organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Hy­dr­oxy­benz­yl)amino]­pyridinium nitrate

aKey Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 June 2012; accepted 10 July 2012; online 18 July 2012)

The planes of the aromatic rings in the cation of the title salt, C12H13N2O+·NO3, are twisted along the –CH2—NH– single bond by 75.3 (1)°. In the crystal, the phenol O, amine N and pyridinium N atoms are hydrogen-bond donors to the O atoms of the nitrate counter-ions. These hydrogen bonds lead to the formation of a layer in the crystal.

Related literature

For 2-[(pyridin-2-yl­amino)­meth­yl]phenol, see: Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2473.]). For 2-[(pyridin-3-yl­amino)­meth­yl]phenol, see: Xu et al. (2011[Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3259.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N2O+·NO3

  • Mr = 263.25

  • Monoclinic, C c

  • a = 13.611 (4) Å

  • b = 12.687 (3) Å

  • c = 10.030 (2) Å

  • β = 132.694 (12)°

  • V = 1273.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.24 × 0.21 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.978

  • 6077 measured reflections

  • 1458 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.08

  • 1458 reflections

  • 184 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (2) 1.97 (2) 2.800 (3) 169 (4)
N1—H3⋯O2i 0.88 (3) 2.33 (2) 3.017 (3) 134 (2)
N1—H3⋯O3i 0.88 (3) 2.00 (3) 2.860 (4) 165 (3)
N2—H2⋯O3ii 0.88 (1) 2.36 (2) 3.089 (3) 141 (3)
N2—H2⋯O4ii 0.88 (1) 2.18 (2) 3.027 (3) 162 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. Among the aminopyridine derivatives, only the crystal structures of 2-((pyridin-2-ylamino)methyl)phenol (Gao & Ng, 2012) and 2-((pyridin-3-ylamino)methyl)phenol (Xu et al., 2011) analogs have been reported. The 2-((pyridin-4-ylamino)methyl)phenol analog is now authenticated as its nitrate salt (Scheme I).

The two aromatic rings of the reduced Schiff-base salt, C12H13N2O.NO3, are twisted along the –CH2–NH– single-bond by 75.3 (1) ° (Fig. 1). The hydroxy O, amino N and pyridinium N atoms are each a hydrogen-bond donor to an O atom of the nitrate counterion. These hydrogen bonds lead to the formation of a layer parallel to [1 0 1] (Fig. 2, Table 1).

Related literature top

For 2-[(pyridin-2-ylamino)methyl]phenol, see: Gao & Ng (2012). For 2-[(pyridin-3-ylamino)methyl]phenol, see: Xu et al. (2011).

Experimental top

A solution of 4-aminopyridine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolutem ethanol by sodium borohydride. Light yellow crystals were obtained by recrystallization from methanol to which several drops of nitric acid were added.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å, O–H 0.84±0.01 Å; their temperature factors were refined.

In the absence of heavy scatters, 1320 Friedel pairs were merged.

Structure description top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. Among the aminopyridine derivatives, only the crystal structures of 2-((pyridin-2-ylamino)methyl)phenol (Gao & Ng, 2012) and 2-((pyridin-3-ylamino)methyl)phenol (Xu et al., 2011) analogs have been reported. The 2-((pyridin-4-ylamino)methyl)phenol analog is now authenticated as its nitrate salt (Scheme I).

The two aromatic rings of the reduced Schiff-base salt, C12H13N2O.NO3, are twisted along the –CH2–NH– single-bond by 75.3 (1) ° (Fig. 1). The hydroxy O, amino N and pyridinium N atoms are each a hydrogen-bond donor to an O atom of the nitrate counterion. These hydrogen bonds lead to the formation of a layer parallel to [1 0 1] (Fig. 2, Table 1).

For 2-[(pyridin-2-ylamino)methyl]phenol, see: Gao & Ng (2012). For 2-[(pyridin-3-ylamino)methyl]phenol, see: Xu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H13N2O.NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded network motif.
4-[(2-Hydroxybenzyl)amino]pyridinium nitrate top
Crystal data top
C12H13N2O+·NO3Z = 4
Mr = 263.25F(000) = 552
Monoclinic, CcDx = 1.374 Mg m3
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 13.611 (4) ŵ = 0.11 mm1
b = 12.687 (3) ÅT = 295 K
c = 10.030 (2) ÅPrism, faint yellow
β = 132.694 (12)°0.24 × 0.21 × 0.21 mm
V = 1273.0 (5) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1458 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.975, Tmax = 0.978k = 1616
6077 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
1458 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.20 e Å3
5 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H13N2O+·NO3V = 1273.0 (5) Å3
Mr = 263.25Z = 4
Monoclinic, CcMo Kα radiation
a = 13.611 (4) ŵ = 0.11 mm1
b = 12.687 (3) ÅT = 295 K
c = 10.030 (2) Å0.24 × 0.21 × 0.21 mm
β = 132.694 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1458 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1176 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.978Rint = 0.041
6077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
1458 reflectionsΔρmin = 0.17 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5006 (2)0.17761 (17)0.5005 (3)0.0795 (6)
O20.4295 (3)0.38568 (15)0.3747 (3)0.0882 (7)
O30.3096 (2)0.47126 (17)0.1249 (3)0.0817 (6)
O40.3075 (2)0.30247 (17)0.1215 (3)0.0816 (6)
N10.4372 (3)0.37774 (19)0.4116 (4)0.0740 (6)
N20.6073 (2)0.11750 (18)0.7349 (3)0.0692 (6)
N30.3475 (2)0.38556 (18)0.2053 (3)0.0669 (6)
C10.4016 (3)0.2829 (3)0.3359 (4)0.0739 (7)
H1A0.33780.27760.21010.089*
C20.4552 (3)0.1938 (2)0.4358 (4)0.0660 (6)
H2A0.42930.12840.37920.079*
C30.5510 (2)0.2009 (2)0.6271 (4)0.0588 (6)
C40.5857 (3)0.3036 (2)0.7024 (4)0.0641 (6)
H40.64840.31280.82760.077*
C50.5270 (3)0.3885 (2)0.5910 (4)0.0720 (7)
H50.55010.45570.64110.086*
C60.5830 (3)0.0101 (2)0.6719 (4)0.0708 (7)
H6A0.59080.00600.58280.085*
H6B0.65220.03430.77340.085*
C70.4489 (2)0.03351 (19)0.5886 (3)0.0569 (5)
C80.3625 (3)0.0166 (2)0.5960 (4)0.0650 (6)
H80.38790.08000.65840.078*
C90.2390 (3)0.0260 (3)0.5123 (5)0.0784 (8)
H90.18250.00780.52010.094*
C100.2006 (3)0.1180 (3)0.4180 (6)0.0834 (9)
H100.11640.14560.35840.100*
C110.2847 (3)0.1707 (2)0.4096 (4)0.0742 (7)
H110.25780.23360.34560.089*
C120.4100 (3)0.12908 (19)0.4978 (3)0.0607 (6)
H10.477 (4)0.2368 (14)0.450 (4)0.082 (9)*
H20.670 (3)0.126 (3)0.8524 (16)0.081 (10)*
H30.400 (3)0.4320 (18)0.337 (4)0.081 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0804 (12)0.0576 (10)0.1069 (16)0.0045 (9)0.0660 (12)0.0162 (10)
O20.1108 (18)0.0634 (12)0.0670 (14)0.0060 (11)0.0509 (14)0.0011 (9)
O30.0915 (14)0.0660 (12)0.0782 (13)0.0112 (10)0.0539 (12)0.0097 (10)
O40.0855 (13)0.0665 (12)0.0805 (13)0.0092 (10)0.0514 (12)0.0138 (9)
N10.0745 (14)0.0683 (15)0.0895 (17)0.0068 (12)0.0597 (14)0.0155 (13)
N20.0629 (13)0.0570 (13)0.0657 (14)0.0038 (9)0.0349 (12)0.0069 (10)
N30.0683 (12)0.0654 (15)0.0713 (14)0.0001 (10)0.0490 (12)0.0010 (10)
C10.0661 (15)0.0879 (19)0.0658 (15)0.0049 (14)0.0440 (13)0.0032 (14)
C20.0633 (14)0.0672 (15)0.0679 (15)0.0097 (12)0.0446 (13)0.0088 (12)
C30.0562 (12)0.0546 (13)0.0682 (15)0.0055 (10)0.0432 (13)0.0058 (10)
C40.0664 (15)0.0564 (14)0.0701 (15)0.0080 (11)0.0465 (13)0.0094 (11)
C50.0798 (17)0.0559 (15)0.095 (2)0.0059 (12)0.0648 (17)0.0061 (13)
C60.0637 (13)0.0531 (14)0.0834 (17)0.0003 (11)0.0450 (13)0.0036 (12)
C70.0619 (13)0.0460 (11)0.0593 (12)0.0046 (9)0.0397 (11)0.0073 (9)
C80.0780 (15)0.0521 (12)0.0761 (15)0.0087 (12)0.0566 (13)0.0094 (11)
C90.0841 (18)0.0707 (18)0.108 (2)0.0118 (14)0.0759 (19)0.0190 (16)
C100.0751 (17)0.075 (2)0.112 (2)0.0063 (14)0.0680 (19)0.0095 (17)
C110.0767 (16)0.0611 (15)0.0868 (19)0.0102 (12)0.0562 (16)0.0047 (12)
C120.0665 (13)0.0504 (13)0.0675 (14)0.0021 (11)0.0463 (12)0.0055 (10)
Geometric parameters (Å, º) top
O1—C121.362 (3)C4—C51.354 (4)
O1—H10.837 (10)C4—H40.9300
O2—N31.250 (3)C5—H50.9300
O3—N31.238 (3)C6—C71.505 (4)
O4—N31.222 (3)C6—H6A0.9700
N1—C11.327 (4)C6—H6B0.9700
N1—C51.330 (4)C7—C81.383 (4)
N1—H30.882 (10)C7—C121.388 (3)
N2—C31.324 (4)C8—C91.381 (4)
N2—C61.443 (3)C8—H80.9300
N2—H20.874 (10)C9—C101.364 (5)
C1—C21.350 (4)C9—H90.9300
C1—H1A0.9300C10—C111.376 (5)
C2—C31.413 (4)C10—H100.9300
C2—H2A0.9300C11—C121.387 (4)
C3—C41.418 (3)C11—H110.9300
C12—O1—H1115 (3)N2—C6—C7115.0 (2)
C1—N1—C5120.7 (3)N2—C6—H6A108.5
C1—N1—H3116 (2)C7—C6—H6A108.5
C5—N1—H3123 (2)N2—C6—H6B108.5
C3—N2—C6124.3 (2)C7—C6—H6B108.5
C3—N2—H2120 (2)H6A—C6—H6B107.5
C6—N2—H2116 (2)C8—C7—C12118.5 (2)
O4—N3—O3121.0 (2)C8—C7—C6123.8 (2)
O4—N3—O2120.5 (2)C12—C7—C6117.7 (2)
O3—N3—O2118.5 (2)C9—C8—C7121.1 (3)
N1—C1—C2122.0 (3)C9—C8—H8119.5
N1—C1—H1A119.0C7—C8—H8119.5
C2—C1—H1A119.0C10—C9—C8119.5 (3)
C1—C2—C3119.5 (3)C10—C9—H9120.2
C1—C2—H2A120.3C8—C9—H9120.2
C3—C2—H2A120.3C9—C10—C11121.0 (3)
N2—C3—C2123.3 (2)C9—C10—H10119.5
N2—C3—C4120.1 (2)C11—C10—H10119.5
C2—C3—C4116.7 (2)C10—C11—C12119.3 (3)
C5—C4—C3119.6 (3)C10—C11—H11120.3
C5—C4—H4120.2C12—C11—H11120.3
C3—C4—H4120.2O1—C12—C11123.0 (2)
N1—C5—C4121.5 (3)O1—C12—C7116.4 (2)
N1—C5—H5119.3C11—C12—C7120.6 (2)
C4—C5—H5119.3
C5—N1—C1—C20.8 (4)N2—C6—C7—C12169.2 (2)
N1—C1—C2—C30.8 (4)C12—C7—C8—C91.3 (4)
C6—N2—C3—C22.9 (4)C6—C7—C8—C9178.1 (3)
C6—N2—C3—C4177.4 (2)C7—C8—C9—C101.2 (4)
C1—C2—C3—N2179.3 (3)C8—C9—C10—C112.0 (5)
C1—C2—C3—C40.5 (3)C9—C10—C11—C120.3 (5)
N2—C3—C4—C5179.6 (3)C10—C11—C12—O1178.2 (3)
C2—C3—C4—C50.1 (3)C10—C11—C12—C72.1 (4)
C1—N1—C5—C40.4 (4)C8—C7—C12—O1177.4 (2)
C3—C4—C5—N10.1 (4)C6—C7—C12—O13.2 (3)
C3—N2—C6—C773.7 (4)C8—C7—C12—C112.9 (3)
N2—C6—C7—C810.2 (4)C6—C7—C12—C11176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (2)1.97 (2)2.800 (3)169 (4)
N1—H3···O2i0.88 (3)2.33 (2)3.017 (3)134 (2)
N1—H3···O3i0.88 (3)2.00 (3)2.860 (4)165 (3)
N2—H2···O3ii0.88 (1)2.36 (2)3.089 (3)141 (3)
N2—H2···O4ii0.88 (1)2.18 (2)3.027 (3)162 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H13N2O+·NO3
Mr263.25
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)13.611 (4), 12.687 (3), 10.030 (2)
β (°) 132.694 (12)
V3)1273.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.21 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6077, 1458, 1176
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.08
No. of reflections1458
No. of parameters184
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (2)1.97 (2)2.800 (3)169 (4)
N1—H3···O2i0.88 (3)2.33 (2)3.017 (3)134 (2)
N1—H3···O3i0.88 (3)2.00 (3)2.860 (4)165 (3)
N2—H2···O3ii0.875 (13)2.36 (2)3.089 (3)141 (3)
N2—H2···O4ii0.875 (13)2.182 (19)3.027 (3)162 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023 and No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2473.  CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds