z] (Politzer et al., 2007).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2011). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-2-(3-fluorophenyl)-5-iodo-7-methyl-1-benzofuran (330 mg, 0.8 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 3 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 438–439 K; Rf = 0.53 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for the aryl, 0.99 Å for the methylene, and 0.98 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms. The positions of methyl and methylene hydrogens were optimized rotationally. The F1 atom of the 3-fluorophenyl ring is disordered over two positions with site occupancy factors, from refinement of 0.747 (3) (part A) and 0.253 (3) (part B). For the proper treatement of H-atoms carbon atoms C12 and C14 were divided in two parts with equalized coordinates and thermal parameters. The distance of equivalent C-F pairs were restrained to 1.330 (5) Å using the SHELXL97 command DFIX, and displacement ellipsoids of F1 set were restrained using the SHELXL97 command ISOR.

Structure description top

As a part of our ongoing study of 3-ethylsulfinyl-5-iodo-7-methyl-1-benzofuran derivatives containing 2-(4-fluorophenyl) (Choi et al., 2010) and 2-(4-chlorophenyl) (Choi et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. In the 3-fluorophenyl ring, the F atom is disordered over two positions with site-occupancy factors of 0.747 (3) (part A) and 0.253 (3) (part B). The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofuran ring is 14.56 (5)°. In the crystal structure, molecules are connected by an I···O halogen-bonding between the iodine and the oxygen of the SO unit [I···O2 = 3.038 (2) Å, C4–I1···O2i = 168.18 (6)°, (i): -x, -y + 1, -z] (Politzer et al., 2007).

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2011). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The F atom of the 3-fluorophenyl ring is disordered over two positions with site occupancy factors, from refinement of 0.747 (3) (part A) and 0.253 (3) (part B).
3-Ethylsulfinyl-2-(3-fluorophenyl)-5-iodo-7-methyl-1-benzofuran top
Crystal data top
C17H14FIO2SZ = 2
Mr = 428.24F(000) = 420
Triclinic, P1Dx = 1.812 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3338 (2) ÅCell parameters from 9894 reflections
b = 10.3610 (2) Åθ = 2.4–28.4°
c = 10.9799 (2) ŵ = 2.19 mm1
α = 104.644 (1)°T = 173 K
β = 92.926 (1)°Block, colourless
γ = 102.035 (1)°0.35 × 0.29 × 0.24 mm
V = 784.71 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3918 independent reflections
Radiation source: rotating anode3731 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.556, Tmax = 0.746l = 1414
14623 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.2925P]
where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.38 e Å3
164 restraintsΔρmin = 0.65 e Å3
Crystal data top
C17H14FIO2Sγ = 102.035 (1)°
Mr = 428.24V = 784.71 (3) Å3
Triclinic, P1Z = 2
a = 7.3338 (2) ÅMo Kα radiation
b = 10.3610 (2) ŵ = 2.19 mm1
c = 10.9799 (2) ÅT = 173 K
α = 104.644 (1)°0.35 × 0.29 × 0.24 mm
β = 92.926 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3731 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.746Rint = 0.040
14623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022164 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
3918 reflectionsΔρmin = 0.65 e Å3
211 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.011910 (18)0.247792 (12)0.066263 (10)0.03114 (5)
S10.27413 (7)0.74595 (4)0.42237 (4)0.02679 (10)
O10.21349 (18)0.39126 (13)0.50876 (12)0.0258 (3)
O20.1125 (2)0.75365 (15)0.33857 (14)0.0336 (3)
C10.2420 (3)0.57482 (18)0.43099 (17)0.0249 (3)
C20.1699 (3)0.45433 (17)0.32762 (17)0.0238 (3)
C30.1203 (3)0.42768 (18)0.19759 (17)0.0254 (3)
H30.13010.49960.15740.030*
C40.0563 (3)0.29164 (18)0.13005 (17)0.0259 (3)
C50.0365 (3)0.18389 (19)0.18758 (19)0.0280 (4)
H50.01230.09250.13740.034*
C60.0869 (3)0.20809 (18)0.31681 (18)0.0266 (4)
C70.1532 (3)0.34487 (18)0.38160 (17)0.0238 (3)
C80.2659 (2)0.53213 (18)0.53774 (17)0.0244 (3)
C90.0763 (3)0.0950 (2)0.3810 (2)0.0353 (4)
H9A0.20310.08400.40080.053*
H9B0.00120.00920.32460.053*
H9C0.01770.11800.45950.053*
C100.3342 (3)0.5987 (2)0.67072 (17)0.0269 (4)
C110.2991 (3)0.5240 (2)0.76036 (19)0.0317 (4)
H110.22850.43180.73530.038*
C12A0.3681 (3)0.5856 (3)0.8849 (2)0.0415 (5)0.747 (3)
H12A0.34590.53380.94490.050*0.747 (3)
C12B0.3681 (3)0.5856 (3)0.8849 (2)0.0415 (5)0.253 (3)
F1B0.3501 (9)0.5380 (6)0.9793 (5)0.0474 (16)0.253 (3)
C130.4679 (3)0.7192 (3)0.9258 (2)0.0439 (5)
H130.51450.76031.01230.053*
C14A0.4974 (3)0.7906 (2)0.8370 (2)0.0416 (5)0.747 (3)
F1A0.5917 (3)0.91806 (18)0.87743 (19)0.0506 (6)0.747 (3)
C14B0.4974 (3)0.7906 (2)0.8370 (2)0.0416 (5)0.253 (3)
H14B0.56410.88380.86390.050*0.253 (3)
C150.4356 (3)0.7346 (2)0.7108 (2)0.0341 (4)
H150.46130.78740.65190.041*
C160.4722 (3)0.7479 (2)0.3304 (2)0.0340 (4)
H16A0.57800.72950.37770.041*
H16B0.43720.67500.24960.041*
C170.5320 (4)0.8859 (2)0.3032 (2)0.0437 (5)
H17A0.42940.90180.25240.066*
H17B0.64240.88720.25650.066*
H17C0.56310.95820.38330.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03983 (9)0.02785 (8)0.02227 (8)0.00625 (6)0.00093 (5)0.00227 (5)
S10.0375 (2)0.01877 (19)0.0227 (2)0.00580 (17)0.00145 (18)0.00388 (16)
O10.0304 (6)0.0231 (6)0.0247 (6)0.0058 (5)0.0021 (5)0.0080 (5)
O20.0386 (8)0.0319 (7)0.0349 (7)0.0133 (6)0.0028 (6)0.0134 (6)
C10.0292 (9)0.0204 (8)0.0238 (8)0.0045 (7)0.0021 (7)0.0049 (6)
C20.0263 (8)0.0201 (7)0.0252 (8)0.0060 (7)0.0034 (7)0.0060 (6)
C30.0303 (9)0.0221 (8)0.0241 (8)0.0061 (7)0.0019 (7)0.0069 (7)
C40.0295 (9)0.0251 (8)0.0214 (8)0.0065 (7)0.0017 (7)0.0034 (7)
C50.0313 (9)0.0209 (8)0.0294 (9)0.0042 (7)0.0035 (7)0.0038 (7)
C60.0299 (9)0.0211 (8)0.0300 (9)0.0060 (7)0.0054 (7)0.0083 (7)
C70.0254 (8)0.0241 (8)0.0228 (8)0.0068 (7)0.0029 (7)0.0071 (7)
C80.0240 (8)0.0235 (8)0.0257 (8)0.0052 (7)0.0030 (7)0.0066 (7)
C90.0505 (12)0.0216 (8)0.0347 (10)0.0063 (8)0.0062 (9)0.0107 (8)
C100.0244 (8)0.0345 (9)0.0224 (8)0.0097 (7)0.0020 (7)0.0062 (7)
C110.0277 (9)0.0411 (11)0.0279 (9)0.0099 (8)0.0040 (8)0.0104 (8)
C12A0.0369 (11)0.0653 (15)0.0250 (10)0.0162 (11)0.0023 (8)0.0138 (10)
C12B0.0369 (11)0.0653 (15)0.0250 (10)0.0162 (11)0.0023 (8)0.0138 (10)
F1B0.060 (3)0.054 (3)0.032 (3)0.006 (3)0.003 (2)0.025 (2)
C130.0360 (11)0.0660 (15)0.0231 (10)0.0139 (11)0.0038 (9)0.0001 (9)
C14A0.0360 (11)0.0438 (12)0.0362 (12)0.0075 (10)0.0033 (9)0.0025 (9)
F1A0.0606 (13)0.0339 (9)0.0430 (11)0.0028 (9)0.0106 (9)0.0012 (8)
C14B0.0360 (11)0.0438 (12)0.0362 (12)0.0075 (10)0.0033 (9)0.0025 (9)
C150.0345 (10)0.0348 (10)0.0290 (10)0.0050 (8)0.0013 (8)0.0051 (8)
C160.0350 (10)0.0298 (9)0.0362 (11)0.0048 (8)0.0048 (9)0.0091 (8)
C170.0499 (13)0.0345 (11)0.0424 (12)0.0039 (10)0.0055 (10)0.0134 (9)
Geometric parameters (Å, º) top
I1—C42.0982 (18)C9—H9B0.9800
I1—O2i3.0384 (15)C9—H9C0.9800
S1—O21.4908 (15)C10—C151.396 (3)
S1—C11.7666 (18)C10—C111.401 (3)
S1—C161.811 (2)C11—C12A1.373 (3)
O1—C71.373 (2)C11—H110.9500
O1—C81.378 (2)C12A—C131.372 (4)
C1—C81.369 (2)C12A—H12A0.9500
C1—C21.440 (3)C13—C14A1.366 (4)
C2—C71.393 (2)C13—H130.9500
C2—C31.397 (3)C14A—F1A1.308 (3)
C3—C41.385 (2)C14A—C151.371 (3)
C3—H30.9500C15—H150.9500
C4—C51.402 (3)C16—C171.515 (3)
C5—C61.393 (3)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—C71.385 (3)C17—H17A0.9800
C6—C91.504 (2)C17—H17B0.9800
C8—C101.459 (3)C17—H17C0.9800
C9—H9A0.9800
C4—I1—O2i168.17 (6)H9A—C9—H9C109.5
O2—S1—C1107.75 (9)H9B—C9—H9C109.5
O2—S1—C16106.73 (9)C15—C10—C11119.02 (18)
C1—S1—C1697.34 (9)C15—C10—C8121.67 (17)
C7—O1—C8107.04 (13)C11—C10—C8119.31 (18)
C8—C1—C2107.39 (15)C12A—C11—C10119.2 (2)
C8—C1—S1126.73 (14)C12A—C11—H11120.4
C2—C1—S1125.69 (13)C10—C11—H11120.4
C7—C2—C3119.11 (16)C13—C12A—C11122.5 (2)
C7—C2—C1105.07 (15)C13—C12A—H12A118.8
C3—C2—C1135.82 (16)C11—C12A—H12A118.8
C4—C3—C2116.93 (16)C14A—C13—C12A117.2 (2)
C4—C3—H3121.5C14A—C13—H13121.4
C2—C3—H3121.5C12A—C13—H13121.4
C3—C4—C5122.64 (17)F1A—C14A—C13116.6 (2)
C3—C4—I1117.87 (13)F1A—C14A—C15120.1 (2)
C5—C4—I1119.49 (13)C13—C14A—C15123.3 (2)
C6—C5—C4121.33 (17)C14A—C15—C10118.8 (2)
C6—C5—H5119.3C14A—C15—H15120.6
C4—C5—H5119.3C10—C15—H15120.6
C7—C6—C5114.74 (16)C17—C16—S1110.13 (16)
C7—C6—C9122.26 (17)C17—C16—H16A109.6
C5—C6—C9122.97 (17)S1—C16—H16A109.6
O1—C7—C6124.33 (16)C17—C16—H16B109.6
O1—C7—C2110.45 (15)S1—C16—H16B109.6
C6—C7—C2125.21 (17)H16A—C16—H16B108.1
C1—C8—O1110.02 (16)C16—C17—H17A109.5
C1—C8—C10135.75 (17)C16—C17—H17B109.5
O1—C8—C10114.22 (15)H17A—C17—H17B109.5
C6—C9—H9A109.5C16—C17—H17C109.5
C6—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5
C6—C9—H9C109.5
O2—S1—C1—C8135.41 (17)C1—C2—C7—O11.2 (2)
C16—S1—C1—C8114.35 (18)C3—C2—C7—C61.2 (3)
O2—S1—C1—C238.91 (18)C1—C2—C7—C6179.34 (18)
C16—S1—C1—C271.33 (18)C2—C1—C8—O10.0 (2)
C8—C1—C2—C70.7 (2)S1—C1—C8—O1175.20 (13)
S1—C1—C2—C7174.51 (14)C2—C1—C8—C10179.08 (19)
C8—C1—C2—C3178.6 (2)S1—C1—C8—C105.8 (3)
S1—C1—C2—C36.2 (3)C7—O1—C8—C10.8 (2)
C7—C2—C3—C40.1 (3)C7—O1—C8—C10179.94 (14)
C1—C2—C3—C4179.4 (2)C1—C8—C10—C1515.3 (3)
C2—C3—C4—C51.5 (3)O1—C8—C10—C15163.69 (17)
C2—C3—C4—I1178.24 (13)C1—C8—C10—C11165.4 (2)
O2i—I1—C4—C317.6 (4)O1—C8—C10—C1115.5 (2)
O2i—I1—C4—C5162.6 (2)C15—C10—C11—C12A1.1 (3)
C3—C4—C5—C62.2 (3)C8—C10—C11—C12A178.15 (18)
I1—C4—C5—C6177.54 (14)C10—C11—C12A—C131.2 (3)
C4—C5—C6—C71.1 (3)C11—C12A—C13—C14A0.1 (3)
C4—C5—C6—C9177.08 (19)C12A—C13—C14A—F1A179.6 (2)
C8—O1—C7—C6179.30 (17)C12A—C13—C14A—C151.2 (4)
C8—O1—C7—C21.27 (19)F1A—C14A—C15—C10179.6 (2)
C5—C6—C7—O1178.80 (16)C13—C14A—C15—C101.3 (3)
C9—C6—C7—O10.6 (3)C11—C10—C15—C14A0.1 (3)
C5—C6—C7—C20.6 (3)C8—C10—C15—C14A179.32 (19)
C9—C6—C7—C2178.76 (18)O2—S1—C16—C1767.44 (18)
C3—C2—C7—O1178.24 (16)C1—S1—C16—C17178.52 (17)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14FIO2S
Mr428.24
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3338 (2), 10.3610 (2), 10.9799 (2)
α, β, γ (°)104.644 (1), 92.926 (1), 102.035 (1)
V3)784.71 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.35 × 0.29 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.556, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14623, 3918, 3731
Rint0.040
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.08
No. of reflections3918
No. of parameters211
No. of restraints164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.65

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (grant No. RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o65.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds