organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-4-(4-methyl­phen­yl)-6-phenyl­pyridine-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 5 July 2012; accepted 14 July 2012; online 18 July 2012)

The title compound, C21H18N2O, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the central pyridine ring forms dihedral angles of 14.55 (13) and 39.14 (12)° with the terminal phenyl and benzene rings, respectively. The latter rings make a dihedral angle of 33.06 (13)° with each other. The corresponding values for mol­ecule B are 26.86 (13), 41.82 (12) and 38.99 (13)°, respectively. In the crystal, the B mol­ecules are linked via a pair of weak C—H⋯N hydrogen bonds, forming inversion dimers. In addition, C—H⋯π inter­actions and ππ [centroid–centroid distances = 3.5056 (16) and 3.8569 (17) Å] stacking inter­actions are observed.

Related literature

For the bioactivity of pyridine compounds, see: Cook et al. (2004[Cook, C. E., Sloan, C. D., Thomas, B. F. & Navarro, H. A. (2004). Chem. Abstr. 141, 157039, 861.]); Upton et al. (2000[Upton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett. 10, 1277-1279.]); Ellefson et al. (1978[Ellefson, C. R., Woo, C. M. & Cusic, J. W. (1978). J. Med. Chem. 21, 340-343.]). For the synthesis of bioactive mol­ecules, see: El-Sawy et al. (2012[El-Sawy, A. A., Mohamed, S. K., Eissaa, A. M. F., Tantawya, A. H. & Issaca, Y. A. (2012). J. Chem. Pharm. Res. 4, 2755-2762.]); Soliman et al. (2012[Soliman, A. M., Mohamed, S. K., Mahmoud, A. A., El-Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138-142.]). For a similar structure, see: Patel et al. (2002[Patel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o697-o699.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O

  • Mr = 314.37

  • Monoclinic, P 21 /c

  • a = 14.786 (3) Å

  • b = 14.634 (3) Å

  • c = 15.399 (3) Å

  • β = 92.288 (4)°

  • V = 3329.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.35 × 0.15 × 0.11 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.991

  • 25600 measured reflections

  • 6846 independent reflections

  • 3334 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.157

  • S = 0.81

  • 6846 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg5 and Cg6 are the centroids of the C6–C11, C6A–C11A and C12A–C17A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯N2Ai 0.93 2.59 3.353 (3) 139
C19—H19ACg6ii 0.97 2.72 3.622 (3) 155
C20—H20BCg5 0.96 2.76 3.693 (3) 163
C20A—H20ECg2 0.96 2.83 3.746 (3) 159
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine containing compounds possess a wide range of biological properties (Cook et al., 2004; Upton et al., 2000; Ellefson et al., 1978). Functionalized pyridine derivatives can act as antifungal (Cook et al., 2004), antifertility (Upton et al., 2000) and antiarrhythmic agents (Ellefson et al., 1978). We herein report on the synthesis and crystal structure of the title compound as a part of our on-going project on the synthesis of bioactive molecules (El-Sawy et al., 2012; Soliman et al., 2012).

The molecular structures of the two independent molecules (A and B) of the title compound have similar conformations (Figs. 1 & 2). In molecule A the N1/C1–C5 pyridine ring forms dihedral angles of 14.55 (13) and 39.14 (12)° with the C6–C11 phenyl and C12–C17 benzene rings, respectively. The latter rings make a dihedral angle of 33.06 (13)° with each other. The corresponding values for the B molecule are 26.86 (13), 41.82 (12) and 38.99 (13)°, respectively. The values of the bond lengths and bond angles are in the normal range and are comparable to those reported for a similar structure (Patel et al., 2002).

In the crystal, the B molecules are linked via pairs of C—H···N hydrogen bonds to form inversion dimers that stack together with the A molecules along the c axis direction (Table 1 and Fig. 3). Inter- and intra-molecular C—H···π interactions (Table 1) and π-π [Cg1···Cg4(x, y, z) = 3.5056 (16) Å and Cg2···Cg4(x, 1/2 - y, -1/2 + z) = 3.8569 (17) Å; where Cg1, Cg2 and Cg4 are the centroids of the N1/C1–C5, C6–C11 and N1A/C1A–C5A rings, respectively] interactions contribute to the stabilization of the crystal packing.

Related literature top

For the bioactivity of pyridine compounds, see: Cook et al. (2004); Upton et al. (2000); Ellefson et al. (1978). For the synthesis of bioactive molecules, see: El-Sawy et al. (2012); Soliman et al. (2012). For a similar structure, see: Patel et al. (2002).

Experimental top

The title compound was prepared by heating a mixture of (2E)-3-(4-methylphenyl)-1-phenylprop-2-en-1-one (222 mg, 1 mmol), propanedinitrile (66 mg, 1 mmol) and sodium methoxide (10 mg) as a catalyst in 50 ml e thanol at 350 K for 7 h. The solid product that resulted on cooling was filtered off, dried and recrystallized from acetone. Single crystals suitable for X-ray analyses were grown by slow evaporation of an acetone solution of the title compound over 24 h [M.p. 383 K].

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl). The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. Owing to poor agreement the reflection (1 0 0, -1 0 2, -2 1 1, 3 3 1, 5 1 6) were omitted from the final cycles of refinement.

Structure description top

Pyridine containing compounds possess a wide range of biological properties (Cook et al., 2004; Upton et al., 2000; Ellefson et al., 1978). Functionalized pyridine derivatives can act as antifungal (Cook et al., 2004), antifertility (Upton et al., 2000) and antiarrhythmic agents (Ellefson et al., 1978). We herein report on the synthesis and crystal structure of the title compound as a part of our on-going project on the synthesis of bioactive molecules (El-Sawy et al., 2012; Soliman et al., 2012).

The molecular structures of the two independent molecules (A and B) of the title compound have similar conformations (Figs. 1 & 2). In molecule A the N1/C1–C5 pyridine ring forms dihedral angles of 14.55 (13) and 39.14 (12)° with the C6–C11 phenyl and C12–C17 benzene rings, respectively. The latter rings make a dihedral angle of 33.06 (13)° with each other. The corresponding values for the B molecule are 26.86 (13), 41.82 (12) and 38.99 (13)°, respectively. The values of the bond lengths and bond angles are in the normal range and are comparable to those reported for a similar structure (Patel et al., 2002).

In the crystal, the B molecules are linked via pairs of C—H···N hydrogen bonds to form inversion dimers that stack together with the A molecules along the c axis direction (Table 1 and Fig. 3). Inter- and intra-molecular C—H···π interactions (Table 1) and π-π [Cg1···Cg4(x, y, z) = 3.5056 (16) Å and Cg2···Cg4(x, 1/2 - y, -1/2 + z) = 3.8569 (17) Å; where Cg1, Cg2 and Cg4 are the centroids of the N1/C1–C5, C6–C11 and N1A/C1A–C5A rings, respectively] interactions contribute to the stabilization of the crystal packing.

For the bioactivity of pyridine compounds, see: Cook et al. (2004); Upton et al. (2000); Ellefson et al. (1978). For the synthesis of bioactive molecules, see: El-Sawy et al. (2012); Soliman et al. (2012). For a similar structure, see: Patel et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of molecule A in the asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of molecule B in the asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view along the b-axis of the crystal packing of the title compound. The C-H···N interactions are shown as dashed lines [the H atoms not involved in hydrogen bonding have been omitted for clarity].
2-Ethoxy-4-(4-methylphenyl)-6-phenylpyridine-3-carbonitrile top
Crystal data top
C21H18N2OF(000) = 1328
Mr = 314.37Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 744 reflections
a = 14.786 (3) Åθ = 2.3–28.2°
b = 14.634 (3) ŵ = 0.08 mm1
c = 15.399 (3) ÅT = 150 K
β = 92.288 (4)°Block, colourless
V = 3329.4 (12) Å30.35 × 0.15 × 0.11 mm
Z = 8
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
6846 independent reflections
Radiation source: fine-focus sealed tube3334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
phi and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.986, Tmax = 0.991k = 1818
25600 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0671P)2]
where P = (Fo2 + 2Fc2)/3
6846 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H18N2OV = 3329.4 (12) Å3
Mr = 314.37Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.786 (3) ŵ = 0.08 mm1
b = 14.634 (3) ÅT = 150 K
c = 15.399 (3) Å0.35 × 0.15 × 0.11 mm
β = 92.288 (4)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
6846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3334 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.105
25600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.81Δρmax = 0.26 e Å3
6846 reflectionsΔρmin = 0.27 e Å3
433 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31241 (11)0.13660 (11)0.80183 (11)0.0368 (7)
N10.19322 (14)0.21501 (13)0.73551 (13)0.0310 (8)
N20.46150 (16)0.27830 (16)0.90471 (17)0.0496 (10)
C10.27212 (17)0.21613 (17)0.77761 (17)0.0309 (9)
C20.31949 (16)0.29620 (17)0.80252 (17)0.0301 (9)
C30.28257 (17)0.38042 (17)0.77720 (16)0.0304 (9)
C40.19991 (17)0.37776 (17)0.73149 (17)0.0315 (9)
C50.15556 (17)0.29653 (17)0.71266 (16)0.0298 (9)
C60.06623 (17)0.29272 (17)0.66582 (16)0.0309 (9)
C70.01119 (18)0.36936 (19)0.65580 (18)0.0420 (11)
C80.0717 (2)0.3645 (2)0.6117 (2)0.0488 (11)
C90.10134 (19)0.2828 (2)0.57656 (19)0.0461 (11)
C100.04868 (19)0.2054 (2)0.58673 (19)0.0427 (11)
C110.03373 (17)0.21074 (18)0.63119 (17)0.0356 (10)
C120.32673 (18)0.46887 (17)0.79885 (17)0.0335 (9)
C130.41954 (18)0.48137 (18)0.79421 (18)0.0390 (10)
C140.4591 (2)0.56581 (19)0.81318 (19)0.0452 (11)
C150.4068 (2)0.63955 (19)0.83808 (18)0.0433 (11)
C160.3143 (2)0.62681 (18)0.84187 (18)0.0415 (11)
C170.27505 (19)0.54326 (17)0.82279 (17)0.0375 (10)
C180.39916 (19)0.28677 (17)0.85804 (19)0.0364 (10)
C190.26215 (18)0.05307 (16)0.78455 (19)0.0386 (10)
C200.3204 (2)0.02487 (19)0.8163 (2)0.0537 (11)
C210.4503 (2)0.72999 (19)0.8612 (2)0.0616 (12)
O1A0.02702 (12)0.23795 (11)0.87536 (12)0.0366 (7)
N1A0.15020 (15)0.17393 (14)0.94927 (14)0.0327 (8)
N2A0.03715 (15)0.46836 (16)0.87169 (16)0.0444 (9)
C1A0.10422 (18)0.24720 (18)0.92368 (17)0.0329 (9)
C2A0.13030 (17)0.33768 (17)0.94292 (17)0.0309 (9)
C3A0.20771 (17)0.35143 (17)0.99684 (17)0.0295 (9)
C4A0.25586 (18)0.27376 (16)1.02280 (17)0.0321 (9)
C5A0.22706 (17)0.18773 (17)0.99754 (17)0.0305 (9)
C6A0.27821 (18)0.10427 (17)1.02506 (16)0.0329 (9)
C7A0.37064 (19)0.10723 (18)1.04322 (17)0.0378 (10)
C8A0.4164 (2)0.02925 (19)1.06989 (19)0.0458 (11)
C9A0.3721 (2)0.05204 (19)1.07808 (19)0.0499 (11)
C10A0.2803 (2)0.05577 (19)1.05882 (19)0.0525 (11)
C11A0.2333 (2)0.02161 (18)1.03310 (18)0.0417 (10)
C12A0.23582 (17)0.44329 (16)1.02802 (16)0.0304 (9)
C13A0.17244 (17)0.50456 (17)1.05695 (17)0.0332 (9)
C14A0.19849 (18)0.58882 (17)1.09059 (18)0.0374 (10)
C15A0.28916 (19)0.61318 (17)1.09688 (18)0.0378 (10)
C16A0.35246 (18)0.55226 (17)1.06731 (18)0.0377 (10)
C17A0.32693 (17)0.46770 (17)1.03462 (17)0.0329 (9)
C18A0.07827 (17)0.41064 (19)0.90492 (18)0.0338 (10)
C19A0.00194 (19)0.14604 (18)0.85355 (19)0.0432 (11)
C20A0.0929 (2)0.1560 (2)0.8145 (2)0.0779 (17)
C21A0.3180 (2)0.70398 (18)1.1353 (2)0.0578 (13)
H40.173400.432400.712900.0380*
H70.030600.424900.679200.0500*
H80.107600.416400.605700.0580*
H90.156800.279800.546000.0550*
H100.068800.150000.563700.0510*
H110.068600.158200.638300.0430*
H130.455800.432700.778200.0470*
H140.521300.572900.809100.0540*
H160.277900.675500.857600.0500*
H170.212700.536600.826000.0450*
H19A0.248200.046900.722700.0460*
H19B0.205800.053800.814700.0460*
H20A0.288400.081400.807000.0810*
H20B0.334800.017300.877200.0810*
H20C0.375300.025800.785000.0810*
H21A0.504700.737000.829800.0920*
H21B0.464900.731800.922500.0920*
H21C0.409100.778700.846000.0920*
H4A0.308300.279901.057700.0390*
H7A0.402000.161901.037400.0450*
H8A0.478400.032101.082500.0550*
H9A0.403500.104101.096400.0600*
H10A0.249800.111001.063200.0630*
H11A0.171300.018401.021100.0500*
H13A0.111400.489001.053800.0400*
H14A0.154800.629401.109100.0450*
H16A0.413300.568501.069500.0450*
H17A0.370800.426901.016900.0390*
H19C0.002800.108200.905200.0520*
H19D0.038300.118500.812700.0520*
H20D0.115900.097100.797400.1170*
H20E0.090900.194900.764400.1170*
H20F0.131800.182700.856100.1170*
H21D0.267600.731701.162700.0870*
H21E0.338100.743301.090100.0870*
H21F0.366500.694701.177700.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0394 (11)0.0332 (11)0.0373 (12)0.0053 (9)0.0054 (9)0.0001 (8)
N10.0321 (13)0.0354 (13)0.0254 (13)0.0033 (10)0.0015 (10)0.0003 (10)
N20.0409 (15)0.0571 (17)0.0500 (18)0.0037 (12)0.0075 (13)0.0124 (13)
C10.0334 (16)0.0345 (16)0.0252 (16)0.0067 (12)0.0051 (12)0.0017 (12)
C20.0264 (14)0.0369 (16)0.0269 (16)0.0011 (12)0.0002 (12)0.0013 (12)
C30.0329 (15)0.0363 (16)0.0222 (15)0.0027 (12)0.0026 (12)0.0025 (12)
C40.0339 (16)0.0313 (15)0.0294 (16)0.0061 (12)0.0020 (13)0.0034 (12)
C50.0374 (16)0.0326 (15)0.0196 (15)0.0063 (12)0.0039 (12)0.0008 (11)
C60.0342 (16)0.0355 (16)0.0228 (16)0.0016 (12)0.0010 (12)0.0010 (12)
C70.0391 (18)0.0401 (17)0.046 (2)0.0010 (13)0.0098 (15)0.0003 (14)
C80.0462 (19)0.0463 (19)0.053 (2)0.0087 (15)0.0093 (16)0.0054 (15)
C90.0384 (18)0.062 (2)0.0372 (19)0.0029 (16)0.0088 (14)0.0052 (15)
C100.0412 (18)0.0483 (18)0.0381 (19)0.0033 (14)0.0058 (15)0.0012 (14)
C110.0370 (17)0.0394 (17)0.0302 (17)0.0060 (13)0.0003 (13)0.0023 (13)
C120.0383 (16)0.0363 (16)0.0255 (16)0.0028 (13)0.0035 (13)0.0049 (12)
C130.0372 (17)0.0390 (17)0.0403 (19)0.0002 (13)0.0030 (14)0.0078 (13)
C140.0392 (17)0.0496 (19)0.046 (2)0.0108 (15)0.0081 (14)0.0126 (15)
C150.051 (2)0.0393 (18)0.0384 (19)0.0075 (15)0.0141 (15)0.0070 (14)
C160.051 (2)0.0323 (16)0.0405 (19)0.0028 (14)0.0076 (15)0.0011 (13)
C170.0413 (17)0.0395 (17)0.0314 (17)0.0004 (13)0.0006 (13)0.0091 (13)
C180.0347 (17)0.0359 (17)0.0387 (19)0.0013 (13)0.0045 (14)0.0056 (13)
C190.0473 (17)0.0295 (15)0.0386 (18)0.0046 (13)0.0035 (14)0.0009 (13)
C200.066 (2)0.0481 (19)0.047 (2)0.0114 (16)0.0008 (17)0.0010 (15)
C210.072 (2)0.047 (2)0.064 (2)0.0133 (17)0.0192 (19)0.0006 (17)
O1A0.0376 (11)0.0363 (11)0.0353 (12)0.0025 (8)0.0041 (9)0.0048 (8)
N1A0.0391 (14)0.0331 (13)0.0259 (13)0.0002 (10)0.0015 (11)0.0056 (10)
N2A0.0389 (15)0.0475 (16)0.0465 (17)0.0019 (12)0.0010 (12)0.0030 (12)
C1A0.0343 (16)0.0403 (17)0.0242 (16)0.0007 (13)0.0040 (13)0.0031 (13)
C2A0.0334 (16)0.0305 (15)0.0293 (16)0.0041 (12)0.0069 (13)0.0001 (12)
C3A0.0311 (15)0.0321 (15)0.0257 (15)0.0012 (12)0.0070 (12)0.0005 (12)
C4A0.0349 (16)0.0356 (16)0.0260 (16)0.0006 (12)0.0025 (12)0.0040 (12)
C5A0.0367 (16)0.0318 (15)0.0232 (16)0.0004 (12)0.0053 (12)0.0011 (11)
C6A0.0459 (18)0.0327 (15)0.0201 (15)0.0020 (13)0.0021 (13)0.0029 (12)
C7A0.0482 (18)0.0303 (16)0.0349 (18)0.0014 (13)0.0003 (14)0.0025 (12)
C8A0.055 (2)0.0416 (18)0.040 (2)0.0058 (15)0.0081 (15)0.0004 (14)
C9A0.073 (2)0.0354 (18)0.040 (2)0.0053 (16)0.0133 (17)0.0054 (14)
C10A0.080 (2)0.0333 (18)0.044 (2)0.0045 (16)0.0015 (18)0.0032 (14)
C11A0.0537 (19)0.0367 (17)0.0345 (18)0.0027 (14)0.0022 (14)0.0004 (13)
C12A0.0357 (16)0.0273 (14)0.0279 (16)0.0005 (12)0.0009 (12)0.0009 (12)
C13A0.0339 (15)0.0343 (15)0.0311 (17)0.0002 (12)0.0013 (12)0.0047 (12)
C14A0.0424 (17)0.0292 (15)0.0406 (19)0.0069 (13)0.0000 (14)0.0021 (13)
C15A0.0464 (18)0.0254 (15)0.0409 (19)0.0016 (13)0.0080 (14)0.0017 (12)
C16A0.0347 (16)0.0364 (16)0.0414 (19)0.0064 (13)0.0054 (13)0.0077 (13)
C17A0.0318 (16)0.0328 (15)0.0339 (17)0.0051 (12)0.0010 (12)0.0012 (12)
C18A0.0307 (16)0.0369 (17)0.0339 (18)0.0004 (13)0.0036 (13)0.0049 (13)
C19A0.0432 (18)0.0399 (18)0.046 (2)0.0060 (14)0.0060 (15)0.0070 (14)
C20A0.070 (3)0.079 (3)0.084 (3)0.009 (2)0.007 (2)0.010 (2)
C21A0.055 (2)0.0313 (17)0.086 (3)0.0007 (15)0.0104 (18)0.0043 (16)
Geometric parameters (Å, º) top
O1—C11.353 (3)C20—H20B0.9600
O1—C191.450 (3)C20—H20C0.9600
O1A—C1A1.344 (3)C21—H21B0.9600
O1A—C19A1.447 (3)C21—H21C0.9600
N1—C11.312 (3)C21—H21A0.9600
N1—C51.357 (3)C1A—C2A1.407 (4)
N2—C181.153 (4)C2A—C3A1.402 (4)
N1A—C1A1.321 (3)C2A—C18A1.428 (4)
N1A—C5A1.348 (3)C3A—C4A1.391 (4)
N2A—C18A1.149 (4)C3A—C12A1.481 (3)
C1—C21.410 (4)C4A—C5A1.380 (3)
C2—C181.434 (4)C5A—C6A1.489 (4)
C2—C31.397 (4)C6A—C7A1.385 (4)
C3—C41.386 (4)C6A—C11A1.388 (4)
C3—C121.482 (4)C7A—C8A1.381 (4)
C4—C51.383 (4)C8A—C9A1.366 (4)
C5—C61.481 (4)C9A—C10A1.379 (4)
C6—C71.391 (4)C10A—C11A1.378 (4)
C6—C111.391 (4)C12A—C13A1.384 (4)
C7—C81.379 (4)C12A—C17A1.394 (4)
C8—C91.377 (4)C13A—C14A1.386 (4)
C9—C101.380 (4)C14A—C15A1.387 (4)
C10—C111.376 (4)C15A—C16A1.383 (4)
C12—C131.389 (4)C15A—C21A1.509 (4)
C12—C171.388 (4)C16A—C17A1.383 (4)
C13—C141.393 (4)C19A—C20A1.459 (4)
C14—C151.390 (4)C4A—H4A0.9300
C15—C211.508 (4)C7A—H7A0.9300
C15—C161.384 (4)C8A—H8A0.9300
C16—C171.380 (4)C9A—H9A0.9300
C19—C201.499 (4)C10A—H10A0.9300
C4—H40.9300C11A—H11A0.9300
C7—H70.9300C13A—H13A0.9300
C8—H80.9300C14A—H14A0.9300
C9—H90.9300C16A—H16A0.9300
C10—H100.9300C17A—H17A0.9300
C11—H110.9300C19A—H19C0.9700
C13—H130.9300C19A—H19D0.9700
C14—H140.9300C20A—H20D0.9600
C16—H160.9300C20A—H20E0.9600
C17—H170.9300C20A—H20F0.9600
C19—H19A0.9700C21A—H21D0.9600
C19—H19B0.9700C21A—H21E0.9600
C20—H20A0.9600C21A—H21F0.9600
C1—O1—C19117.25 (19)H21A—C21—H21B109.00
C1A—O1A—C19A117.3 (2)C15—C21—H21A109.00
C1—N1—C5117.7 (2)O1A—C1A—N1A119.9 (2)
C1A—N1A—C5A117.1 (2)O1A—C1A—C2A115.5 (2)
N1—C1—C2124.5 (2)N1A—C1A—C2A124.6 (2)
O1—C1—N1119.9 (2)C1A—C2A—C3A118.1 (2)
O1—C1—C2115.6 (2)C1A—C2A—C18A118.6 (2)
C1—C2—C3118.2 (2)C3A—C2A—C18A123.3 (2)
C1—C2—C18118.0 (2)C2A—C3A—C4A116.7 (2)
C3—C2—C18123.6 (2)C2A—C3A—C12A122.3 (2)
C2—C3—C4116.3 (2)C4A—C3A—C12A121.0 (2)
C4—C3—C12120.7 (2)C3A—C4A—C5A121.0 (2)
C2—C3—C12123.0 (2)N1A—C5A—C4A122.4 (2)
C3—C4—C5122.1 (2)N1A—C5A—C6A116.2 (2)
C4—C5—C6122.8 (2)C4A—C5A—C6A121.4 (2)
N1—C5—C6116.2 (2)C5A—C6A—C7A121.2 (2)
N1—C5—C4121.0 (2)C5A—C6A—C11A120.1 (2)
C5—C6—C7122.0 (2)C7A—C6A—C11A118.8 (2)
C5—C6—C11120.5 (2)C6A—C7A—C8A120.2 (2)
C7—C6—C11117.5 (2)C7A—C8A—C9A121.1 (3)
C6—C7—C8121.2 (3)C8A—C9A—C10A119.1 (3)
C7—C8—C9120.1 (3)C9A—C10A—C11A120.7 (3)
C8—C9—C10119.9 (3)C6A—C11A—C10A120.3 (3)
C9—C10—C11119.6 (3)C3A—C12A—C13A120.5 (2)
C6—C11—C10121.7 (2)C3A—C12A—C17A120.9 (2)
C13—C12—C17117.8 (2)C13A—C12A—C17A118.4 (2)
C3—C12—C13122.1 (2)C12A—C13A—C14A121.0 (2)
C3—C12—C17120.2 (2)C13A—C14A—C15A120.5 (2)
C12—C13—C14120.9 (2)C14A—C15A—C16A118.5 (2)
C13—C14—C15120.9 (3)C14A—C15A—C21A120.7 (2)
C14—C15—C21120.6 (3)C16A—C15A—C21A120.8 (2)
C16—C15—C21121.4 (3)C15A—C16A—C17A121.2 (2)
C14—C15—C16117.9 (3)C12A—C17A—C16A120.3 (2)
C15—C16—C17121.2 (3)N2A—C18A—C2A177.8 (3)
C12—C17—C16121.3 (3)O1A—C19A—C20A105.2 (2)
N2—C18—C2177.9 (3)C3A—C4A—H4A119.00
O1—C19—C20107.3 (2)C5A—C4A—H4A119.00
C5—C4—H4119.00C6A—C7A—H7A120.00
C3—C4—H4119.00C8A—C7A—H7A120.00
C6—C7—H7119.00C7A—C8A—H8A119.00
C8—C7—H7119.00C9A—C8A—H8A119.00
C9—C8—H8120.00C8A—C9A—H9A120.00
C7—C8—H8120.00C10A—C9A—H9A121.00
C10—C9—H9120.00C9A—C10A—H10A120.00
C8—C9—H9120.00C11A—C10A—H10A120.00
C9—C10—H10120.00C6A—C11A—H11A120.00
C11—C10—H10120.00C10A—C11A—H11A120.00
C10—C11—H11119.00C12A—C13A—H13A120.00
C6—C11—H11119.00C14A—C13A—H13A119.00
C12—C13—H13120.00C13A—C14A—H14A120.00
C14—C13—H13120.00C15A—C14A—H14A120.00
C13—C14—H14120.00C15A—C16A—H16A119.00
C15—C14—H14120.00C17A—C16A—H16A119.00
C17—C16—H16119.00C12A—C17A—H17A120.00
C15—C16—H16119.00C16A—C17A—H17A120.00
C12—C17—H17119.00O1A—C19A—H19C111.00
C16—C17—H17119.00O1A—C19A—H19D111.00
O1—C19—H19B110.00C20A—C19A—H19C111.00
O1—C19—H19A110.00C20A—C19A—H19D111.00
H19A—C19—H19B109.00H19C—C19A—H19D109.00
C20—C19—H19B110.00C19A—C20A—H20D110.00
C20—C19—H19A110.00C19A—C20A—H20E109.00
C19—C20—H20B109.00C19A—C20A—H20F109.00
C19—C20—H20A109.00H20D—C20A—H20E110.00
H20A—C20—H20C110.00H20D—C20A—H20F109.00
C19—C20—H20C109.00H20E—C20A—H20F109.00
H20A—C20—H20B109.00C15A—C21A—H21D109.00
H20B—C20—H20C109.00C15A—C21A—H21E110.00
C15—C21—H21B109.00C15A—C21A—H21F109.00
C15—C21—H21C109.00H21D—C21A—H21E109.00
H21A—C21—H21C110.00H21D—C21A—H21F109.00
H21B—C21—H21C110.00H21E—C21A—H21F109.00
C19—O1—C1—N14.1 (3)C3—C12—C13—C14178.7 (3)
C19—O1—C1—C2174.5 (2)C12—C13—C14—C150.6 (4)
C1—O1—C19—C20179.6 (2)C13—C14—C15—C161.1 (4)
C19A—O1A—C1A—C2A179.6 (2)C13—C14—C15—C21178.1 (3)
C1A—O1A—C19A—C20A170.9 (2)C21—C15—C16—C17178.3 (3)
C19A—O1A—C1A—N1A0.1 (3)C14—C15—C16—C170.9 (4)
C5—N1—C1—O1180.0 (2)C15—C16—C17—C120.2 (4)
C5—N1—C1—C21.6 (4)O1A—C1A—C2A—C3A176.8 (2)
C1—N1—C5—C41.4 (4)N1A—C1A—C2A—C3A3.6 (4)
C1—N1—C5—C6179.6 (2)N1A—C1A—C2A—C18A174.8 (3)
C5A—N1A—C1A—O1A180.0 (2)O1A—C1A—C2A—C18A4.9 (4)
C1A—N1A—C5A—C6A179.5 (2)C1A—C2A—C3A—C12A173.9 (2)
C1A—N1A—C5A—C4A2.5 (4)C18A—C2A—C3A—C4A174.5 (2)
C5A—N1A—C1A—C2A0.4 (4)C1A—C2A—C3A—C4A3.8 (4)
N1—C1—C2—C18172.0 (2)C18A—C2A—C3A—C12A7.8 (4)
N1—C1—C2—C33.3 (4)C2A—C3A—C4A—C5A1.2 (4)
O1—C1—C2—C3178.2 (2)C2A—C3A—C12A—C17A141.8 (3)
O1—C1—C2—C186.5 (4)C4A—C3A—C12A—C13A134.9 (3)
C1—C2—C3—C42.0 (4)C2A—C3A—C12A—C13A42.7 (4)
C1—C2—C3—C12179.4 (2)C12A—C3A—C4A—C5A176.5 (2)
C18—C2—C3—C4173.0 (2)C4A—C3A—C12A—C17A40.6 (4)
C18—C2—C3—C125.6 (4)C3A—C4A—C5A—N1A2.1 (4)
C4—C3—C12—C1738.4 (4)C3A—C4A—C5A—C6A180.0 (2)
C2—C3—C12—C1341.3 (4)N1A—C5A—C6A—C11A26.0 (4)
C2—C3—C12—C17140.2 (3)C4A—C5A—C6A—C7A27.8 (4)
C12—C3—C4—C5177.9 (2)C4A—C5A—C6A—C11A152.0 (3)
C2—C3—C4—C50.7 (4)N1A—C5A—C6A—C7A154.2 (2)
C4—C3—C12—C13140.1 (3)C11A—C6A—C7A—C8A0.8 (4)
C3—C4—C5—C6178.5 (2)C5A—C6A—C11A—C10A179.8 (3)
C3—C4—C5—N12.6 (4)C5A—C6A—C7A—C8A179.0 (2)
N1—C5—C6—C7165.3 (2)C7A—C6A—C11A—C10A0.1 (4)
C4—C5—C6—C715.7 (4)C6A—C7A—C8A—C9A0.6 (4)
C4—C5—C6—C11165.4 (2)C7A—C8A—C9A—C10A0.4 (4)
N1—C5—C6—C1113.6 (3)C8A—C9A—C10A—C11A1.1 (4)
C11—C6—C7—C81.2 (4)C9A—C10A—C11A—C6A0.9 (4)
C5—C6—C11—C10179.4 (2)C17A—C12A—C13A—C14A0.9 (4)
C5—C6—C7—C8179.8 (3)C3A—C12A—C17A—C16A177.2 (2)
C7—C6—C11—C101.6 (4)C3A—C12A—C13A—C14A176.5 (2)
C6—C7—C8—C90.1 (4)C13A—C12A—C17A—C16A1.7 (4)
C7—C8—C9—C101.1 (4)C12A—C13A—C14A—C15A0.7 (4)
C8—C9—C10—C110.7 (4)C13A—C14A—C15A—C16A1.2 (4)
C9—C10—C11—C60.6 (4)C13A—C14A—C15A—C21A178.6 (3)
C17—C12—C13—C140.1 (4)C21A—C15A—C16A—C17A177.9 (3)
C3—C12—C17—C16178.9 (2)C14A—C15A—C16A—C17A2.0 (4)
C13—C12—C17—C160.4 (4)C15A—C16A—C17A—C12A2.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg5 and Cg6 are the centroids of the C6–C11, C6A–C11A and C12A–C17A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···N2Ai0.932.593.353 (3)139
C19—H19A···Cg6ii0.972.723.622 (3)155
C20—H20B···Cg50.962.763.693 (3)163
C20A—H20E···Cg20.962.833.746 (3)159
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H18N2O
Mr314.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)14.786 (3), 14.634 (3), 15.399 (3)
β (°) 92.288 (4)
V3)3329.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.15 × 0.11
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
25600, 6846, 3334
Rint0.105
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.157, 0.81
No. of reflections6846
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg5 and Cg6 are the centroids of the C6–C11, C6A–C11A and C12A–C17A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···N2Ai0.932.593.353 (3)139
C19—H19A···Cg6ii0.972.723.622 (3)155
C20—H20B···Cg50.962.763.693 (3)163
C20A—H20E···Cg20.962.833.746 (3)159
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Ministry of Egypt in collaboration with Manchester Metropolitan University for their financial support of this project. They also thank Erciyes University and the University of Leicester for facilitating this study.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, C. E., Sloan, C. D., Thomas, B. F. & Navarro, H. A. (2004). Chem. Abstr. 141, 157039, 861.  Google Scholar
First citationEllefson, C. R., Woo, C. M. & Cusic, J. W. (1978). J. Med. Chem. 21, 340–343.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEl-Sawy, A. A., Mohamed, S. K., Eissaa, A. M. F., Tantawya, A. H. & Issaca, Y. A. (2012). J. Chem. Pharm. Res. 4, 2755–2762.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPatel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o697–o699.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoliman, A. M., Mohamed, S. K., Mahmoud, A. A., El-Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett. 10, 1277–1279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds