metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(pyridine-κN)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)cobalt(III) chloro­form hemisolvate

aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Norbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 8 June 2012; accepted 17 July 2012; online 25 July 2012)

In the title complex, [CoCl(C44H28N4)(C5H5N)]·0.5CHCl3 or [CoIII(TPP)Cl(py)]·0.5CHCl3 (where TPP is the dianion of tetra­phenyl­porphyrin and py is pyridine), the average equatorial cobalt–pyrrole N atom bond length (Co—Np) is 1.958 (7) Å and the axial Co—Cl and Co—Npy distances are 2.2339 (6) and 1.9898 (17) Å, respectively. The tetra­phenyl­porphyrinate dianion exhibits an important nonplanar conformation with major ruffling and saddling distortions. In the crystal, mol­ecules are linked via weak C—H⋯π inter­actions. In the difference Fourier map, a region of highly disordered electron density was estimated using the SQUEEZE routine [PLATON; Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Acta Cryst. D65, 148–155] to be equivalent to one half-mol­ecule of CHCl3 per mol­ecule of the complex.

Related literature

For general background on cobalt porphyrin species and their applications, see: Sanders et al. (2000[Sanders, J. K. M., Bampos, N., Clyde-Watson, Z., Kim, H.-J., Mak, C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-40. San Diego: Academic Press. ]). For the synthesis of Co(II) tetra­phenyl­porphyrin, see: Madure & Scheidt (1976[Madure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182-3184.]). For metalloporphyrins used as biomimetic models for haemoproteines, see: Dhifet et al. (2010[Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208-3213.]); Mansour et al. (2010[Mansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509-m510.]). For the structures of related compounds, see: Ali et al. (2011[Ali, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39-46.]); Goodwin et al. (2001[Goodwin, J., Bailey, R., Pennington, W., Green, T., Shaasho, S., Yongsavanh, M., Echevarria, V., Tiedeken, J., Brown, C., Fromm, G., Lyerly, S., Watson, N., Long, A. & De Nitto, N. (2001). Inorg. Chem. 40, 4217-4225.]); Hodgson et al. (2002[Hodgson, M. C., Burrell, A. K., Boyd, P. D. W., Brothers, P. J. & Rickard, C. E. F. (2002). J. Porphyrins Phthalocyanines, 6, 737-747.]); Iimuna et al. (1988[Iimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821-826.]); Jentzen et al. (1997[Jentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]); Konarev et al. (2003[Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837-3848.]); Mikolaiski et al. (1989[Mikolaiski, W., Baum, G., Massa, W. & Hoffmann, R. W. (1989). J. Organomet. Chem. 376, 397-404.]); Sakurai et al. (1976[Sakurai, T., Yamamoto, K., Naito, H. & Nakamoto, N. (1976). Bull. Chem. Soc. Jpn, 49, 3042-3046.]); Shirazi & Goff (1982[Shirazi, A. & Goff, H. M. (1982). Inorg. Chem. 21, 3080-3425.]); Toronto et al. (1998[Toronto, D., Sarrazin, F., Marchon, J.-C., Shang, M. & Scheidt, W. R. (1998). Inorg. Chem. 37, 525-532.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For details of the SQUEEZE routine in PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C44H28N4)(C5H5N)]·0.5CHCl3

  • Mr = 845.90

  • Monoclinic, P 21 /n

  • a = 13.0467 (3) Å

  • b = 23.4240 (7) Å

  • c = 14.3264 (5) Å

  • β = 103.541 (3)°

  • V = 4256.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 180 K

  • 0.45 × 0.37 × 0.36 mm

Data collection
  • Oxford Xcalibur Sapphire2 diffractometer with a large Be window

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.802, Tmax = 0.804

  • 43618 measured reflections

  • 8690 independent reflections

  • 7213 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.07

  • 8690 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg6, Cg9, Cg11 and Cg12 are the centroids of the N2/C6–C9, N3/C11–C14, Co/N1/C4–C6/N2, N5/C45–C49, C27–C32 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cg3i 0.95 2.79 3.543 (3) 137
C28—H28⋯Cg9ii 0.95 2.79 3.735 (3) 172
C35—H35⋯Cg2iii 0.95 2.87 3.736 (2) 152
C38—H38⋯Cg11iv 0.95 2.98 3.861 (3) 156
C42—H42⋯Cg12v 0.95 2.75 3.574 (3) 146
C49—H49⋯Cg6 0.95 2.35 2.931 (3) 119
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a systematic investigation of metalloporphyrins used as biomimetic models for hemoproteines, several iron and cobalt porphyrin complexes has been characterized by our group (Dhifet et al., 2010; Mansour et al., 2010). Cobalt porphyrin species and their applications have been discussed by (Sanders et al., 2000). The chlorido cobalt(III) porphyrin derivative [CoIII(TPP)Cl] (TPP is the dianion of the tetraphenylporphyrin) has been known for many decades (Sakurai et al., 1976) but to the best of our knowledge no crystal structure of a mono or dichlorido Co(III) metalloporphyrin is reported to date. This is also the case for mono-pyridine or bis-pyridine Co(III) porphyrins. A search of Cambridge Structural Database (CSD, version 5.31; Allen, 2002) reveals: (i) only two mixed-axial ligands Cl–Co(III)–X (X = H2O or EtOH) porphyrin structures; (CSD refcodes GAMTAP; Iimuna et al., 1988 and PUCNUW; Toronto et al., 1998, respectively), (ii) three mixed-axial ligands py–Co(III)–L (L is a monodentate ligand) porphyrin derivatives: the [CoIII(TpivPP)Br(py)] (refcode LANTIE; Hodgson et al., 2002), the [CoIII(TPP)(NO2)(py)] (refcode YEQMIQ; Goodwin et al., 2001) and the [CoIII(TPP)(py)(C3H5O2)] (refcode KEBMIN; Mikolaiski et al., 1989).

Concerning the 1H NMR of cobalt metalloporphyrins, it has been noticed that the paramagnetic starting material [CoII(TPP)] species (with the ground state configuration 3d7) presents down-field chemical shifts of the Hβ-pyrrole protons [Hβ-pyrr = 15.75 p.p.m.]. For the diamagnetic cobalt(III) porphyrin derivatives (with the ground state configuration 3d6), the β-pyrrole protons resonate in the normal regions of the free base TPP porphyrin [8.1 p.p.m. < δ(Hβ-pyrr) < 9.4 p.p.m.] (Shirazi Goff, 1982). Complex (I) presents a peak at 9.13 p.p.m. attributed to the β-pyrr protons, which is an indication that our derivative is a diamagnetic cobalt(III) meso-porphyrin species.

We report herein on the molecular structure of the title compound, a mixed-ligand py–Co(III)–Cl tetraphenylporphyrin species [CoIII(TPP)Cl(py)]. In this complex, the cobalt is coordinated to the four N atoms of the porphyrin ring, the chloride ion and the nitrogen atom of the pyridine axial ligand (Fig. 1). The axial Co—Cl bond length [2.2339 (6) Å] is similar to those in the two related species: [CoIII(TPP)Cl(H2O)] [Co—Cl = 2.216 (1) Å] and [CoIII(TMCP)Cl(OHCH2CH3)] (TMCP is the αβαβ-tetra-methylchiroporphyrin) [Co—Cl = 2.211 (2) Å] complexes. The Co—Np distance [1.989 (2) Å] is slightly shorter than those of the three related derivatives [CoIII(Porph)(L)(py)] where L = Br, C3H5O2 and NO2 [2.00 (2)–2.043 (7) Å]. It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co—Np distance; the porphyrinato core is ruffled as the Co—Np distance decreases (Iimuna et al., 1988). Thus, for the very ruffled structure [CoII(TPP)] (Konarev et al., 2003) the Co—Np bond length value is 1.923 (4) Å while the practically planar porphyrin core of the ion complex [CoIII(OEP)(NO2)2]- (OEP is the octaethylporphyrin; Ali et al., 2011) presents a Co—Np distance of 1.988 (2) Å. Therefore, the Co—Np distance in the title complex [1.958 (2) Å] is normal for a cobalt ruffled TPP species. On the other hand Normal Structural Decomposition (NSD) calculations (Jentzen et al., 1997) confirm the unusually important deformation of the porphyrin core with a major ruffling and saddling distortions of 52% and 39%, respectively.

The crystal packing is stabilized by weak C—H······π interactions (Table 1 and Fig. 2).

Related literature top

For general background on cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For metalloporphyrins used as biomimetic models for haemoproteines, see: Dhifet et al. (2010); Mansour et al. (2010). For the structures of related compounds, see: Ali et al. (2011); Goodwin et al. (2001); Hodgson et al. (2002); Iimuna et al. (1988); Jentzen et al. (1997); Konarev et al. (2003); Mikolaiski et al. (1989); Sakurai et al. (1976); Shirazi & Goff (1982); Toronto et al. (1998). For the Cambridge Structural Database, see: Allen (2002). For details of the SQUEEZE routine in PLATON, see: Spek (2009).

Experimental top

[CoII(TPP)] (100 mg, 0.149 mmol) (Madure & Scheidt 1976) and (150 mg, 1.441 mmol) of NaHSO3 and (18 ml, 0.223 mmol) of pyridine in 25 ml of chloroform were stirred overnight at room temperature. The color of the solution turns from red–orange to dark–red and the final product is the title complex [CoIII(TPP)Cl(py)].0.5(CHCl3). This means that the NaHSO3 reagent did not react with [CoII(TPP)] and that the Cl- anion comes from the chlorinated solvent. This is expected given the high affinity of chloride for the cobalt ion. Crystals of the title compound were grown by diffusion of hexanes into a chloroform solution of the title compound.

Refinement top

Hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2 Ueq(C). In a final difference Fourier map highly disordered electron density occupying two cavities of ca 389 Å3 each was observed. This residual electron density was difficult to model and therefore, the SQUEEZE routine in PLATON (Spek, 2009) was used to eliminate this contribution of the electron density in the solvent region from the intensity data. The solvent-free model was employed for the final refinement. It was estimated that each cavity contains 59 electrons which corresponds to a solvent molecule of chloroform as suggested by chemical analysis, or half a molecule of CHCl3 per molecule of complex.

Structure description top

As part of a systematic investigation of metalloporphyrins used as biomimetic models for hemoproteines, several iron and cobalt porphyrin complexes has been characterized by our group (Dhifet et al., 2010; Mansour et al., 2010). Cobalt porphyrin species and their applications have been discussed by (Sanders et al., 2000). The chlorido cobalt(III) porphyrin derivative [CoIII(TPP)Cl] (TPP is the dianion of the tetraphenylporphyrin) has been known for many decades (Sakurai et al., 1976) but to the best of our knowledge no crystal structure of a mono or dichlorido Co(III) metalloporphyrin is reported to date. This is also the case for mono-pyridine or bis-pyridine Co(III) porphyrins. A search of Cambridge Structural Database (CSD, version 5.31; Allen, 2002) reveals: (i) only two mixed-axial ligands Cl–Co(III)–X (X = H2O or EtOH) porphyrin structures; (CSD refcodes GAMTAP; Iimuna et al., 1988 and PUCNUW; Toronto et al., 1998, respectively), (ii) three mixed-axial ligands py–Co(III)–L (L is a monodentate ligand) porphyrin derivatives: the [CoIII(TpivPP)Br(py)] (refcode LANTIE; Hodgson et al., 2002), the [CoIII(TPP)(NO2)(py)] (refcode YEQMIQ; Goodwin et al., 2001) and the [CoIII(TPP)(py)(C3H5O2)] (refcode KEBMIN; Mikolaiski et al., 1989).

Concerning the 1H NMR of cobalt metalloporphyrins, it has been noticed that the paramagnetic starting material [CoII(TPP)] species (with the ground state configuration 3d7) presents down-field chemical shifts of the Hβ-pyrrole protons [Hβ-pyrr = 15.75 p.p.m.]. For the diamagnetic cobalt(III) porphyrin derivatives (with the ground state configuration 3d6), the β-pyrrole protons resonate in the normal regions of the free base TPP porphyrin [8.1 p.p.m. < δ(Hβ-pyrr) < 9.4 p.p.m.] (Shirazi Goff, 1982). Complex (I) presents a peak at 9.13 p.p.m. attributed to the β-pyrr protons, which is an indication that our derivative is a diamagnetic cobalt(III) meso-porphyrin species.

We report herein on the molecular structure of the title compound, a mixed-ligand py–Co(III)–Cl tetraphenylporphyrin species [CoIII(TPP)Cl(py)]. In this complex, the cobalt is coordinated to the four N atoms of the porphyrin ring, the chloride ion and the nitrogen atom of the pyridine axial ligand (Fig. 1). The axial Co—Cl bond length [2.2339 (6) Å] is similar to those in the two related species: [CoIII(TPP)Cl(H2O)] [Co—Cl = 2.216 (1) Å] and [CoIII(TMCP)Cl(OHCH2CH3)] (TMCP is the αβαβ-tetra-methylchiroporphyrin) [Co—Cl = 2.211 (2) Å] complexes. The Co—Np distance [1.989 (2) Å] is slightly shorter than those of the three related derivatives [CoIII(Porph)(L)(py)] where L = Br, C3H5O2 and NO2 [2.00 (2)–2.043 (7) Å]. It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co—Np distance; the porphyrinato core is ruffled as the Co—Np distance decreases (Iimuna et al., 1988). Thus, for the very ruffled structure [CoII(TPP)] (Konarev et al., 2003) the Co—Np bond length value is 1.923 (4) Å while the practically planar porphyrin core of the ion complex [CoIII(OEP)(NO2)2]- (OEP is the octaethylporphyrin; Ali et al., 2011) presents a Co—Np distance of 1.988 (2) Å. Therefore, the Co—Np distance in the title complex [1.958 (2) Å] is normal for a cobalt ruffled TPP species. On the other hand Normal Structural Decomposition (NSD) calculations (Jentzen et al., 1997) confirm the unusually important deformation of the porphyrin core with a major ruffling and saddling distortions of 52% and 39%, respectively.

The crystal packing is stabilized by weak C—H······π interactions (Table 1 and Fig. 2).

For general background on cobalt porphyrin species and their applications, see: Sanders et al. (2000). For the synthesis of Co(II) tetraphenylporphyrin, see: Madure & Scheidt (1976). For metalloporphyrins used as biomimetic models for haemoproteines, see: Dhifet et al. (2010); Mansour et al. (2010). For the structures of related compounds, see: Ali et al. (2011); Goodwin et al. (2001); Hodgson et al. (2002); Iimuna et al. (1988); Jentzen et al. (1997); Konarev et al. (2003); Mikolaiski et al. (1989); Sakurai et al. (1976); Shirazi & Goff (1982); Toronto et al. (1998). For the Cambridge Structural Database, see: Allen (2002). For details of the SQUEEZE routine in PLATON, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 50% and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view perpendicular to (101) of the crystal packing of the title compound. The H atoms have been omitted for clarity.
Chlorido(pyridine-κN)(5,10,15,20-tetraphenylporphyrinato- κ4N)cobalt(III) chloroform hemisolvate top
Crystal data top
[CoCl(C44H28N4)(C5H5N)]·0.5CHCl3F(000) = 1740
Mr = 845.90Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25194 reflections
a = 13.0467 (3) Åθ = 3.0–26.4°
b = 23.4240 (7) ŵ = 0.60 mm1
c = 14.3264 (5) ÅT = 180 K
β = 103.541 (3)°Prism, dark purple
V = 4256.5 (2) Å30.45 × 0.37 × 0.36 mm
Z = 4
Data collection top
Oxford Xcalibur Sapphire2
diffractometer with a large Be window
8690 independent reflections
Radiation source: fine-focus sealed tube7213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2929
Tmin = 0.802, Tmax = 0.804l = 1717
43618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 2.0185P]
where P = (Fo2 + 2Fc2)/3
8690 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[CoCl(C44H28N4)(C5H5N)]·0.5CHCl3V = 4256.5 (2) Å3
Mr = 845.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0467 (3) ŵ = 0.60 mm1
b = 23.4240 (7) ÅT = 180 K
c = 14.3264 (5) Å0.45 × 0.37 × 0.36 mm
β = 103.541 (3)°
Data collection top
Oxford Xcalibur Sapphire2
diffractometer with a large Be window
8690 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
7213 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.804Rint = 0.035
43618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
8690 reflectionsΔρmin = 0.37 e Å3
505 parameters
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlisPro; Agilent, 2010).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.653649 (18)0.198422 (10)0.876228 (18)0.01771 (8)
Cl0.57928 (4)0.13891 (2)0.75784 (4)0.02806 (12)
N10.56392 (12)0.26163 (7)0.81419 (12)0.0223 (3)
N20.54701 (12)0.17807 (7)0.94669 (11)0.0206 (3)
N30.74480 (11)0.13656 (7)0.93931 (11)0.0190 (3)
N40.75900 (12)0.21811 (7)0.80496 (12)0.0210 (3)
N50.72264 (13)0.25204 (7)0.97968 (12)0.0235 (3)
C10.59560 (15)0.30730 (8)0.76759 (15)0.0249 (4)
C20.51268 (16)0.34851 (9)0.74310 (17)0.0335 (5)
H20.51560.38410.71210.040*
C30.42995 (17)0.32728 (9)0.77237 (18)0.0352 (5)
H30.36250.34460.76400.042*
C40.46209 (15)0.27343 (9)0.81880 (15)0.0261 (4)
C50.40233 (15)0.24155 (9)0.86779 (16)0.0272 (4)
C60.44397 (15)0.19627 (8)0.92754 (15)0.0233 (4)
C70.38706 (15)0.16393 (9)0.98388 (15)0.0270 (4)
H70.31400.16700.98190.032*
C80.45596 (15)0.12847 (9)1.03985 (15)0.0252 (4)
H80.44140.10281.08650.030*
C100.64470 (14)0.10443 (8)1.05469 (13)0.0205 (4)
C110.73416 (14)0.10587 (8)1.01807 (13)0.0198 (4)
C120.82315 (15)0.06912 (8)1.04972 (14)0.0228 (4)
H120.83630.04511.10470.027*
C130.88449 (15)0.07503 (8)0.98695 (14)0.0230 (4)
H130.94850.05540.98840.028*
C140.83511 (14)0.11654 (8)0.91746 (14)0.0203 (4)
C150.87563 (14)0.13505 (8)0.84102 (14)0.0229 (4)
C160.83825 (14)0.18342 (9)0.78865 (15)0.0238 (4)
C170.88598 (16)0.20959 (10)0.71885 (16)0.0320 (5)
H170.93890.19340.69140.038*
C180.84160 (16)0.26142 (10)0.69963 (16)0.0320 (5)
H180.86030.28970.65900.038*
C190.76113 (15)0.26602 (9)0.75165 (15)0.0249 (4)
C200.69111 (16)0.31156 (9)0.74164 (15)0.0264 (4)
C210.72025 (15)0.36591 (9)0.70021 (17)0.0297 (5)
C220.67501 (19)0.38346 (10)0.60764 (17)0.0353 (5)
H220.62330.36030.56720.042*
C230.7047 (2)0.43488 (10)0.57344 (19)0.0410 (6)
H230.67280.44680.50990.049*
C240.77946 (19)0.46849 (10)0.6304 (2)0.0428 (6)
H240.79900.50380.60700.051*
C250.8261 (2)0.45096 (12)0.7216 (2)0.0551 (8)
H250.87880.47390.76130.066*
C260.7966 (2)0.39973 (12)0.7561 (2)0.0492 (7)
H260.82980.38780.81930.059*
C270.29171 (16)0.25999 (9)0.86365 (18)0.0333 (5)
C280.21741 (17)0.26194 (10)0.7771 (2)0.0399 (6)
H280.23670.25120.71960.048*
C290.11497 (19)0.27942 (11)0.7738 (2)0.0525 (8)
H290.06470.28090.71400.063*
C300.0864 (2)0.29440 (12)0.8556 (3)0.0603 (9)
H300.01590.30590.85290.072*
C310.1585 (2)0.29308 (13)0.9420 (3)0.0613 (9)
H310.13780.30360.99890.074*
C320.2622 (2)0.27640 (11)0.9467 (2)0.0474 (6)
H320.31250.27631.00660.057*
C330.63738 (14)0.06207 (8)1.13095 (14)0.0221 (4)
C340.60805 (16)0.00627 (9)1.10584 (16)0.0287 (4)
H340.60070.00591.04130.034*
C350.58935 (17)0.03197 (9)1.17365 (17)0.0338 (5)
H350.56760.06991.15540.041*
C360.60237 (18)0.01485 (10)1.26792 (17)0.0364 (5)
H360.58840.04071.31450.044*
C370.6355 (2)0.03952 (11)1.29402 (17)0.0397 (6)
H370.64680.05091.35930.048*
C380.65278 (18)0.07817 (10)1.22583 (16)0.0323 (5)
H380.67530.11591.24460.039*
C390.96499 (15)0.10293 (9)0.81744 (15)0.0259 (4)
C400.94875 (18)0.04766 (10)0.78297 (17)0.0348 (5)
H400.88230.02980.77820.042*
C411.0294 (2)0.01821 (11)0.75534 (19)0.0420 (6)
H411.01740.01940.73050.050*
C421.12631 (19)0.04332 (11)0.76376 (18)0.0404 (6)
H421.18090.02330.74400.048*
C431.14398 (18)0.09762 (11)0.80098 (18)0.0388 (6)
H431.21150.11460.80860.047*
C441.06373 (16)0.12744 (10)0.82726 (17)0.0326 (5)
H441.07630.16500.85220.039*
C450.82727 (17)0.25121 (10)1.01486 (17)0.0335 (5)
H450.86770.22310.99190.040*
C460.8785 (2)0.28936 (12)1.08273 (19)0.0456 (6)
H460.95270.28711.10690.055*
C470.8210 (2)0.33068 (12)1.1151 (2)0.0542 (7)
H470.85480.35801.16110.065*
C480.7130 (2)0.33191 (12)1.0799 (2)0.0540 (7)
H480.67130.35991.10170.065*
C490.6669 (2)0.29215 (10)1.01310 (18)0.0380 (5)
H490.59260.29300.98940.046*
C90.55584 (15)0.13662 (8)1.01593 (14)0.0214 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01456 (13)0.01685 (14)0.02065 (14)0.00084 (9)0.00195 (9)0.00394 (10)
Cl0.0259 (2)0.0279 (3)0.0271 (3)0.00221 (19)0.00032 (19)0.0017 (2)
N10.0166 (7)0.0216 (8)0.0276 (9)0.0002 (6)0.0028 (6)0.0048 (7)
N20.0174 (7)0.0200 (8)0.0235 (8)0.0014 (6)0.0031 (6)0.0014 (7)
N30.0159 (7)0.0187 (8)0.0217 (8)0.0000 (6)0.0027 (6)0.0034 (6)
N40.0169 (7)0.0215 (8)0.0236 (8)0.0023 (6)0.0026 (6)0.0066 (7)
N50.0226 (8)0.0202 (8)0.0260 (9)0.0007 (6)0.0023 (7)0.0024 (7)
C10.0221 (9)0.0216 (10)0.0291 (11)0.0028 (7)0.0020 (8)0.0060 (8)
C20.0280 (11)0.0250 (11)0.0480 (14)0.0064 (8)0.0098 (10)0.0139 (10)
C30.0255 (10)0.0281 (12)0.0522 (14)0.0091 (9)0.0093 (10)0.0128 (10)
C40.0180 (9)0.0245 (10)0.0343 (11)0.0047 (8)0.0029 (8)0.0065 (9)
C50.0194 (9)0.0250 (10)0.0367 (12)0.0039 (8)0.0056 (8)0.0050 (9)
C60.0174 (9)0.0236 (10)0.0291 (10)0.0024 (7)0.0056 (8)0.0010 (8)
C70.0207 (9)0.0283 (11)0.0343 (11)0.0010 (8)0.0109 (8)0.0010 (9)
C80.0247 (10)0.0242 (10)0.0289 (11)0.0003 (8)0.0105 (8)0.0024 (8)
C100.0232 (9)0.0185 (9)0.0190 (9)0.0016 (7)0.0032 (7)0.0005 (7)
C110.0195 (9)0.0168 (9)0.0215 (9)0.0009 (7)0.0015 (7)0.0023 (7)
C120.0227 (9)0.0212 (10)0.0224 (10)0.0008 (7)0.0009 (7)0.0060 (8)
C130.0184 (9)0.0207 (10)0.0286 (10)0.0021 (7)0.0026 (8)0.0045 (8)
C140.0162 (8)0.0184 (9)0.0253 (10)0.0006 (7)0.0031 (7)0.0028 (8)
C150.0182 (9)0.0233 (10)0.0269 (10)0.0020 (7)0.0046 (8)0.0046 (8)
C160.0180 (9)0.0259 (10)0.0276 (10)0.0027 (7)0.0054 (8)0.0072 (8)
C170.0255 (10)0.0383 (13)0.0348 (12)0.0085 (9)0.0122 (9)0.0145 (10)
C180.0271 (10)0.0366 (12)0.0342 (12)0.0057 (9)0.0107 (9)0.0176 (10)
C190.0193 (9)0.0267 (11)0.0269 (10)0.0006 (8)0.0019 (8)0.0100 (8)
C200.0239 (10)0.0241 (10)0.0301 (11)0.0012 (8)0.0044 (8)0.0104 (8)
C210.0223 (10)0.0250 (11)0.0426 (13)0.0054 (8)0.0088 (9)0.0136 (9)
C220.0416 (12)0.0276 (11)0.0370 (13)0.0061 (9)0.0097 (10)0.0108 (10)
C230.0517 (14)0.0334 (13)0.0425 (14)0.0108 (11)0.0200 (12)0.0186 (11)
C240.0356 (12)0.0293 (12)0.0700 (18)0.0069 (10)0.0256 (12)0.0217 (12)
C250.0351 (13)0.0434 (15)0.079 (2)0.0141 (11)0.0025 (13)0.0192 (15)
C260.0384 (13)0.0436 (15)0.0570 (17)0.0083 (11)0.0063 (12)0.0244 (13)
C270.0236 (10)0.0251 (11)0.0527 (14)0.0047 (8)0.0123 (10)0.0089 (10)
C280.0230 (10)0.0322 (12)0.0625 (17)0.0016 (9)0.0056 (10)0.0138 (11)
C290.0254 (12)0.0413 (15)0.088 (2)0.0031 (10)0.0074 (13)0.0234 (15)
C300.0276 (13)0.0456 (16)0.111 (3)0.0123 (11)0.0225 (16)0.0168 (17)
C310.0514 (17)0.0533 (18)0.090 (2)0.0129 (14)0.0393 (18)0.0002 (16)
C320.0391 (13)0.0458 (15)0.0619 (18)0.0131 (11)0.0208 (12)0.0046 (13)
C330.0200 (9)0.0228 (10)0.0236 (10)0.0022 (7)0.0055 (7)0.0042 (8)
C340.0314 (11)0.0262 (11)0.0280 (11)0.0021 (8)0.0059 (9)0.0012 (9)
C350.0350 (11)0.0224 (10)0.0452 (13)0.0018 (9)0.0119 (10)0.0069 (10)
C360.0421 (13)0.0334 (12)0.0390 (13)0.0072 (10)0.0204 (11)0.0158 (10)
C370.0562 (15)0.0418 (14)0.0246 (11)0.0057 (11)0.0164 (10)0.0042 (10)
C380.0453 (13)0.0263 (11)0.0277 (11)0.0007 (9)0.0133 (10)0.0017 (9)
C390.0239 (9)0.0275 (11)0.0281 (11)0.0083 (8)0.0097 (8)0.0113 (8)
C400.0327 (11)0.0311 (12)0.0427 (13)0.0032 (9)0.0134 (10)0.0058 (10)
C410.0487 (14)0.0331 (13)0.0472 (15)0.0129 (11)0.0175 (12)0.0027 (11)
C420.0369 (12)0.0470 (15)0.0422 (14)0.0220 (11)0.0192 (10)0.0152 (11)
C430.0253 (11)0.0476 (15)0.0463 (14)0.0098 (10)0.0140 (10)0.0161 (12)
C440.0248 (10)0.0334 (12)0.0402 (13)0.0052 (9)0.0090 (9)0.0091 (10)
C450.0259 (10)0.0345 (12)0.0369 (12)0.0043 (9)0.0007 (9)0.0008 (10)
C460.0356 (13)0.0486 (15)0.0461 (15)0.0126 (11)0.0036 (11)0.0062 (12)
C470.0590 (17)0.0426 (16)0.0528 (17)0.0114 (13)0.0038 (14)0.0149 (13)
C480.0596 (17)0.0450 (16)0.0520 (17)0.0046 (13)0.0018 (13)0.0198 (13)
C490.0392 (13)0.0342 (13)0.0379 (13)0.0034 (10)0.0038 (10)0.0047 (10)
C90.0222 (9)0.0196 (9)0.0230 (10)0.0017 (7)0.0063 (8)0.0003 (8)
Geometric parameters (Å, º) top
Co—N41.9498 (15)C22—H220.9500
Co—N31.9564 (15)C23—C241.365 (4)
Co—N21.9596 (16)C23—H230.9500
Co—N11.9660 (16)C24—C251.369 (4)
Co—N51.9898 (17)C24—H240.9500
Co—Cl2.2339 (6)C25—C261.386 (3)
N1—C41.374 (2)C25—H250.9500
N1—C11.375 (3)C26—H260.9500
N2—C91.373 (2)C27—C281.384 (3)
N2—C61.375 (2)C27—C321.388 (4)
N3—C141.371 (2)C28—C291.388 (3)
N3—C111.372 (2)C28—H280.9500
N4—C191.361 (2)C29—C301.357 (5)
N4—C161.377 (2)C29—H290.9500
N5—C451.340 (3)C30—C311.368 (5)
N5—C491.343 (3)C30—H300.9500
C1—C201.385 (3)C31—C321.395 (4)
C1—C21.431 (3)C31—H310.9500
C2—C31.342 (3)C32—H320.9500
C2—H20.9500C33—C381.379 (3)
C3—C41.442 (3)C33—C341.386 (3)
C3—H30.9500C34—C351.384 (3)
C4—C51.384 (3)C34—H340.9500
C5—C61.391 (3)C35—C361.381 (3)
C5—C271.494 (3)C35—H350.9500
C6—C71.434 (3)C36—C371.368 (3)
C7—C81.343 (3)C36—H360.9500
C7—H70.9500C37—C381.388 (3)
C8—C91.436 (3)C37—H370.9500
C8—H80.9500C38—H380.9500
C10—C91.386 (3)C39—C401.384 (3)
C10—C111.388 (3)C39—C441.387 (3)
C10—C331.495 (3)C40—C411.391 (3)
C11—C121.431 (3)C40—H400.9500
C12—C131.344 (3)C41—C421.374 (4)
C12—H120.9500C41—H410.9500
C13—C141.432 (3)C42—C431.378 (4)
C13—H130.9500C42—H420.9500
C14—C151.392 (3)C43—C441.382 (3)
C15—C161.383 (3)C43—H430.9500
C15—C391.491 (3)C44—H440.9500
C16—C171.434 (3)C45—C461.373 (3)
C17—C181.345 (3)C45—H450.9500
C17—H170.9500C46—C471.371 (4)
C18—C191.427 (3)C46—H460.9500
C18—H180.9500C47—C481.381 (4)
C19—C201.390 (3)C47—H470.9500
C20—C211.491 (3)C48—C491.370 (4)
C21—C261.374 (3)C48—H480.9500
C21—C221.382 (3)C49—H490.9500
C22—C231.389 (3)
N4—Co—N389.45 (6)C22—C21—C20123.0 (2)
N4—Co—N2179.36 (7)C21—C22—C23120.3 (2)
N3—Co—N290.57 (6)C21—C22—H22119.8
N4—Co—N190.19 (6)C23—C22—H22119.8
N3—Co—N1178.93 (7)C24—C23—C22120.5 (2)
N2—Co—N189.81 (6)C24—C23—H23119.7
N4—Co—N589.39 (7)C22—C23—H23119.7
N3—Co—N590.20 (7)C23—C24—C25119.6 (2)
N2—Co—N591.25 (7)C23—C24—H24120.2
N1—Co—N588.80 (7)C25—C24—H24120.2
N4—Co—Cl89.09 (5)C24—C25—C26120.1 (3)
N3—Co—Cl89.85 (5)C24—C25—H25120.0
N2—Co—Cl90.27 (5)C26—C25—H25120.0
N1—Co—Cl91.14 (5)C21—C26—C25121.0 (2)
N5—Co—Cl178.48 (5)C21—C26—H26119.5
C4—N1—C1105.72 (16)C25—C26—H26119.5
C4—N1—Co127.59 (13)C28—C27—C32118.8 (2)
C1—N1—Co126.20 (13)C28—C27—C5120.8 (2)
C9—N2—C6106.02 (15)C32—C27—C5120.3 (2)
C9—N2—Co126.47 (12)C27—C28—C29120.5 (3)
C6—N2—Co126.91 (13)C27—C28—H28119.8
C14—N3—C11105.46 (15)C29—C28—H28119.8
C14—N3—Co127.58 (13)C30—C29—C28120.3 (3)
C11—N3—Co126.90 (12)C30—C29—H29119.9
C19—N4—C16106.04 (16)C28—C29—H29119.9
C19—N4—Co126.75 (13)C29—C30—C31120.4 (2)
C16—N4—Co126.76 (13)C29—C30—H30119.8
C45—N5—C49117.70 (19)C31—C30—H30119.8
C45—N5—Co120.95 (15)C30—C31—C32120.3 (3)
C49—N5—Co121.26 (15)C30—C31—H31119.9
N1—C1—C20125.32 (18)C32—C31—H31119.9
N1—C1—C2110.37 (17)C27—C32—C31119.8 (3)
C20—C1—C2124.17 (19)C27—C32—H32120.1
C3—C2—C1106.89 (19)C31—C32—H32120.1
C3—C2—H2126.6C38—C33—C34118.77 (19)
C1—C2—H2126.6C38—C33—C10121.28 (18)
C2—C3—C4107.48 (18)C34—C33—C10119.82 (18)
C2—C3—H3126.3C35—C34—C33120.8 (2)
C4—C3—H3126.3C35—C34—H34119.6
N1—C4—C5125.60 (18)C33—C34—H34119.6
N1—C4—C3109.50 (17)C36—C35—C34119.8 (2)
C5—C4—C3124.66 (18)C36—C35—H35120.1
C4—C5—C6122.57 (18)C34—C35—H35120.1
C4—C5—C27118.54 (18)C37—C36—C35119.8 (2)
C6—C5—C27118.63 (18)C37—C36—H36120.1
N2—C6—C5125.57 (18)C35—C36—H36120.1
N2—C6—C7109.55 (17)C36—C37—C38120.5 (2)
C5—C6—C7124.75 (17)C36—C37—H37119.8
C8—C7—C6107.47 (17)C38—C37—H37119.8
C8—C7—H7126.3C33—C38—C37120.3 (2)
C6—C7—H7126.3C33—C38—H38119.8
C7—C8—C9107.06 (17)C37—C38—H38119.8
C7—C8—H8126.5C40—C39—C44118.96 (19)
C9—C8—H8126.5C40—C39—C15119.36 (18)
C9—C10—C11122.29 (17)C44—C39—C15121.67 (19)
C9—C10—C33117.61 (16)C39—C40—C41120.2 (2)
C11—C10—C33119.71 (17)C39—C40—H40119.9
N3—C11—C10125.43 (17)C41—C40—H40119.9
N3—C11—C12110.17 (16)C42—C41—C40120.3 (2)
C10—C11—C12123.88 (17)C42—C41—H41119.8
C13—C12—C11106.99 (17)C40—C41—H41119.8
C13—C12—H12126.5C41—C42—C43119.8 (2)
C11—C12—H12126.5C41—C42—H42120.1
C12—C13—C14107.08 (16)C43—C42—H42120.1
C12—C13—H13126.5C42—C43—C44120.2 (2)
C14—C13—H13126.5C42—C43—H43119.9
N3—C14—C15125.33 (17)C44—C43—H43119.9
N3—C14—C13110.14 (16)C43—C44—C39120.5 (2)
C15—C14—C13124.50 (17)C43—C44—H44119.7
C16—C15—C14122.09 (17)C39—C44—H44119.7
C16—C15—C39119.04 (17)N5—C45—C46122.7 (2)
C14—C15—C39118.82 (17)N5—C45—H45118.6
N4—C16—C15125.07 (18)C46—C45—H45118.6
N4—C16—C17109.39 (17)C47—C46—C45119.0 (2)
C15—C16—C17124.97 (18)C47—C46—H46120.5
C18—C17—C16106.99 (18)C45—C46—H46120.5
C18—C17—H17126.5C46—C47—C48118.9 (2)
C16—C17—H17126.5C46—C47—H47120.5
C17—C18—C19107.18 (18)C48—C47—H47120.5
C17—C18—H18126.4C49—C48—C47119.0 (3)
C19—C18—H18126.4C49—C48—H48120.5
N4—C19—C20126.24 (18)C47—C48—H48120.5
N4—C19—C18110.18 (17)N5—C49—C48122.6 (2)
C20—C19—C18123.39 (18)N5—C49—H49118.7
C1—C20—C19121.87 (18)C48—C49—H49118.7
C1—C20—C21119.86 (18)N2—C9—C10126.52 (17)
C19—C20—C21118.27 (18)N2—C9—C8109.82 (17)
C26—C21—C22118.4 (2)C10—C9—C8123.58 (18)
C26—C21—C20118.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg6, Cg9, Cg11 and Cg12 are the centroids of the N2/C6–C9, N3/C11–C14, Co/N1/C4–C6/N2, N5/C45–C49, C27–C32 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg3i0.952.793.543 (3)137
C28—H28···Cg9ii0.952.793.735 (3)172
C35—H35···Cg2iii0.952.873.736 (2)152
C38—H38···Cg11iv0.952.983.861 (3)156
C42—H42···Cg12v0.952.753.574 (3)146
C49—H49···Cg60.952.352.931 (3)119
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x3/2, y1/2, z3/2; (iii) x+1, y, z+2; (iv) x1/2, y1/2, z1/2; (v) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[CoCl(C44H28N4)(C5H5N)]·0.5CHCl3
Mr845.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)13.0467 (3), 23.4240 (7), 14.3264 (5)
β (°) 103.541 (3)
V3)4256.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.45 × 0.37 × 0.36
Data collection
DiffractometerOxford Xcalibur Sapphire2
diffractometer with a large Be window
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.802, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
43618, 8690, 7213
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.07
No. of reflections8690
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2004 (Burla et al., 2005, SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg6, Cg9, Cg11 and Cg12 are the centroids of the N2/C6–C9, N3/C11–C14, Co/N1/C4–C6/N2, N5/C45–C49, C27–C32 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg3i0.952.793.543 (3)137
C28—H28···Cg9ii0.952.793.735 (3)172
C35—H35···Cg2iii0.952.873.736 (2)152
C38—H38···Cg11iv0.952.983.861 (3)156
C42—H42···Cg12v0.952.753.574 (3)146
C49—H49···Cg60.952.352.931 (3)119
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x3/2, y1/2, z3/2; (iii) x+1, y, z+2; (iv) x1/2, y1/2, z1/2; (v) x+2, y, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAli, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39-46.  CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoodwin, J., Bailey, R., Pennington, W., Green, T., Shaasho, S., Yongsavanh, M., Echevarria, V., Tiedeken, J., Brown, C., Fromm, G., Lyerly, S., Watson, N., Long, A. & De Nitto, N. (2001). Inorg. Chem. 40, 4217–4225.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHodgson, M. C., Burrell, A. K., Boyd, P. D. W., Brothers, P. J. & Rickard, C. E. F. (2002). J. Porphyrins Phthalocyanines, 6, 737–747.  CrossRef CAS Google Scholar
First citationIimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821–826.  Google Scholar
First citationJentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationKonarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182–3184.  Google Scholar
First citationMansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMikolaiski, W., Baum, G., Massa, W. & Hoffmann, R. W. (1989). J. Organomet. Chem. 376, 397–404.  CSD CrossRef CAS Web of Science Google Scholar
First citationSakurai, T., Yamamoto, K., Naito, H. & Nakamoto, N. (1976). Bull. Chem. Soc. Jpn, 49, 3042–3046.  CrossRef CAS Web of Science Google Scholar
First citationSanders, J. K. M., Bampos, N., Clyde-Watson, Z., Kim, H.-J., Mak, C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–40. San Diego: Academic Press.   Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirazi, A. & Goff, H. M. (1982). Inorg. Chem. 21, 3080–3425.  CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToronto, D., Sarrazin, F., Marchon, J.-C., Shang, M. & Scheidt, W. R. (1998). Inorg. Chem. 37, 525–532.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds