organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-[24-acetyl-28-oxo-8,11,14-trioxa-24,27-di­aza­penta­cyclo­[19.5.1.122,26.02,7.015,20]octa­cosa-2,4,6,15(20),16,18-hexaen-27-yl]but-2-enedioate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian People's Friendship University, Miklukho-Maklaya Street 6, Moscow, 117198, Russian Federation, and cX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: thh1101@yahoo.com

(Received 29 June 2012; accepted 4 July 2012; online 10 July 2012)

The title compound, C31H34N2O9, is a product of the Michael addition of the cyclic secondary amine subunit of the (bis­pidino)aza-14-crown-4 ether to dimethyl acetyl­ene­dicarboxyl­ate. The mol­ecule comprises a tricyclic system containing the aza-14-crown-3 ether macrocycle and two six-membered piperidinone rings. The aza-14-crown-3-ether ring adopts a bowl conformation with a dihedral angle between the planes of the fused benzene rings of 51.14 (5)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. The dimethyl ethyl­enedicarboxyl­ate fragment has a cis configuration with a dihedral angle of 56.56 (7)° between the two carboxyl­ate groups. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For general background, see: Hiraoka (1982[Hiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Schwan & Warkentin (1988[Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686-1694.]); Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). For related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Komarova et al. (2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd. 44, 624-625.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.]); Anh, Hieu, Soldatenkov, Kolyadina & Khrustalev (2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1588-o1589.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2165-o2166.]); Anh, Hieu, Soldatenkov, Soldatova & Khrustalev (2012[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o1386-o1387.]); Hieu et al. (2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307-1308.]); Khieu et al. (2011[Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]); Sokol et al. (2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086-2088.]).

[Scheme 1]

Experimental

Crystal data
  • C31H34N2O9

  • Mr = 578.60

  • Monoclinic, P 21 /c

  • a = 9.6634 (6) Å

  • b = 26.3883 (18) Å

  • c = 11.4375 (8) Å

  • β = 99.614 (1)°

  • V = 2875.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.981

  • 36500 measured reflections

  • 8396 independent reflections

  • 6209 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.00

  • 8396 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O35i 0.95 2.47 3.1735 (17) 131
C25—H25A⋯O33ii 0.99 2.30 3.2091 (17) 152
C34—H34A⋯O35iii 0.98 2.53 3.5045 (19) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azacrown ethers draw very great attention of investigators over the last half century owing to their great potential for both theoretical and practical interest (Hiraoka, 1982; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have designed one more effective route to reach this fascinating region of macroheterocyclic compounds, namely, the effective method of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008; Anh, Hieu, Soldatenkov, Kolyadina & Khrustalev, 2012a; Anh, Hieu, Soldatenkov, Soldatova & Khrustalev, 2012), perhydropyrimidine (Hieu et al., 2011), perhydrotriazine (Khieu et al., 2011) and bispidine (Komarova et al., 2008; Sokol et al., 2011; Anh, Hieu, Soldatenkov, Kolyadina & Khrustalev, 2012b) subunits.

In attempts to develop the chemistry for new azacrown systems and to obtain macrocyclic ligands bringing the desirable functional groups, we studied the Michael addition of the cyclic secondary amine subunit of the (bispidino)aza-14-crown-4 ether to dimethyl acetylenedicarboxylate. The expected reaction is well known (Schwan & Warkentin, 1988), but might be highly hindered in the case of (bispidino)azacrown system due to the steric reasons. We have found that the expected N-vynilation reaction of the (bispidino)azacrown ether proceeded smoothly to give an N-maleinate derivative of the azacrown system with a good yield (Fig. 1).

The molecule of I, C31H34N2O9, comprises a tricyclic system containing the aza-14-crown-3-ether macrocycle and two six-membered piperidinone rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7–O8–C9–C10–O11–C12–C13–O14–C15 polyether chain is t-g(-)-t-t-g(+)-t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 51.14 (5)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. The nitrogen N24 atom has a trigonal-planar geometry (sum of the bond angles is 360.0°), while the nitrogen N27 atom adopts a trigonal-pyramidal geometry (sum of the bond angles is 340.5°). The dimethyl ethylenedicarboxylate fragment has a cis configuration with a dihedral angle of 56.56 (7)° between the two carboxylate groups.

The molecule of I possesses four asymmetric centers at the C1, C21, C22 and C26 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*, 21S*,22R*,26S*.

In the crystal, the molecules of I are bound by the weak intermolecular C–H···O hydrogen bonding interactions into three-dimensional framework (Table 1).

Related literature top

For general background, see: Hiraoka (1982); Pedersen (1988); Schwan & Warkentin (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a, 2012b); Anh et al., 2012; Hieu et al. (2011); Khieu et al. (2011); Sokol et al. (2011).

Experimental top

Dimethylacetylenedicarboxylate (0.24 g, 1.69 mmol) was added to a solution of (bispidino)aza-14-crown-4ether (0.25 g, 0.57 mmol) in chloroform (20 ml). The reaction mixture was stirred at 293 K for one day (monitoring by TLC until disappearance of the starting organic compounds spots). At the end of the reaction, the formed precipitate was separated, washed with cold chloroform (15 ml) and re-crystallized from ethanol to give 0.32 g of colourless crystals of I. Yield is 98%. M.p. = 522-524 K. IR (KBr), ν/cm-1: 1603, 1651, 1715. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 2.33 (s, 3H, CH3CO), 3.02 (m, 2H, H22 and H26), 3.28 and 3.43 (both s, 3H each, OCH3), 3.79-4.10 (m, 12H, OCH2CH2OCH2CH2O, 2H23 and 2H25), 4.4 and 4.56 (both d, 1H each, H1 and H21, J = 7.3), 6.56 (s, 1H, CCHCOO), 6.70-6.78 (m, 4H, Harom), 7.05 (d, 2H, H3 and H19, J = 7.6), 7.21 (m, 2H, Harom). Anal. Calcd for C31H34 N2O9: C, 64.35; H, 5.92; N, 4.84. Found: C, 64.41; H, 6.07; N, 4.67.

Refinement top

The hydrogen atoms were placed in calculated positions with C–H = 0.95-1.00Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups.

Structure description top

Azacrown ethers draw very great attention of investigators over the last half century owing to their great potential for both theoretical and practical interest (Hiraoka, 1982; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have designed one more effective route to reach this fascinating region of macroheterocyclic compounds, namely, the effective method of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008; Anh, Hieu, Soldatenkov, Kolyadina & Khrustalev, 2012a; Anh, Hieu, Soldatenkov, Soldatova & Khrustalev, 2012), perhydropyrimidine (Hieu et al., 2011), perhydrotriazine (Khieu et al., 2011) and bispidine (Komarova et al., 2008; Sokol et al., 2011; Anh, Hieu, Soldatenkov, Kolyadina & Khrustalev, 2012b) subunits.

In attempts to develop the chemistry for new azacrown systems and to obtain macrocyclic ligands bringing the desirable functional groups, we studied the Michael addition of the cyclic secondary amine subunit of the (bispidino)aza-14-crown-4 ether to dimethyl acetylenedicarboxylate. The expected reaction is well known (Schwan & Warkentin, 1988), but might be highly hindered in the case of (bispidino)azacrown system due to the steric reasons. We have found that the expected N-vynilation reaction of the (bispidino)azacrown ether proceeded smoothly to give an N-maleinate derivative of the azacrown system with a good yield (Fig. 1).

The molecule of I, C31H34N2O9, comprises a tricyclic system containing the aza-14-crown-3-ether macrocycle and two six-membered piperidinone rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7–O8–C9–C10–O11–C12–C13–O14–C15 polyether chain is t-g(-)-t-t-g(+)-t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 51.14 (5)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. The nitrogen N24 atom has a trigonal-planar geometry (sum of the bond angles is 360.0°), while the nitrogen N27 atom adopts a trigonal-pyramidal geometry (sum of the bond angles is 340.5°). The dimethyl ethylenedicarboxylate fragment has a cis configuration with a dihedral angle of 56.56 (7)° between the two carboxylate groups.

The molecule of I possesses four asymmetric centers at the C1, C21, C22 and C26 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*, 21S*,22R*,26S*.

In the crystal, the molecules of I are bound by the weak intermolecular C–H···O hydrogen bonding interactions into three-dimensional framework (Table 1).

For general background, see: Hiraoka (1982); Pedersen (1988); Schwan & Warkentin (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a, 2012b); Anh et al., 2012; Hieu et al. (2011); Khieu et al. (2011); Sokol et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Michael addition of bis(benzo)-(bispidino)aza-14-crown-4 ether to dimethyl acetylenedicarboxylate.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Dimethyl 2-(24-acetyl-28-oxo-8,11,14-trioxa-24,27- diazapentacyclo[19.5.1.122,26.02,7.015,20]octacosa- 2,4,6,15(20),16,18-hexaen-27-yl)but-2-enedioate top
Crystal data top
C31H34N2O9F(000) = 1224
Mr = 578.60Dx = 1.337 Mg m3
Monoclinic, P21/cMelting point = 522–524 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6634 (6) ÅCell parameters from 6686 reflections
b = 26.3883 (18) Åθ = 2.3–30.4°
c = 11.4375 (8) ŵ = 0.10 mm1
β = 99.614 (1)°T = 100 K
V = 2875.6 (3) Å3Prism, light yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
8396 independent reflections
Radiation source: fine-focus sealed tube6209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.971, Tmax = 0.981k = 3736
36500 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 1.09P]
where P = (Fo2 + 2Fc2)/3
8396 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C31H34N2O9V = 2875.6 (3) Å3
Mr = 578.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6634 (6) ŵ = 0.10 mm1
b = 26.3883 (18) ÅT = 100 K
c = 11.4375 (8) Å0.30 × 0.20 × 0.20 mm
β = 99.614 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6209 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.045
36500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
8396 reflectionsΔρmin = 0.26 e Å3
382 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11569 (13)0.11896 (5)0.20020 (11)0.0157 (2)
H10.07680.15250.21950.019*
C20.09245 (13)0.11385 (5)0.06665 (11)0.0179 (3)
C30.02840 (14)0.15322 (6)0.00310 (12)0.0216 (3)
H30.00810.18400.03350.026*
C40.00658 (16)0.14824 (6)0.12602 (13)0.0276 (3)
H40.05040.17540.17270.033*
C50.02316 (16)0.10347 (6)0.17898 (13)0.0287 (3)
H50.00250.09960.26240.034*
C60.08995 (15)0.06399 (6)0.11215 (12)0.0250 (3)
H60.11170.03360.14970.030*
C70.12495 (14)0.06917 (5)0.01056 (12)0.0200 (3)
O80.18727 (11)0.03213 (4)0.08372 (8)0.0225 (2)
C90.24451 (16)0.01130 (6)0.03346 (13)0.0250 (3)
H9A0.30610.00070.02320.030*
H9B0.16850.03290.00880.030*
C100.32707 (16)0.03936 (5)0.13614 (13)0.0250 (3)
H10A0.26770.04600.19720.030*
H10B0.35950.07230.10920.030*
O110.44422 (10)0.00887 (4)0.18432 (8)0.0223 (2)
C120.50802 (16)0.02495 (5)0.29917 (13)0.0250 (3)
H12A0.57390.05310.29260.030*
H12B0.43530.03730.34380.030*
C130.58570 (15)0.01879 (5)0.36341 (13)0.0220 (3)
H13A0.64470.00700.43760.026*
H13B0.64720.03500.31310.026*
O140.48284 (9)0.05405 (3)0.38952 (8)0.01810 (19)
C150.52964 (13)0.09761 (5)0.44734 (11)0.0154 (2)
C160.66552 (13)0.10392 (5)0.50956 (11)0.0175 (3)
H160.73310.07780.50940.021*
C170.70186 (14)0.14851 (5)0.57176 (12)0.0202 (3)
H170.79420.15250.61480.024*
C180.60535 (14)0.18708 (5)0.57162 (12)0.0202 (3)
H180.63060.21750.61430.024*
C190.47031 (14)0.18075 (5)0.50794 (11)0.0182 (3)
H190.40420.20750.50710.022*
C200.42963 (13)0.13655 (5)0.44570 (11)0.0147 (2)
C210.27882 (13)0.13019 (5)0.38529 (11)0.0144 (2)
H210.22860.16290.39210.017*
C220.20355 (13)0.08817 (5)0.44644 (11)0.0158 (2)
H220.27280.07040.50760.019*
C230.08405 (14)0.11077 (5)0.50463 (11)0.0191 (3)
H23A0.03990.08360.54550.023*
H23B0.12290.13640.56440.023*
N240.02109 (11)0.13426 (5)0.41473 (10)0.0192 (2)
C250.08063 (13)0.10019 (6)0.31856 (12)0.0207 (3)
H25A0.14720.11920.25910.025*
H25B0.13310.07270.35060.025*
C260.03642 (13)0.07711 (5)0.25846 (11)0.0168 (2)
H260.00500.05200.19700.020*
N270.26543 (11)0.11722 (4)0.25751 (9)0.0146 (2)
C280.13448 (13)0.05052 (5)0.35589 (11)0.0173 (3)
O280.14211 (11)0.00491 (4)0.36862 (9)0.0246 (2)
C290.05451 (14)0.18412 (6)0.42329 (13)0.0233 (3)
O290.00129 (12)0.21020 (4)0.50702 (10)0.0323 (3)
C300.16326 (16)0.20626 (6)0.32678 (15)0.0304 (3)
H30A0.17760.24210.34370.046*
H30B0.25190.18790.32360.046*
H30C0.13090.20320.25030.046*
C310.36237 (13)0.14313 (5)0.19759 (11)0.0149 (2)
C320.44149 (13)0.11639 (5)0.13532 (11)0.0162 (2)
H320.42450.08090.12960.019*
C330.55331 (14)0.13640 (5)0.07407 (11)0.0170 (2)
O330.67355 (10)0.12234 (4)0.09900 (9)0.0259 (2)
O340.50805 (10)0.16863 (4)0.01385 (9)0.0238 (2)
C340.61758 (16)0.18984 (6)0.07172 (14)0.0277 (3)
H34A0.57710.21550.12930.042*
H34B0.66000.16280.11270.042*
H34C0.68960.20550.01220.042*
C350.37909 (14)0.19960 (5)0.21065 (11)0.0172 (2)
O350.48639 (11)0.22224 (4)0.20779 (10)0.0258 (2)
O360.25872 (10)0.22096 (4)0.22817 (9)0.0209 (2)
C360.25952 (17)0.27511 (5)0.24882 (14)0.0266 (3)
H36A0.16570.28890.22060.040*
H36B0.32740.29130.20590.040*
H36C0.28590.28180.33390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (6)0.0194 (6)0.0137 (6)0.0016 (5)0.0010 (4)0.0006 (5)
C20.0145 (6)0.0247 (7)0.0141 (6)0.0040 (5)0.0011 (4)0.0005 (5)
C30.0203 (6)0.0263 (7)0.0179 (6)0.0004 (5)0.0025 (5)0.0014 (5)
C40.0263 (7)0.0376 (9)0.0184 (7)0.0024 (6)0.0023 (6)0.0072 (6)
C50.0285 (7)0.0429 (9)0.0142 (6)0.0008 (7)0.0026 (5)0.0000 (6)
C60.0265 (7)0.0325 (8)0.0160 (6)0.0032 (6)0.0039 (5)0.0050 (6)
C70.0178 (6)0.0250 (7)0.0171 (6)0.0034 (5)0.0023 (5)0.0011 (5)
O80.0290 (5)0.0207 (5)0.0175 (5)0.0017 (4)0.0031 (4)0.0036 (4)
C90.0301 (7)0.0218 (7)0.0223 (7)0.0007 (6)0.0019 (6)0.0092 (6)
C100.0309 (7)0.0165 (7)0.0270 (7)0.0033 (6)0.0027 (6)0.0063 (5)
O110.0263 (5)0.0194 (5)0.0201 (5)0.0024 (4)0.0011 (4)0.0001 (4)
C120.0335 (8)0.0162 (7)0.0237 (7)0.0036 (6)0.0001 (6)0.0005 (5)
C130.0219 (6)0.0188 (7)0.0245 (7)0.0055 (5)0.0012 (5)0.0030 (5)
O140.0171 (4)0.0143 (4)0.0229 (5)0.0004 (3)0.0035 (4)0.0024 (4)
C150.0180 (6)0.0154 (6)0.0132 (6)0.0016 (5)0.0039 (5)0.0008 (5)
C160.0163 (6)0.0194 (6)0.0171 (6)0.0021 (5)0.0037 (5)0.0020 (5)
C170.0158 (6)0.0269 (7)0.0168 (6)0.0025 (5)0.0003 (5)0.0002 (5)
C180.0215 (6)0.0210 (7)0.0172 (6)0.0032 (5)0.0006 (5)0.0045 (5)
C190.0204 (6)0.0176 (6)0.0166 (6)0.0010 (5)0.0029 (5)0.0008 (5)
C200.0157 (6)0.0165 (6)0.0117 (5)0.0003 (5)0.0020 (4)0.0018 (5)
C210.0145 (5)0.0168 (6)0.0116 (5)0.0002 (4)0.0015 (4)0.0003 (4)
C220.0156 (6)0.0185 (6)0.0135 (6)0.0008 (5)0.0032 (4)0.0010 (5)
C230.0178 (6)0.0250 (7)0.0148 (6)0.0015 (5)0.0041 (5)0.0014 (5)
N240.0140 (5)0.0260 (6)0.0178 (5)0.0004 (4)0.0031 (4)0.0040 (5)
C250.0143 (6)0.0285 (7)0.0195 (6)0.0041 (5)0.0034 (5)0.0038 (5)
C260.0158 (6)0.0196 (6)0.0150 (6)0.0041 (5)0.0028 (5)0.0025 (5)
N270.0133 (5)0.0186 (5)0.0119 (5)0.0020 (4)0.0018 (4)0.0004 (4)
C280.0166 (6)0.0202 (6)0.0165 (6)0.0022 (5)0.0070 (5)0.0002 (5)
O280.0298 (5)0.0182 (5)0.0266 (5)0.0019 (4)0.0068 (4)0.0005 (4)
C290.0180 (6)0.0265 (7)0.0263 (7)0.0004 (5)0.0067 (5)0.0024 (6)
O290.0315 (6)0.0279 (6)0.0356 (6)0.0008 (5)0.0003 (5)0.0092 (5)
C300.0249 (7)0.0306 (8)0.0349 (8)0.0064 (6)0.0029 (6)0.0010 (7)
C310.0155 (6)0.0165 (6)0.0121 (5)0.0008 (5)0.0006 (4)0.0014 (4)
C320.0166 (6)0.0171 (6)0.0147 (6)0.0005 (5)0.0016 (5)0.0000 (5)
C330.0192 (6)0.0182 (6)0.0137 (6)0.0004 (5)0.0034 (5)0.0027 (5)
O330.0178 (5)0.0355 (6)0.0245 (5)0.0042 (4)0.0042 (4)0.0056 (4)
O340.0209 (5)0.0289 (5)0.0231 (5)0.0031 (4)0.0082 (4)0.0099 (4)
C340.0299 (8)0.0269 (8)0.0300 (8)0.0000 (6)0.0156 (6)0.0087 (6)
C350.0192 (6)0.0186 (6)0.0137 (6)0.0010 (5)0.0028 (5)0.0007 (5)
O350.0238 (5)0.0200 (5)0.0355 (6)0.0045 (4)0.0105 (4)0.0014 (4)
O360.0199 (5)0.0163 (5)0.0266 (5)0.0025 (4)0.0044 (4)0.0001 (4)
C360.0338 (8)0.0174 (7)0.0292 (8)0.0052 (6)0.0069 (6)0.0006 (6)
Geometric parameters (Å, º) top
C1—N271.4862 (16)C20—C211.5143 (17)
C1—C21.5124 (17)C21—N271.4854 (16)
C1—C261.5560 (18)C21—C221.5548 (17)
C1—H11.0000C21—H211.0000
C2—C31.3907 (19)C22—C281.5081 (18)
C2—C71.4025 (19)C22—C231.5456 (18)
C3—C41.3962 (19)C22—H221.0000
C3—H30.9500C23—N241.4576 (17)
C4—C51.380 (2)C23—H23A0.9900
C4—H40.9500C23—H23B0.9900
C5—C61.386 (2)N24—C291.3623 (19)
C5—H50.9500N24—C251.4621 (17)
C6—C71.3944 (19)C25—C261.5435 (18)
C6—H60.9500C25—H25A0.9900
C7—O81.3603 (17)C25—H25B0.9900
O8—C91.4338 (17)C26—C281.5097 (18)
C9—C101.500 (2)C26—H261.0000
C9—H9A0.9900N27—C311.4245 (16)
C9—H9B0.9900C28—O281.2130 (16)
C10—O111.4228 (17)C29—O291.2283 (18)
C10—H10A0.9900C29—C301.509 (2)
C10—H10B0.9900C30—H30A0.9800
O11—C121.4196 (17)C30—H30B0.9800
C12—C131.500 (2)C30—H30C0.9800
C12—H12A0.9900C31—C321.3311 (18)
C12—H12B0.9900C31—C351.5036 (18)
C13—O141.4292 (16)C32—C331.4799 (18)
C13—H13A0.9900C32—H320.9500
C13—H13B0.9900C33—O331.2076 (16)
O14—C151.3650 (15)C33—O341.3337 (16)
C15—C161.3950 (18)O34—C341.4512 (16)
C15—C201.4086 (18)C34—H34A0.9800
C16—C171.3894 (19)C34—H34B0.9800
C16—H160.9500C34—H34C0.9800
C17—C181.3804 (19)C35—O351.2019 (16)
C17—H170.9500C35—O361.3373 (16)
C18—C191.3942 (18)O36—C361.4481 (17)
C18—H180.9500C36—H36A0.9800
C19—C201.3885 (18)C36—H36B0.9800
C19—H190.9500C36—H36C0.9800
N27—C1—C2114.34 (10)N27—C21—H21108.1
N27—C1—C26107.57 (10)C20—C21—H21108.1
C2—C1—C26111.62 (10)C22—C21—H21108.1
N27—C1—H1107.7C28—C22—C23105.85 (10)
C2—C1—H1107.7C28—C22—C21110.33 (10)
C26—C1—H1107.7C23—C22—C21110.96 (11)
C3—C2—C7118.54 (12)C28—C22—H22109.9
C3—C2—C1119.31 (12)C23—C22—H22109.9
C7—C2—C1122.01 (12)C21—C22—H22109.9
C2—C3—C4121.13 (14)N24—C23—C22110.07 (10)
C2—C3—H3119.4N24—C23—H23A109.6
C4—C3—H3119.4C22—C23—H23A109.6
C5—C4—C3119.31 (14)N24—C23—H23B109.6
C5—C4—H4120.3C22—C23—H23B109.6
C3—C4—H4120.3H23A—C23—H23B108.2
C4—C5—C6120.89 (13)C29—N24—C23120.37 (11)
C4—C5—H5119.6C29—N24—C25125.43 (12)
C6—C5—H5119.6C23—N24—C25114.19 (11)
C5—C6—C7119.59 (14)N24—C25—C26110.62 (10)
C5—C6—H6120.2N24—C25—H25A109.5
C7—C6—H6120.2C26—C25—H25A109.5
O8—C7—C6123.83 (13)N24—C25—H25B109.5
O8—C7—C2115.64 (11)C26—C25—H25B109.5
C6—C7—C2120.50 (13)H25A—C25—H25B108.1
C7—O8—C9119.25 (11)C28—C26—C25105.72 (10)
O8—C9—C10105.72 (11)C28—C26—C1110.66 (10)
O8—C9—H9A110.6C25—C26—C1111.13 (11)
C10—C9—H9A110.6C28—C26—H26109.8
O8—C9—H9B110.6C25—C26—H26109.8
C10—C9—H9B110.6C1—C26—H26109.8
H9A—C9—H9B108.7C31—N27—C21113.99 (10)
O11—C10—C9107.99 (12)C31—N27—C1116.30 (10)
O11—C10—H10A110.1C21—N27—C1110.20 (9)
C9—C10—H10A110.1O28—C28—C22124.07 (12)
O11—C10—H10B110.1O28—C28—C26124.59 (12)
C9—C10—H10B110.1C22—C28—C26110.61 (11)
H10A—C10—H10B108.4O29—C29—N24121.24 (13)
C12—O11—C10112.57 (11)O29—C29—C30120.99 (14)
O11—C12—C13109.13 (12)N24—C29—C30117.76 (13)
O11—C12—H12A109.9C29—C30—H30A109.5
C13—C12—H12A109.9C29—C30—H30B109.5
O11—C12—H12B109.9H30A—C30—H30B109.5
C13—C12—H12B109.9C29—C30—H30C109.5
H12A—C12—H12B108.3H30A—C30—H30C109.5
O14—C13—C12107.14 (11)H30B—C30—H30C109.5
O14—C13—H13A110.3C32—C31—N27119.05 (12)
C12—C13—H13A110.3C32—C31—C35121.12 (12)
O14—C13—H13B110.3N27—C31—C35119.75 (11)
C12—C13—H13B110.3C31—C32—C33126.45 (12)
H13A—C13—H13B108.5C31—C32—H32116.8
C15—O14—C13117.64 (10)C33—C32—H32116.8
O14—C15—C16123.71 (12)O33—C33—O34123.74 (12)
O14—C15—C20115.90 (11)O33—C33—C32121.90 (12)
C16—C15—C20120.33 (12)O34—C33—C32114.26 (11)
C17—C16—C15119.87 (12)C33—O34—C34114.68 (11)
C17—C16—H16120.1O34—C34—H34A109.5
C15—C16—H16120.1O34—C34—H34B109.5
C18—C17—C16120.73 (12)H34A—C34—H34B109.5
C18—C17—H17119.6O34—C34—H34C109.5
C16—C17—H17119.6H34A—C34—H34C109.5
C17—C18—C19119.04 (12)H34B—C34—H34C109.5
C17—C18—H18120.5O35—C35—O36124.79 (12)
C19—C18—H18120.5O35—C35—C31124.67 (12)
C20—C19—C18121.91 (12)O36—C35—C31110.53 (11)
C20—C19—H19119.0C35—O36—C36117.33 (11)
C18—C19—H19119.0O36—C36—H36A109.5
C19—C20—C15118.10 (11)O36—C36—H36B109.5
C19—C20—C21119.71 (11)H36A—C36—H36B109.5
C15—C20—C21122.07 (11)O36—C36—H36C109.5
N27—C21—C20113.17 (10)H36A—C36—H36C109.5
N27—C21—C22107.93 (10)H36B—C36—H36C109.5
C20—C21—C22111.15 (10)
N27—C1—C2—C3118.70 (13)C22—C23—N24—C29122.32 (13)
C26—C1—C2—C3118.90 (13)C22—C23—N24—C2556.46 (14)
N27—C1—C2—C765.64 (16)C29—N24—C25—C26122.45 (14)
C26—C1—C2—C756.75 (16)C23—N24—C25—C2656.26 (15)
C7—C2—C3—C41.7 (2)N24—C25—C26—C2857.46 (14)
C1—C2—C3—C4174.11 (12)N24—C25—C26—C162.65 (14)
C2—C3—C4—C50.1 (2)N27—C1—C26—C282.43 (14)
C3—C4—C5—C61.5 (2)C2—C1—C26—C28128.63 (11)
C4—C5—C6—C71.3 (2)N27—C1—C26—C25119.57 (11)
C5—C6—C7—O8178.27 (13)C2—C1—C26—C25114.23 (12)
C5—C6—C7—C20.3 (2)C20—C21—N27—C3138.88 (14)
C3—C2—C7—O8179.92 (12)C22—C21—N27—C31162.31 (10)
C1—C2—C7—O84.24 (18)C20—C21—N27—C1171.75 (10)
C3—C2—C7—C61.8 (2)C22—C21—N27—C164.81 (12)
C1—C2—C7—C6173.87 (12)C2—C1—N27—C3139.86 (16)
C6—C7—O8—C912.0 (2)C26—C1—N27—C31164.43 (10)
C2—C7—O8—C9169.97 (12)C2—C1—N27—C21171.54 (11)
C7—O8—C9—C10169.85 (11)C26—C1—N27—C2163.88 (13)
O8—C9—C10—O1167.15 (14)C23—C22—C28—O28105.51 (14)
C9—C10—O11—C12164.25 (12)C21—C22—C28—O28134.37 (13)
C10—O11—C12—C13156.42 (12)C23—C22—C28—C2665.06 (13)
O11—C12—C13—O1470.09 (14)C21—C22—C28—C2655.06 (13)
C12—C13—O14—C15179.32 (11)C25—C26—C28—O28106.01 (14)
C13—O14—C15—C1617.86 (18)C1—C26—C28—O28133.57 (13)
C13—O14—C15—C20164.85 (11)C25—C26—C28—C2264.49 (13)
O14—C15—C16—C17176.19 (12)C1—C26—C28—C2255.92 (13)
C20—C15—C16—C170.99 (19)C23—N24—C29—O290.9 (2)
C15—C16—C17—C180.8 (2)C25—N24—C29—O29179.56 (13)
C16—C17—C18—C190.0 (2)C23—N24—C29—C30179.47 (12)
C17—C18—C19—C200.7 (2)C25—N24—C29—C300.8 (2)
C18—C19—C20—C150.51 (19)C21—N27—C31—C32127.63 (12)
C18—C19—C20—C21175.64 (12)C1—N27—C31—C32102.47 (14)
O14—C15—C20—C19177.05 (11)C21—N27—C31—C3549.22 (15)
C16—C15—C20—C190.34 (18)C1—N27—C31—C3580.68 (14)
O14—C15—C20—C210.99 (17)N27—C31—C32—C33175.87 (11)
C16—C15—C20—C21176.40 (11)C35—C31—C32—C330.9 (2)
C19—C20—C21—N27126.37 (12)C31—C32—C33—O33119.73 (16)
C15—C20—C21—N2757.63 (15)C31—C32—C33—O3463.77 (18)
C19—C20—C21—C22111.98 (13)O33—C33—O34—C345.65 (19)
C15—C20—C21—C2264.01 (15)C32—C33—O34—C34177.93 (12)
N27—C21—C22—C283.72 (14)C32—C31—C35—O3528.2 (2)
C20—C21—C22—C28128.38 (11)N27—C31—C35—O35148.54 (13)
N27—C21—C22—C23120.71 (11)C32—C31—C35—O36152.95 (12)
C20—C21—C22—C23114.63 (11)N27—C31—C35—O3630.27 (15)
C28—C22—C23—N2458.32 (14)O35—C35—O36—C362.02 (19)
C21—C22—C23—N2461.39 (13)C31—C35—O36—C36176.78 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O35i0.952.473.1735 (17)131
C25—H25A···O33ii0.992.303.2091 (17)152
C34—H34A···O35iii0.982.533.5045 (19)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC31H34N2O9
Mr578.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6634 (6), 26.3883 (18), 11.4375 (8)
β (°) 99.614 (1)
V3)2875.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
36500, 8396, 6209
Rint0.045
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.00
No. of reflections8396
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O35i0.952.473.1735 (17)131
C25—H25A···O33ii0.992.303.2091 (17)152
C34—H34A···O35iii0.982.533.5045 (19)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Vietnam National University, Hanoi (grant No. QG.11.09), for the financial support of this work.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1588–o1589.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2165–o2166.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307–1308.  Google Scholar
First citationHiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd. 44, 624–625.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSchwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds