organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Paliperidonium nitrate

aSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jingshui03@163.com

(Received 9 July 2012; accepted 7 September 2012; online 15 September 2012)

In the title mol­ecular salt (systematic name: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]eth­yl}-9-hy­droxy-2-methyl-1,6,7,8,9,9a-hexa­hydro­pyrido[1,2-a]pyrimidin-4-one nitrate), C23H29FN4O3+·NO3, the piperidine ring displays a chair conformation and its N atom is protonated; the N—H bond is in an axial orientation. The ring bearing the hy­droxy group exhibits a half-chair conformation. The hy­droxy group as well as the adjacent methyl­ene group are disordered over two sets of sites in a 0.823 (5):0.177 (5) ratio. In the crystal, O—H⋯N, O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds connect the components into a three-dimensional network.

Related literature

For polymorphism of pharmaceutical materials, see: Luo et al. (2012[Luo, Y. H., Ma, Y. T., Bao, Q. Q. & Sun, B. W. (2012). J. Chem. Crystallogr. 42, 628-632.]). For background to the anti-psychotic drug paliperidone, see: Spina & Crupi (2011[Spina, E. & Crupi, R. (2011). J. Cent. Nerv. Syst. Dis. 3, 27-41.]).

[Scheme 1]

Experimental

Crystal data
  • C23H29FN4O3+·NO3

  • Mr = 490.51

  • Monoclinic, P 21 /c

  • a = 8.3642 (8) Å

  • b = 22.032 (2) Å

  • c = 12.4485 (13) Å

  • β = 92.311 (3)°

  • V = 2292.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.974

  • 23571 measured reflections

  • 5234 independent reflections

  • 2824 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.178

  • S = 1.06

  • 5234 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4′ 0.91 1.94 2.823 (18) 164
N2—H2⋯O5 0.91 2.15 3.028 (12) 161
N2—H2⋯O6 0.91 2.23 2.999 (9) 142
N2—H2⋯N5 0.91 2.56 3.465 (3) 170
N2—H2⋯O5′ 0.91 2.58 3.36 (3) 144
O3′—H3′⋯N1i 0.82 2.30 3.117 (18) 169
O3—H3⋯O5i 0.82 2.11 2.915 (12) 168
O3—H3⋯O4′i 0.82 2.27 3.064 (19) 163
O3—H3⋯O6′i 0.82 2.30 2.93 (4) 134
O3—H3⋯O4i 0.82 2.60 3.187 (16) 130
O3—H3⋯N5i 0.82 2.67 3.423 (4) 153
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the studies of polymorphism for pharmaceutical ingredients have received much attention, different polymorphs can affect shelf life,durability, solubility, as well as bioavailability and manufacturing of a drug (Luo et al.,2012). Paliperidone or 9-hydroxyrisperidone, is one of the most recently available atypical antipsychotics (Spina & Crupi, 2011). It is a benzisoxazole derivative and the major active metabolite of risperidone, a widely used atypical antipsychotic approved for the treatment of schizophrenia and other psychiatric disorders. In view of the importance of the polymorphs of paliperidone, we reported here a pesudo-polymorphism of paliperidone: paliperidonium nitrate.

The asymmetric unit of the title compound consisting of a paliperidone cation and a nitrate ion (Fig. 1) The piperidine ring of the paliperidone cation displays a chair conformation with the nitrogen atoms charged with a hydrion, while the ring which bears the hydroxy group exhibits a half-chair conformation. The hydroxy group as well as the neighbour carbon atom (C21), are disordered over two positions, both with site occupancy factors of 0.82263 and 0.17737.

In the crystal, inteicate classical O—H···N, O—H···O, N—H···O and N—H···N hydrogen bonds between the paliperidone cation and the nitrate ion are observed, which connect the molecules into complex structure.(Fig. 2).

Related literature top

For polymorphism of pharmaceutical materials, see: Luo et al. (2012). For background to the anti-psychotic drug paliperidone, see: Spina & Crupi (2011).

Experimental top

The title compound are provided by Changzhou Siyao Pharmaceuticals Co. Ltd (Changzhou, China). Yellow blocks were obstained by slow evaporation of a methanol solution.

Refinement top

All H atoms attached to C atoms, N atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH), C—H = 0.97 Å (CH2), C—H = 0.96 Å (CH3), N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H) =1.2Ueq(CH, CH2 and NH) and Uiso(H) = 1.5Ueq(CH3 and OH).

Structure description top

In recent years, the studies of polymorphism for pharmaceutical ingredients have received much attention, different polymorphs can affect shelf life,durability, solubility, as well as bioavailability and manufacturing of a drug (Luo et al.,2012). Paliperidone or 9-hydroxyrisperidone, is one of the most recently available atypical antipsychotics (Spina & Crupi, 2011). It is a benzisoxazole derivative and the major active metabolite of risperidone, a widely used atypical antipsychotic approved for the treatment of schizophrenia and other psychiatric disorders. In view of the importance of the polymorphs of paliperidone, we reported here a pesudo-polymorphism of paliperidone: paliperidonium nitrate.

The asymmetric unit of the title compound consisting of a paliperidone cation and a nitrate ion (Fig. 1) The piperidine ring of the paliperidone cation displays a chair conformation with the nitrogen atoms charged with a hydrion, while the ring which bears the hydroxy group exhibits a half-chair conformation. The hydroxy group as well as the neighbour carbon atom (C21), are disordered over two positions, both with site occupancy factors of 0.82263 and 0.17737.

In the crystal, inteicate classical O—H···N, O—H···O, N—H···O and N—H···N hydrogen bonds between the paliperidone cation and the nitrate ion are observed, which connect the molecules into complex structure.(Fig. 2).

For polymorphism of pharmaceutical materials, see: Luo et al. (2012). For background to the anti-psychotic drug paliperidone, see: Spina & Crupi (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing view showing the three dimensionnal network. Intermolecular hydrogen bonds are shown as dashed lines.
3-{2-[4-(6-Fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2- methyl-1,6,7,8,9,9a-hexahydropyrido[1,2-a]pyrimidin-4-one nitrate top
Crystal data top
C23H29FN4O3+·NO3F(000) = 1036
Mr = 490.51Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5234 reflections
a = 8.3642 (8) Åθ = 3.0–27.5°
b = 22.032 (2) ŵ = 0.11 mm1
c = 12.4485 (13) ÅT = 293 K
β = 92.311 (3)°Block, yellow
V = 2292.1 (4) Å30.30 × 0.25 × 0.24 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
5234 independent reflections
Radiation source: fine-focus sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2828
Tmin = 0.968, Tmax = 0.974l = 1616
23571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.3819P]
where P = (Fo2 + 2Fc2)/3
5234 reflections(Δ/σ)max = 0.003
353 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H29FN4O3+·NO3V = 2292.1 (4) Å3
Mr = 490.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3642 (8) ŵ = 0.11 mm1
b = 22.032 (2) ÅT = 293 K
c = 12.4485 (13) Å0.30 × 0.25 × 0.24 mm
β = 92.311 (3)°
Data collection top
Rigaku SCXmini
diffractometer
5234 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2824 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.974Rint = 0.063
23571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
5234 reflectionsΔρmin = 0.45 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.0565 (2)0.98896 (7)0.73885 (17)0.0799 (6)
O10.2639 (2)0.84040 (8)0.50551 (14)0.0536 (5)
O20.2927 (3)0.47739 (9)0.97215 (18)0.0750 (7)
N10.2679 (3)0.77565 (10)0.51391 (17)0.0492 (6)
N20.3289 (2)0.57545 (8)0.67565 (15)0.0362 (5)
H20.42990.58210.65360.043*
N30.2952 (2)0.37405 (9)0.97199 (16)0.0424 (5)
N40.4064 (3)0.32060 (9)0.83226 (17)0.0457 (5)
H4A0.42840.28650.80280.055*
C10.1967 (3)0.76100 (11)0.60118 (18)0.0375 (6)
C20.1398 (3)0.81375 (11)0.65504 (19)0.0367 (6)
C30.1871 (3)0.86150 (12)0.5923 (2)0.0432 (6)
C40.1608 (3)0.92174 (12)0.6162 (2)0.0517 (7)
H40.19510.95340.57330.062*
C50.0804 (3)0.93103 (12)0.7081 (3)0.0523 (7)
C60.0240 (3)0.88531 (12)0.7730 (2)0.0519 (7)
H60.03350.89480.83320.062*
C70.0542 (3)0.82570 (12)0.7472 (2)0.0464 (7)
H70.01870.79420.78980.056*
C80.2995 (4)0.61826 (11)0.76569 (19)0.0467 (7)
H8A0.37920.61160.82320.056*
H8B0.19510.61000.79370.056*
C90.3062 (3)0.68388 (11)0.72972 (19)0.0447 (6)
H9A0.41380.69330.70870.054*
H9B0.28130.71010.78940.054*
C100.1887 (3)0.69623 (11)0.63561 (19)0.0395 (6)
H100.08050.68840.65960.047*
C110.2218 (4)0.65205 (12)0.5461 (2)0.0507 (7)
H11A0.14360.65810.48740.061*
H11B0.32680.66040.51920.061*
C120.2153 (4)0.58721 (12)0.5825 (2)0.0523 (7)
H12A0.10740.57770.60280.063*
H12B0.24140.56080.52330.063*
C130.3179 (3)0.51047 (11)0.7099 (2)0.0441 (6)
H13A0.31050.48510.64610.053*
H13B0.22000.50510.74800.053*
C140.4572 (3)0.48869 (11)0.7812 (2)0.0474 (7)
H14A0.55190.48460.73930.057*
H14B0.47980.51790.83800.057*
C150.4152 (3)0.42850 (10)0.8288 (2)0.0382 (6)
C160.3326 (3)0.43048 (11)0.9267 (2)0.0446 (6)
C170.3373 (3)0.32160 (11)0.9231 (2)0.0402 (6)
C180.4442 (3)0.37363 (11)0.78350 (19)0.0392 (6)
C190.5206 (4)0.36680 (13)0.6777 (2)0.0557 (7)
H19A0.43970.36790.62080.084*
H19B0.57620.32870.67590.084*
H19C0.59510.39940.66840.084*
C200.3052 (4)0.26146 (13)0.9775 (3)0.0589 (8)
H200.40090.23620.97220.071*0.85
H20'0.19880.25050.94780.071*0.15
C210.2807 (5)0.2714 (2)1.0991 (4)0.0731 (14)0.823 (5)
H21A0.24920.23351.13200.088*0.823 (5)
H21B0.38010.28471.13430.088*0.823 (5)
C21'0.194 (3)0.2599 (8)1.0543 (16)0.059 (5)*0.177 (5)
H21C0.22850.23001.10750.071*0.177 (5)
H21D0.09470.24511.02070.071*0.177 (5)
C220.1568 (5)0.31708 (17)1.1125 (3)0.0850 (11)
H22A0.13150.31971.18770.102*
H22B0.06040.30531.07180.102*
C230.2119 (4)0.37704 (15)1.0748 (2)0.0643 (8)
H23A0.28380.39451.12950.077*
H23B0.12030.40381.06580.077*
O30.1799 (3)0.23263 (11)0.9224 (3)0.0890 (13)0.823 (5)
H30.21030.19970.90030.133*0.823 (5)
O3'0.391 (2)0.2197 (8)0.9559 (14)0.118 (7)*0.177 (5)
H3'0.48560.22970.96250.177*0.177 (5)
O40.8275 (16)0.5916 (7)0.5210 (7)0.086 (2)0.69
O50.6654 (13)0.6207 (5)0.6430 (12)0.120 (4)0.69
O60.6165 (11)0.5413 (5)0.5526 (7)0.089 (3)0.69
N50.7082 (3)0.58315 (14)0.5744 (2)0.0584 (7)
O4'0.640 (2)0.6163 (7)0.632 (2)0.069 (5)0.31
O5'0.670 (3)0.5314 (10)0.565 (2)0.127 (9)0.31
O6'0.837 (4)0.600 (2)0.552 (2)0.176 (14)0.31
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0704 (12)0.0454 (10)0.1252 (17)0.0094 (8)0.0184 (11)0.0060 (10)
O10.0679 (13)0.0498 (12)0.0440 (11)0.0008 (9)0.0128 (10)0.0146 (9)
O20.1027 (17)0.0433 (12)0.0812 (15)0.0030 (11)0.0313 (13)0.0196 (11)
N10.0595 (15)0.0489 (14)0.0396 (12)0.0013 (11)0.0068 (11)0.0076 (10)
N20.0362 (11)0.0363 (11)0.0364 (11)0.0011 (9)0.0041 (9)0.0015 (9)
N30.0479 (13)0.0439 (13)0.0359 (11)0.0028 (10)0.0082 (9)0.0004 (10)
N40.0565 (14)0.0301 (11)0.0508 (13)0.0033 (10)0.0063 (11)0.0068 (10)
C10.0384 (13)0.0430 (14)0.0310 (13)0.0021 (11)0.0010 (11)0.0077 (11)
C20.0359 (13)0.0370 (14)0.0370 (13)0.0007 (10)0.0003 (11)0.0062 (11)
C30.0438 (15)0.0453 (15)0.0406 (14)0.0006 (12)0.0017 (12)0.0115 (12)
C40.0480 (16)0.0374 (15)0.069 (2)0.0009 (12)0.0005 (15)0.0176 (14)
C50.0422 (15)0.0370 (15)0.078 (2)0.0061 (12)0.0033 (15)0.0002 (14)
C60.0444 (16)0.0525 (17)0.0595 (18)0.0051 (13)0.0114 (14)0.0003 (14)
C70.0458 (15)0.0452 (15)0.0488 (16)0.0003 (12)0.0084 (13)0.0094 (13)
C80.0687 (18)0.0389 (14)0.0328 (13)0.0043 (12)0.0054 (13)0.0001 (11)
C90.0656 (18)0.0353 (14)0.0327 (13)0.0050 (12)0.0034 (12)0.0007 (11)
C100.0403 (14)0.0387 (14)0.0399 (14)0.0021 (11)0.0064 (11)0.0054 (11)
C110.0675 (19)0.0487 (16)0.0347 (14)0.0039 (13)0.0123 (13)0.0008 (12)
C120.0672 (19)0.0433 (16)0.0447 (16)0.0039 (13)0.0181 (14)0.0020 (13)
C130.0469 (15)0.0340 (14)0.0514 (15)0.0026 (11)0.0013 (13)0.0051 (12)
C140.0425 (15)0.0415 (15)0.0582 (17)0.0025 (12)0.0026 (13)0.0104 (13)
C150.0396 (14)0.0320 (13)0.0431 (14)0.0002 (10)0.0018 (11)0.0051 (11)
C160.0500 (16)0.0350 (14)0.0496 (16)0.0017 (12)0.0095 (13)0.0043 (12)
C170.0397 (14)0.0341 (14)0.0467 (15)0.0001 (11)0.0009 (12)0.0001 (12)
C180.0371 (14)0.0431 (15)0.0371 (13)0.0006 (11)0.0014 (11)0.0027 (12)
C190.0607 (18)0.0643 (19)0.0429 (15)0.0016 (14)0.0127 (14)0.0053 (14)
C200.0535 (18)0.0423 (16)0.081 (2)0.0009 (14)0.0059 (17)0.0162 (15)
C210.049 (2)0.099 (3)0.071 (3)0.004 (2)0.004 (2)0.054 (2)
C220.093 (3)0.097 (3)0.067 (2)0.015 (2)0.025 (2)0.022 (2)
C230.071 (2)0.081 (2)0.0419 (16)0.0121 (17)0.0167 (15)0.0057 (15)
O30.0617 (19)0.0486 (16)0.154 (3)0.0114 (12)0.0312 (18)0.0149 (17)
O40.048 (4)0.129 (5)0.083 (3)0.012 (3)0.028 (2)0.007 (3)
O50.159 (9)0.103 (6)0.100 (5)0.019 (5)0.039 (6)0.024 (5)
O60.070 (3)0.127 (7)0.071 (3)0.037 (4)0.016 (2)0.016 (3)
N50.0556 (19)0.0624 (19)0.0579 (17)0.0019 (16)0.0097 (15)0.0076 (14)
O4'0.042 (5)0.030 (5)0.138 (15)0.005 (4)0.036 (6)0.018 (7)
O5'0.16 (2)0.054 (8)0.167 (17)0.032 (12)0.039 (14)0.035 (8)
O6'0.065 (14)0.17 (2)0.30 (4)0.005 (12)0.09 (2)0.06 (3)
Geometric parameters (Å, º) top
F1—C51.350 (3)C13—H13A0.9700
O1—C31.360 (3)C13—H13B0.9700
O1—N11.431 (3)C14—C151.500 (3)
O2—C161.231 (3)C14—H14A0.9700
N1—C11.301 (3)C14—H14B0.9700
N2—C121.492 (3)C15—C181.360 (3)
N2—C81.493 (3)C15—C161.426 (4)
N2—C131.498 (3)C17—C201.517 (4)
N2—H20.9108C18—C191.495 (3)
N3—C171.359 (3)C19—H19A0.9600
N3—C161.405 (3)C19—H19B0.9600
N3—C231.483 (3)C19—H19C0.9600
N4—C171.291 (3)C20—O3'1.204 (17)
N4—C181.360 (3)C20—C21'1.362 (18)
N4—H4A0.8594C20—O31.383 (4)
C1—C21.433 (3)C20—C211.552 (5)
C1—C101.492 (3)C20—H200.9798
C2—C31.378 (3)C20—H20'0.9803
C2—C71.401 (3)C21—C221.459 (5)
C3—C41.380 (4)C21—H21A0.9700
C4—C51.365 (4)C21—H21B0.9700
C4—H40.9300C21'—C221.492 (18)
C5—C61.386 (4)C21'—H21C0.9700
C6—C71.378 (4)C21'—H21D0.9700
C6—H60.9300C22—C231.482 (4)
C7—H70.9300C22—H22A0.9700
C8—C91.515 (3)C22—H22B0.9700
C8—H8A0.9700C23—H23A0.9700
C8—H8B0.9700C23—H23B0.9700
C9—C101.523 (3)O3—H20'0.5247
C9—H9A0.9700O3—H30.8192
C9—H9B0.9700O3'—H200.4223
C10—C111.514 (3)O3'—H3'0.8231
C10—H100.9800O4—N51.235 (13)
C11—C121.500 (3)O5—N51.252 (11)
C11—H11A0.9700O6—N51.223 (10)
C11—H11B0.9700N5—O5'1.19 (2)
C12—H12A0.9700N5—O4'1.187 (18)
C12—H12B0.9700N5—O6'1.19 (3)
C13—C141.513 (3)
C3—O1—N1107.05 (18)O2—C16—N3119.3 (2)
C1—N1—O1107.3 (2)O2—C16—C15124.6 (2)
C12—N2—C8110.77 (19)N3—C16—C15116.0 (2)
C12—N2—C13110.04 (18)N4—C17—N3122.7 (2)
C8—N2—C13112.10 (18)N4—C17—C20118.0 (2)
C12—N2—H2107.9N3—C17—C20119.3 (2)
C8—N2—H2107.9C15—C18—N4122.0 (2)
C13—N2—H2108.0C15—C18—C19123.0 (2)
C17—N3—C16120.4 (2)N4—C18—C19115.0 (2)
C17—N3—C23124.3 (2)C18—C19—H19A109.5
C16—N3—C23115.3 (2)C18—C19—H19B109.5
C17—N4—C18119.8 (2)H19A—C19—H19B109.5
C17—N4—H4A120.0C18—C19—H19C109.5
C18—N4—H4A120.2H19A—C19—H19C109.5
N1—C1—C2111.2 (2)H19B—C19—H19C109.5
N1—C1—C10120.3 (2)O3'—C20—C21'124.6 (12)
C2—C1—C10128.5 (2)O3'—C20—O389.1 (9)
C3—C2—C7119.3 (2)C21'—C20—O379.1 (9)
C3—C2—C1104.2 (2)O3'—C20—C17116.7 (9)
C7—C2—C1136.5 (2)C21'—C20—C17118.3 (8)
O1—C3—C2110.2 (2)O3—C20—C17108.9 (3)
O1—C3—C4125.8 (2)O3'—C20—C21115.4 (9)
C2—C3—C4124.1 (3)O3—C20—C21114.9 (3)
C5—C4—C3114.4 (2)C17—C20—C21110.2 (3)
C5—C4—H4122.8C21'—C20—H20128.1
C3—C4—H4122.8O3—C20—H20108.0
F1—C5—C4117.6 (2)C17—C20—H20107.9
F1—C5—C6117.6 (3)C21—C20—H20106.6
C4—C5—C6124.8 (3)O3'—C20—H20'105.5
C7—C6—C5119.1 (3)C21'—C20—H20'67.8
C7—C6—H6120.4C17—C20—H20'102.8
C5—C6—H6120.4C21—C20—H20'104.4
C6—C7—C2118.3 (2)H20—C20—H20'124.4
C6—C7—H7120.8C22—C21—C20109.3 (3)
C2—C7—H7120.8C22—C21—H21A109.8
N2—C8—C9111.82 (19)C20—C21—H21A109.8
N2—C8—H8A109.3C22—C21—H21B109.8
C9—C8—H8A109.3C20—C21—H21B109.8
N2—C8—H8B109.3H21A—C21—H21B108.3
C9—C8—H8B109.3C20—C21'—C22118.7 (13)
H8A—C8—H8B107.9C22—C21'—H20'128.7
C8—C9—C10111.6 (2)C20—C21'—H21C107.6
C8—C9—H9A109.3C22—C21'—H21C107.6
C10—C9—H9A109.3H20'—C21'—H21C123.3
C8—C9—H9B109.3C20—C21'—H21D107.6
C10—C9—H9B109.3C22—C21'—H21D107.6
H9A—C9—H9B108.0H20'—C21'—H21D65.3
C1—C10—C11113.1 (2)H21C—C21'—H21D107.1
C1—C10—C9110.9 (2)C21—C22—C23110.3 (3)
C11—C10—C9108.7 (2)C21'—C22—C23121.7 (7)
C1—C10—H10108.0C21—C22—H22A109.6
C11—C10—H10108.0C21'—C22—H22A125.3
C9—C10—H10108.0C23—C22—H22A109.6
C12—C11—C10112.3 (2)C21—C22—H22B109.6
C12—C11—H11A109.1C21'—C22—H22B72.8
C10—C11—H11A109.1C23—C22—H22B109.6
C12—C11—H11B109.1H22A—C22—H22B108.1
C10—C11—H11B109.1C22—C23—N3113.4 (3)
H11A—C11—H11B107.9C22—C23—H23A108.9
N2—C12—C11111.7 (2)N3—C23—H23A108.9
N2—C12—H12A109.3C22—C23—H23B108.9
C11—C12—H12A109.3N3—C23—H23B108.9
N2—C12—H12B109.3H23A—C23—H23B107.7
C11—C12—H12B109.3C20—O3—H3109.5
H12A—C12—H12B107.9H20'—O3—H3140.8
N2—C13—C14114.5 (2)C20—O3'—H2049.0
N2—C13—H13A108.6C20—O3'—H3'110.7
C14—C13—H13A108.6H20—O3'—H3'63.4
N2—C13—H13B108.6O5'—N5—O4'120.8 (15)
C14—C13—H13B108.6O5'—N5—O4108.4 (14)
H13A—C13—H13B107.6O4'—N5—O4130.7 (12)
C15—C14—C13109.0 (2)O4'—N5—O6106.5 (11)
C15—C14—H14A109.9O4—N5—O6120.5 (8)
C13—C14—H14A109.9O5'—N5—O5127.9 (14)
C15—C14—H14B109.9O4—N5—O5121.8 (9)
C13—C14—H14B109.9O6—N5—O5117.1 (7)
H14A—C14—H14B108.3O5'—N5—O6'122 (2)
C18—C15—C16118.8 (2)O4'—N5—O6'114 (2)
C18—C15—C14125.0 (2)O6—N5—O6'139.3 (18)
C16—C15—C14116.1 (2)O5—N5—O6'103.5 (19)
C3—O1—N1—C10.0 (3)C17—N3—C16—C150.0 (3)
O1—N1—C1—C20.7 (3)C23—N3—C16—C15179.0 (2)
O1—N1—C1—C10176.8 (2)C18—C15—C16—O2176.2 (3)
N1—C1—C2—C31.2 (3)C14—C15—C16—O21.2 (4)
C10—C1—C2—C3176.1 (2)C18—C15—C16—N33.4 (4)
N1—C1—C2—C7178.0 (3)C14—C15—C16—N3179.2 (2)
C10—C1—C2—C74.7 (5)C18—N4—C17—N32.0 (4)
N1—O1—C3—C20.8 (3)C18—N4—C17—C20176.8 (2)
N1—O1—C3—C4178.5 (2)C16—N3—C17—N42.8 (4)
C7—C2—C3—O1178.2 (2)C23—N3—C17—N4178.3 (2)
C1—C2—C3—O11.2 (3)C16—N3—C17—C20176.0 (2)
C7—C2—C3—C42.5 (4)C23—N3—C17—C202.8 (4)
C1—C2—C3—C4178.1 (2)C16—C15—C18—N44.4 (4)
O1—C3—C4—C5179.9 (2)C14—C15—C18—N4178.4 (2)
C2—C3—C4—C50.9 (4)C16—C15—C18—C19176.1 (2)
C3—C4—C5—F1177.3 (2)C14—C15—C18—C191.1 (4)
C3—C4—C5—C61.6 (4)C17—N4—C18—C151.7 (4)
F1—C5—C6—C7176.4 (2)C17—N4—C18—C19178.7 (2)
C4—C5—C6—C72.4 (4)N4—C17—C20—O3'25.3 (10)
C5—C6—C7—C20.7 (4)N3—C17—C20—O3'153.5 (10)
C3—C2—C7—C61.6 (4)N4—C17—C20—C21'161.0 (11)
C1—C2—C7—C6179.3 (3)N3—C17—C20—C21'20.1 (12)
C12—N2—C8—C955.1 (3)N4—C17—C20—O373.5 (3)
C13—N2—C8—C9178.4 (2)N3—C17—C20—O3107.6 (3)
N2—C8—C9—C1056.2 (3)N4—C17—C20—C21159.6 (3)
N1—C1—C10—C1117.7 (3)N3—C17—C20—C2119.3 (4)
C2—C1—C10—C11165.2 (2)O3'—C20—C21—C22171.6 (10)
N1—C1—C10—C9104.7 (3)C21'—C20—C21—C2257.1 (13)
C2—C1—C10—C972.4 (3)O3—C20—C21—C2270.0 (4)
C8—C9—C10—C1180.0 (2)C17—C20—C21—C2253.5 (4)
C8—C9—C10—C1155.1 (3)O3'—C20—C21'—C22148.9 (15)
C1—C10—C11—C12179.3 (2)O3—C20—C21'—C22129.9 (17)
C9—C10—C11—C1255.7 (3)C17—C20—C21'—C2224 (2)
C8—N2—C12—C1155.1 (3)C21—C20—C21'—C2262.1 (14)
C13—N2—C12—C11179.6 (2)C20—C21—C22—C21'49.6 (12)
C10—C11—C12—N256.7 (3)C20—C21—C22—C2366.4 (4)
C12—N2—C13—C14163.5 (2)C20—C21'—C22—C2169.2 (16)
C8—N2—C13—C1472.8 (3)C20—C21'—C22—C2313 (2)
N2—C13—C14—C15167.7 (2)C21—C22—C23—N343.2 (4)
C13—C14—C15—C1889.9 (3)C21'—C22—C23—N33.9 (12)
C13—C14—C15—C1687.4 (3)C17—N3—C23—C228.4 (4)
C17—N3—C16—O2179.7 (2)C16—N3—C23—C22172.7 (3)
C23—N3—C16—O21.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.911.942.823 (18)164
N2—H2···O50.912.153.028 (12)161
N2—H2···O60.912.232.999 (9)142
N2—H2···N50.912.563.465 (3)170
N2—H2···O50.912.583.36 (3)144
O3—H3···N1i0.822.303.117 (18)169
O3—H3···O5i0.822.112.915 (12)168
O3—H3···O4i0.822.273.064 (19)163
O3—H3···O6i0.822.302.93 (4)134
O3—H3···O4i0.822.603.187 (16)130
O3—H3···N5i0.822.673.423 (4)153
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H29FN4O3+·NO3
Mr490.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3642 (8), 22.032 (2), 12.4485 (13)
β (°) 92.311 (3)
V3)2292.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.24
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.968, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
23571, 5234, 2824
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.178, 1.06
No. of reflections5234
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.45

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4'0.911.942.823 (18)164
N2—H2···O50.912.153.028 (12)161
N2—H2···O60.912.232.999 (9)142
N2—H2···N50.912.563.465 (3)170
N2—H2···O5'0.912.583.36 (3)144
O3'—H3'···N1i0.822.303.117 (18)169
O3—H3···O5i0.822.112.915 (12)168
O3—H3···O4'i0.822.273.064 (19)163
O3—H3···O6'i0.822.302.93 (4)134
O3—H3···O4i0.822.603.187 (16)130
O3—H3···N5i0.822.673.423 (4)153
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Jiangsu Innovation Fund (SBY201220255).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLuo, Y. H., Ma, Y. T., Bao, Q. Q. & Sun, B. W. (2012). J. Chem. Crystallogr. 42, 628–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpina, E. & Crupi, R. (2011). J. Cent. Nerv. Syst. Dis. 3, 27–41.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds