organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,2′Z)-Di­ethyl 3,3′-[butane-1,4-diylbis(aza­nedi­yl)]bis­­(but-2-enoate)

aEquipe de Chimie de Coordination, Faculté des Sciences Semlalia, BP 2390, Marrakech, Morocco, and bInstitute of Physics, University of Neuchâtel, 2000 Neuchâtel, Switzerland
*Correspondence e-mail: lafirdoussi@hotmail.com

(Received 25 July 2012; accepted 25 August 2012; online 5 September 2012)

The whole mol­ecule of the title β-enamino­ester, C16H28N2O4, is generated by a crystallographic inversion center, situated at the mid-point of the central C—C bond of the 1,4-diamino­butane segment. There are two intra­molecular N—H⋯O hydrogen bonds that generate S(6) ring motifs. This leads to the Z conformation about the C=C bonds [1.3756 (17) Å]. The mol­ecule is S-shaped with the planar central 1,4-diamino­butane segment [maximum deviation for non H-atoms = 0.0058 (13) Å] being inclined to the ethyl butyl­enonate fragment [C—C—O—C—C=C—C; maximum deviation = 0.0710 (12) Å] by 15.56 (10)°. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, leading to the formation of an undulating two-dimensional network lying parallel to the bc plane.

Related literature

For general background to the use of β-enamino esters as precursors in organic synthesis, see: Eddington et al. (2000[Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, K. R. (2000). Curr. Med. Chem. 7, 417-436.]); Palmieri & Cimarelli (1996[Palmieri, G. & Cimarelli, C. (1996). J. Org. Chem. 61, 5557-5563.]); Zhang & Hu (2006[Zhang, Z.-H. & Hu, J. Y. (2006). J. Braz. Chem. Soc. 17, 1447-1451.]). For the synthesis of β-enamino esters, see: Harrad et al. (2010[Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442-446.]); Hegde & Jones (1993[Hegde, S. G. & Jones, C. R. (1993). J. Heterocycl. Chem. 30, 1501-1508.]); Lue & Greenhill (1997[Lue, P. & Greenhill, J. V. (1997). Adv. Heterocycl. Chem. 67, 207-343.]); Katritzky et al. (2004[Katritzky, A. R., Hayden, A. E., Kirichenko, K., Pelphrey, P. & Ji, J. (2004). J. Org. Chem. 69, 5108-5111.]); Bartoli et al. (1995[Bartoli, G., Cimarelli, C., Dalpozzo, R. & Palmieri, G. (1995). Tetrahedron, 51, 8613-8622.]); Reddy et al. (2005[Reddy, D. S., Rajale, T. V., Shivakumar, R. K. & Iqbal, J. (2005). Tetrahedron Lett. 46, 979-982.]). For the structure of related compounds, see: Harrad et al. (2011a[Harrad, M. A., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011a). Acta Cryst. E67, o1269-o1270.],b[Harrad, M. A., Boualy, B., Oudahmane, A., Avignant, D. & Rizzoli, C. (2011b). Acta Cryst. E67, o1818.]); Amézquita-Valencia et al. (2009[Amézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A., Toscano, R. A. & Cabrera, A. (2009). Acta Cryst. E65, o2728.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H28N2O4

  • Mr = 312.40

  • Monoclinic, P 21 /c

  • a = 5.7624 (5) Å

  • b = 13.1329 (8) Å

  • c = 11.7601 (9) Å

  • β = 98.547 (6)°

  • V = 880.09 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 133 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.679, Tmax = 1.000

  • 9379 measured reflections

  • 1661 independent reflections

  • 1392 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.04

  • 1661 reflections

  • 107 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.880 (16) 2.000 (16) 2.7099 (14) 136.9 (13)
C8—H8C⋯O2i 0.98 2.51 3.4697 (16) 167
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

β-Enamino esters are useful precursors for the preparation of biologically active compounds such as β-amino acids and γ-amino alcohols (Eddington et al., 2000; Palmieri & Cimarelli, 1996; Zhang & Hu, 2006). Many synthetic methods have been developed for the preparation of these compounds (Harrad et al., 2010, 2011a,b; Hegde & Jones, 1993; Lue & Greenhill, 1997; Katritzky et al., 2004; Bartoli et al., 1995; Reddy et al., 2005). As part of our ongoing program focused on developing new methodologies for the synthesis of β-enamino compounds, we report herein on the synthesis and crystal structure of the title compound, a new β-di-enamino-di-ester.

The tile compound was prepared by condensation of ethyl 3-oxobutanoate with 1,4-diaminobutane using a catalytic amount of Ca(CF3COO)2 under solvent-free conditions according to the procedure we have previously described (Harrad et al., 2010). The β-enaminoester was typically characterized by 1H, 13C NMR, IR and mass spectroscopy. The characteristic broad singlet for the amine proton appears at 8.50 p.p.m., the singlet corresponding to the proton of the double bond at 4.29 p.p.m. The triplet and the quartet for the ethyl moiety appeared at 1.11 and 3.98 p.p.m., respectively.

The molecular structure of the title molecule is illustrated in Fig. 1. It possesses a crystallographic inversion center situated at the middle of the central C7—C7a bond of the 1,4-diaminobutane segment [symmetry code: (a) = -x, -y, -z]. The bond distances and angles are normal and similar to those in related compounds (Harrad et al., 2011a,b; Amézquita-Valencia et al., 2009). There are two intramolecular N—H···O hydrogen bonds (Table 1), that generate S(6) ring motifs (Bernstein et al., 1995). This leads to the Z conformation about the C4C5 and C4aC5a bonds (Fig. 1).

In the crystal, molecules are linked via C—H···O interactions leading to the formation of an undulating two-dimensional network that lies parallel to the bc plane (Table 1 and Fig. 2).

Related literature top

For general background to the use of β-enamino esters as precursors in organic synthesis, see: Eddington et al. (2000); Palmieri & Cimarelli (1996); Zhang & Hu (2006). For the synthesis of β-enamino esters, see: Harrad et al. (2010); Hegde & Jones (1993); Lue & Greenhill (1997); Katritzky et al. (2004); Bartoli et al. (1995); Reddy et al. (2005). For the structure of related compounds, see: Harrad et al. (2011a,b); Amézquita-Valencia et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

In a typical experiment 1.0 mmol of Ethyl acetoacetate, 0.5 mmol of 1,4-diaminobutane and 0.1 mmol of Ca(CF3COO)2 were stirred at room temperature for 30 min under solvent free conditions. At the end of the reaction, 10 ml of distilled water was added to the residue and it was extracted with diethyl ether (3 × 25 ml). The organic layer was dried over Na2SO4. The solvent was removed under reduced pressure, and pure β-enaminone was obtained by column chromatography over silica gel using hexane/ethyl acetate (5:95, v/v) as colourless block-like crystals on slow evaporation of the solvents [Yield 78%; M.p.: 435 - 437 K]. Spectroscopic data for the title compound: FT—IR (KBr, cm-1): 1655, 1607. 1H RMN (300 MHz, CDCl3) = 1.11 (t, J = 7.2 Hz, 6H, CH3—CH2—O), 1.56 (m, 4H, CH2—CH2—NH), 1.81 (s, 6H, CH3—CCH), 3.16 (m, 4H, CH2—CH2—NH), 3.98 (q, J = 7.2 Hz, 4H, CH3—CH2—O), 4.29 (s, 2H, CH3—CCH), 8.50 (br s, 1H, NH); 13C RMN (75 MHz, CDCl3) = 169.99 (–CO), 160.78 (–C), 82.50 (–CH), 57.72 (O—CH2), 42.52 (CH2—NH), 27.84(CH2—C), 18.92 (CH3—C), 14.48 (CH3—C—O). MS (EI, 70 eV): m/z = 312 [M+].

Refinement top

All the H-atoms were located in a difference Fourier map. In the final cycles of refinement the NH H-atom was freely refined, while the C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 0.99 and 0.98 Å for CH(allyl), CH2 and CH3, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for all other H-atoms.

Structure description top

β-Enamino esters are useful precursors for the preparation of biologically active compounds such as β-amino acids and γ-amino alcohols (Eddington et al., 2000; Palmieri & Cimarelli, 1996; Zhang & Hu, 2006). Many synthetic methods have been developed for the preparation of these compounds (Harrad et al., 2010, 2011a,b; Hegde & Jones, 1993; Lue & Greenhill, 1997; Katritzky et al., 2004; Bartoli et al., 1995; Reddy et al., 2005). As part of our ongoing program focused on developing new methodologies for the synthesis of β-enamino compounds, we report herein on the synthesis and crystal structure of the title compound, a new β-di-enamino-di-ester.

The tile compound was prepared by condensation of ethyl 3-oxobutanoate with 1,4-diaminobutane using a catalytic amount of Ca(CF3COO)2 under solvent-free conditions according to the procedure we have previously described (Harrad et al., 2010). The β-enaminoester was typically characterized by 1H, 13C NMR, IR and mass spectroscopy. The characteristic broad singlet for the amine proton appears at 8.50 p.p.m., the singlet corresponding to the proton of the double bond at 4.29 p.p.m. The triplet and the quartet for the ethyl moiety appeared at 1.11 and 3.98 p.p.m., respectively.

The molecular structure of the title molecule is illustrated in Fig. 1. It possesses a crystallographic inversion center situated at the middle of the central C7—C7a bond of the 1,4-diaminobutane segment [symmetry code: (a) = -x, -y, -z]. The bond distances and angles are normal and similar to those in related compounds (Harrad et al., 2011a,b; Amézquita-Valencia et al., 2009). There are two intramolecular N—H···O hydrogen bonds (Table 1), that generate S(6) ring motifs (Bernstein et al., 1995). This leads to the Z conformation about the C4C5 and C4aC5a bonds (Fig. 1).

In the crystal, molecules are linked via C—H···O interactions leading to the formation of an undulating two-dimensional network that lies parallel to the bc plane (Table 1 and Fig. 2).

For general background to the use of β-enamino esters as precursors in organic synthesis, see: Eddington et al. (2000); Palmieri & Cimarelli (1996); Zhang & Hu (2006). For the synthesis of β-enamino esters, see: Harrad et al. (2010); Hegde & Jones (1993); Lue & Greenhill (1997); Katritzky et al. (2004); Bartoli et al. (1995); Reddy et al. (2005). For the structure of related compounds, see: Harrad et al. (2011a,b); Amézquita-Valencia et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom numbering. The displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) = -x, -y, -z].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the N—H···O and C—H···O hydrogen bonds as dashed cyan lines.
(2Z,2'Z)-Diethyl 3,3'-[butane-1,4-diylbis(azanediyl)]bis(but-2-enoate) top
Crystal data top
C16H28N2O4F(000) = 340
Mr = 312.40Dx = 1.179 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8450 reflections
a = 5.7624 (5) Åθ = 2.3–26.2°
b = 13.1329 (8) ŵ = 0.08 mm1
c = 11.7601 (9) ÅT = 133 K
β = 98.547 (6)°Block, colourless
V = 880.09 (12) Å30.45 × 0.40 × 0.30 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
1661 independent reflections
Radiation source: fine-focus sealed tube1392 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.052
φ + ω scansθmax = 25.7°, θmin = 2.3°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 77
Tmin = 0.679, Tmax = 1.000k = 1415
9379 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.1872P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1661 reflectionsΔρmax = 0.15 e Å3
107 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C16H28N2O4V = 880.09 (12) Å3
Mr = 312.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.7624 (5) ŵ = 0.08 mm1
b = 13.1329 (8) ÅT = 133 K
c = 11.7601 (9) Å0.45 × 0.40 × 0.30 mm
β = 98.547 (6)°
Data collection top
Stoe IPDS 2
diffractometer
1661 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
1392 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.052
9379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
1661 reflectionsΔρmin = 0.14 e Å3
107 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The NH H-atom was located in a difference electron-density map and freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 0.99 and 0.98, Å for CH(allyl), CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93675 (15)0.33513 (7)0.19771 (7)0.0277 (3)
O20.72096 (15)0.23004 (7)0.07166 (7)0.0282 (3)
N10.37954 (19)0.12458 (8)0.15569 (9)0.0252 (3)
C11.2379 (2)0.44490 (11)0.15191 (13)0.0358 (4)
C21.0631 (2)0.36486 (10)0.10551 (12)0.0312 (4)
C30.7649 (2)0.26399 (9)0.17015 (10)0.0231 (3)
C40.6507 (2)0.23715 (9)0.26565 (10)0.0237 (3)
C50.4629 (2)0.17140 (9)0.25516 (10)0.0231 (3)
C60.1806 (2)0.05468 (10)0.13799 (11)0.0274 (4)
C70.1049 (2)0.03591 (10)0.01049 (11)0.0277 (4)
C80.3384 (2)0.15152 (11)0.35620 (11)0.0299 (4)
H1A1.154600.505100.174100.0540*
H1B1.332900.463700.092600.0540*
H1C1.340100.418200.219300.0540*
H1N0.458 (3)0.1381 (11)0.0988 (13)0.033 (4)*
H2A0.953000.392300.040100.0370*
H2B1.144800.305300.078300.0370*
H40.706200.265700.338900.0280*
H6A0.048100.083900.171900.0330*
H6B0.225100.010700.177200.0330*
H7A0.237400.006100.023000.0330*
H7B0.063000.101600.028600.0330*
H8A0.320400.077900.365700.0450*
H8B0.183300.183700.343100.0450*
H8C0.430200.179900.425800.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0308 (5)0.0273 (5)0.0257 (5)0.0067 (4)0.0069 (4)0.0027 (4)
O20.0339 (5)0.0306 (5)0.0198 (4)0.0040 (4)0.0030 (4)0.0016 (4)
N10.0257 (6)0.0282 (6)0.0215 (5)0.0047 (4)0.0026 (4)0.0014 (4)
C10.0339 (7)0.0320 (8)0.0439 (8)0.0050 (6)0.0133 (6)0.0005 (6)
C20.0361 (7)0.0287 (7)0.0305 (7)0.0037 (6)0.0110 (6)0.0022 (5)
C30.0240 (6)0.0198 (6)0.0242 (6)0.0023 (5)0.0002 (5)0.0004 (5)
C40.0262 (6)0.0251 (6)0.0191 (6)0.0005 (5)0.0008 (5)0.0028 (5)
C50.0242 (6)0.0232 (6)0.0211 (6)0.0044 (5)0.0006 (5)0.0007 (5)
C60.0270 (6)0.0273 (7)0.0266 (7)0.0049 (5)0.0002 (5)0.0000 (5)
C70.0280 (6)0.0275 (7)0.0269 (7)0.0034 (5)0.0016 (5)0.0034 (5)
C80.0277 (7)0.0375 (7)0.0242 (7)0.0025 (6)0.0033 (5)0.0004 (5)
Geometric parameters (Å, º) top
O1—C21.4467 (16)C1—H1B0.9800
O1—C31.3650 (15)C1—H1C0.9800
O2—C31.2318 (14)C2—H2A0.9900
N1—C51.3454 (16)C2—H2B0.9900
N1—C61.4592 (16)C4—H40.9500
N1—H1N0.880 (16)C6—H6A0.9900
C1—C21.5013 (19)C6—H6B0.9900
C3—C41.4277 (17)C7—H7A0.9900
C4—C51.3756 (17)C7—H7B0.9900
C5—C81.4994 (17)C8—H8A0.9800
C6—C71.5182 (18)C8—H8B0.9800
C7—C7i1.5243 (17)C8—H8C0.9800
C1—H1A0.9800
C2—O1—C3115.78 (9)C1—C2—H2A110.00
C5—N1—C6125.66 (11)C1—C2—H2B110.00
C5—N1—H1N114.3 (10)H2A—C2—H2B108.00
C6—N1—H1N120.0 (10)C3—C4—H4119.00
O1—C2—C1107.56 (11)C5—C4—H4119.00
O1—C3—C4112.65 (10)N1—C6—H6A110.00
O1—C3—O2120.77 (10)N1—C6—H6B110.00
O2—C3—C4126.58 (11)C7—C6—H6A110.00
C3—C4—C5122.20 (11)C7—C6—H6B110.00
N1—C5—C8117.28 (11)H6A—C6—H6B108.00
N1—C5—C4122.64 (11)C6—C7—H7A109.00
C4—C5—C8120.06 (11)C6—C7—H7B109.00
N1—C6—C7110.33 (10)H7A—C7—H7B108.00
C6—C7—C7i111.40 (10)C7i—C7—H7A109.00
C2—C1—H1A109.00C7i—C7—H7B109.00
C2—C1—H1B109.00C5—C8—H8A109.00
C2—C1—H1C109.00C5—C8—H8B109.00
H1A—C1—H1B109.00C5—C8—H8C109.00
H1A—C1—H1C109.00H8A—C8—H8B109.00
H1B—C1—H1C109.00H8A—C8—H8C109.00
O1—C2—H2A110.00H8B—C8—H8C110.00
O1—C2—H2B110.00
C3—O1—C2—C1178.47 (10)O1—C3—C4—C5176.01 (11)
C2—O1—C3—O21.34 (16)O2—C3—C4—C53.6 (2)
C2—O1—C3—C4179.00 (10)C3—C4—C5—N12.77 (19)
C6—N1—C5—C4179.53 (11)C3—C4—C5—C8175.62 (11)
C6—N1—C5—C81.09 (18)N1—C6—C7—C7i179.28 (10)
C5—N1—C6—C7167.36 (11)C6—C7—C7i—C6i179.97 (16)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.880 (16)2.000 (16)2.7099 (14)136.9 (13)
C8—H8C···O2ii0.982.513.4697 (16)167
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H28N2O4
Mr312.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)5.7624 (5), 13.1329 (8), 11.7601 (9)
β (°) 98.547 (6)
V3)880.09 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerStoe IPDS 2
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.679, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9379, 1661, 1392
Rint0.052
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.04
No. of reflections1661
No. of parameters107
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.880 (16)2.000 (16)2.7099 (14)136.9 (13)
C8—H8C···O2i0.982.513.4697 (16)167
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

HSE thanks the XRD Application Laboratory of the CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAmézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A., Toscano, R. A. & Cabrera, A. (2009). Acta Cryst. E65, o2728.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBartoli, G., Cimarelli, C., Dalpozzo, R. & Palmieri, G. (1995). Tetrahedron, 51, 8613–8622.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, K. R. (2000). Curr. Med. Chem. 7, 417–436.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrad, M. A., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011a). Acta Cryst. E67, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrad, M. A., Boualy, B., Oudahmane, A., Avignant, D. & Rizzoli, C. (2011b). Acta Cryst. E67, o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.  Web of Science CrossRef CAS Google Scholar
First citationHegde, S. G. & Jones, C. R. (1993). J. Heterocycl. Chem. 30, 1501–1508.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Hayden, A. E., Kirichenko, K., Pelphrey, P. & Ji, J. (2004). J. Org. Chem. 69, 5108–5111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLue, P. & Greenhill, J. V. (1997). Adv. Heterocycl. Chem. 67, 207–343.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalmieri, G. & Cimarelli, C. (1996). J. Org. Chem. 61, 5557–5563.  Google Scholar
First citationReddy, D. S., Rajale, T. V., Shivakumar, R. K. & Iqbal, J. (2005). Tetrahedron Lett. 46, 979–982.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-H. & Hu, J. Y. (2006). J. Braz. Chem. Soc. 17, 1447–1451.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds