organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Piperazine-1,4-di­yl)diethanaminium dibenzoate

aDepartment of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
*Correspondence e-mail: ignacy.cukrowski@up.ac.za

(Received 26 April 2012; accepted 2 July 2012; online 7 July 2012)

The asymmetric unit of the title salt C8H22N42+·2C7H5O2, comprises two independent pairs of half a 2,2′-(piperazine-1,4-di­yl)diethanaminium dication plus a benzoate anion. The dications are symmetrical and lie across crystallographic centres of inversion. The crystal structure was refined as a two-component pseudo-merohedral twin using the twin law 001 0-10 100 [he domain fractions are 0.8645 (8) and 0.1355 (8)]. The anions and cations are linked by N—H⋯O hydrogen bonds and weak N—H⋯O inter­molecular inter­actions to form infinite two-dimensional networks parallel to [101]. The conformation adopted by the cation in the crystal structure is very similar to that adopted by the same cation in the structures of the 2-hy­droxy­benzoate [Cukrowski et al. (2012[Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387.]). Acta Cryst, E68, o2387], the nitrate and the tetra­hydrogen penta­borate salts.

Related literature

For the structures of the 2-hy­droxy­benzoate, the nitrate and the tetra­hydrogen penta­borate salts of the 1,4-di(2-ammonio­eth­yl)piperazine cation, see: Cukrowski et al. (2012[Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387.]); Junk & Smith (2005[Junk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189-198.]); Jiang et al. (2009[Jiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723-729.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C8H22N42+·2C7H5O2

  • Mr = 416.52

  • Monoclinic, P 21 /n

  • a = 19.5300 (4) Å

  • b = 6.6694 (2) Å

  • c = 19.6178 (4) Å

  • β = 115.989 (1)°

  • V = 2296.89 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.28 × 0.23 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.910, Tmax = 0.991

  • 20137 measured reflections

  • 5194 independent reflections

  • 3970 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.02

  • 5194 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O15i 0.945 (18) 1.833 (19) 2.7739 (17) 173.0 (15)
N1—H1B⋯O15 0.902 (16) 1.895 (17) 2.7836 (15) 167.8 (14)
N1—H1B⋯O14 0.902 (16) 2.632 (16) 3.2580 (16) 127.2 (13)
N1—H1C⋯O14ii 0.925 (18) 1.887 (18) 2.7660 (16) 157.9 (14)
N1′—H1′A⋯O14′ 0.882 (19) 1.857 (19) 2.7355 (17) 174.2 (15)
N1′—H1′B⋯O14′iii 0.897 (17) 1.908 (17) 2.7836 (16) 164.8 (15)
N1′—H1′B⋯O15′iii 0.897 (17) 2.533 (16) 3.1858 (16) 130.1 (13)
N1′—H1′C⋯O15′iv 0.916 (18) 1.934 (18) 2.7585 (16) 148.8 (14)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound [C8H22N42+ 2(C7H5O2-)] (1) was obtained as an unintended product during an attempt to prepare a benzoate salt of a singly protonated N,N'-di(2-aminoethyl)-2-aminoethane-1-ammonium ion (C6H19N4+ C7H5O2-). This occurred because the starting material, instead of being pure N,N'-di(2-aminoethyl)-ethane-1,2-diamine, (C6H18N4), was a mixture of that compound and 1,4-di(2-aminoethyl)piperazine (C8H22N4) see Cukrowski, et al. (2012).

The asymmetric unit of the title compound, C8H22N42+, 2(C7H5O2-), 1, is a salt with two independent pairs of half a C8H22N42+ cation plus a C7H5O2- anion. The C8H22N42+ cations are symmetrical and lie across crystallographic centres of inversion (Fig. 1). The crystal structure was refined as a two-component pseudo- merohedral twin using the twin law 0 0 1 0 - 1 0 1 0 0. The fractional contribution refined to 0.1355 (8).

All three H atoms of each ammonium group in the cations of 1 are hydrogen bonded to the O atoms of the carboxylate groups of the anions. For each ammonium group, one H atom forms a bifurcated hydrogen bond to both of the O atoms of the carboxylate group of one anion, whereas the other two H atoms each form single hydrogen bonds to one O atom of the carboxylate group of each of two additional anions (Fig. 2). Thus both the O atoms of each carboxylate group are each acceptors for two hydrogen bonds. N—H···O hydrogen bonds and weak N—H···O intermolecular interactions link the cations and anions to form a two-dimensional network with layers parallel to the [101] plane (Fig. 2). Each of the two independent cation-anion pairs form the content of alternate network layers.

The conformation adopted by the C8H22N42+ cation in the crystal structure of 1 is very similar to the conformations adopted by the same cation in the crystal structures of the 2-hydroxybenzoate (Cukrowski, et al., 2012), the nitrate (Junk & Smith, 2005) and the tetrahydrogenpentaborate (Jiang, et al., 2009) salts despite the differences in the size and shape of the anions in the various structures.

Related literature top

For the structures of the 2-hydroxybenzoate, the nitrate and the tetrahydrogen pentaborate salts of the 1,4-di(2-ammonioethyl)piperazine cation, see: Cukrowski et al. (2012); Junk & Smith (2005); Jiang et al. (2009), respectively.

Experimental top

2 ml of a.3.32 M aqueous solution of what was claimed by the supplier (QinHuangDao JinLei Chemical Co.Ltd) to be N,N'-di(2-aminoethyl)-ethane-1,2-diamine, but which turned out to be a mixture of that compound (C6H18N4, 6.64n mmol) and 1,4-di(2-aminoethyl)piperazine (C8H20N4, 5.57(1-n) mmol) was added to 0.78 g of benzoic acid (6.96 mmol), resulting in a clear colourless solution. 0.2 ml of ethanol was added to the solution and the mixture was heated for 3 h at 70 °C. The solution was cooled to room temperature and then left covered for six days and then allowed to slowly evaporate by covering the container with perforated aluminium foil. Yellow crystals were obtained after four days of slow evaporation.

Refinement top

The crystal structure was refined as a two component pseudo-merohedral twin using the twin law 0 0 1 0 - 1 0 1 0 0. The fractional contribution refined to 0.1355 (8). H1A, H1B and H1C were located by a difference map and their coordinates were refined. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å, (CH) or 0.99Å (CH2). Isotropic displacement parameters for all hydrogen atoms were set to 1.20 times Ueq of the parent atom.

Structure description top

The title compound [C8H22N42+ 2(C7H5O2-)] (1) was obtained as an unintended product during an attempt to prepare a benzoate salt of a singly protonated N,N'-di(2-aminoethyl)-2-aminoethane-1-ammonium ion (C6H19N4+ C7H5O2-). This occurred because the starting material, instead of being pure N,N'-di(2-aminoethyl)-ethane-1,2-diamine, (C6H18N4), was a mixture of that compound and 1,4-di(2-aminoethyl)piperazine (C8H22N4) see Cukrowski, et al. (2012).

The asymmetric unit of the title compound, C8H22N42+, 2(C7H5O2-), 1, is a salt with two independent pairs of half a C8H22N42+ cation plus a C7H5O2- anion. The C8H22N42+ cations are symmetrical and lie across crystallographic centres of inversion (Fig. 1). The crystal structure was refined as a two-component pseudo- merohedral twin using the twin law 0 0 1 0 - 1 0 1 0 0. The fractional contribution refined to 0.1355 (8).

All three H atoms of each ammonium group in the cations of 1 are hydrogen bonded to the O atoms of the carboxylate groups of the anions. For each ammonium group, one H atom forms a bifurcated hydrogen bond to both of the O atoms of the carboxylate group of one anion, whereas the other two H atoms each form single hydrogen bonds to one O atom of the carboxylate group of each of two additional anions (Fig. 2). Thus both the O atoms of each carboxylate group are each acceptors for two hydrogen bonds. N—H···O hydrogen bonds and weak N—H···O intermolecular interactions link the cations and anions to form a two-dimensional network with layers parallel to the [101] plane (Fig. 2). Each of the two independent cation-anion pairs form the content of alternate network layers.

The conformation adopted by the C8H22N42+ cation in the crystal structure of 1 is very similar to the conformations adopted by the same cation in the crystal structures of the 2-hydroxybenzoate (Cukrowski, et al., 2012), the nitrate (Junk & Smith, 2005) and the tetrahydrogenpentaborate (Jiang, et al., 2009) salts despite the differences in the size and shape of the anions in the various structures.

For the structures of the 2-hydroxybenzoate, the nitrate and the tetrahydrogen pentaborate salts of the 1,4-di(2-ammonioethyl)piperazine cation, see: Cukrowski et al. (2012); Junk & Smith (2005); Jiang et al. (2009), respectively.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50° probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed offset from along the b axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonds. The intermolecular N—H···O hydrogen bonds form a two-dimensional network.
2,2'-(Piperazine-1,4-diyl)diethanaminium dibenzoate top
Crystal data top
C8H22N42+·2C7H5O2F(000) = 896
Mr = 416.52Dx = 1.204 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 12295 reflections
a = 19.5300 (4) Åθ = 1.0–27.5°
b = 6.6694 (2) ŵ = 0.08 mm1
c = 19.6178 (4) ÅT = 180 K
β = 115.989 (1)°Block, yellow
V = 2296.89 (10) Å30.28 × 0.23 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5194 independent reflections
Radiation source: fine-focus sealed tube3970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Thin slice ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2522
Tmin = 0.910, Tmax = 0.991k = 78
20137 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
5194 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H22N42+·2C7H5O2V = 2296.89 (10) Å3
Mr = 416.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 19.5300 (4) ŵ = 0.08 mm1
b = 6.6694 (2) ÅT = 180 K
c = 19.6178 (4) Å0.28 × 0.23 × 0.12 mm
β = 115.989 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5194 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3970 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.991Rint = 0.031
20137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
5194 reflectionsΔρmin = 0.18 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19472 (7)0.2447 (2)0.19552 (7)0.0375 (3)
H1A0.1776 (9)0.374 (3)0.2008 (8)0.045*
H1B0.2431 (9)0.223 (2)0.2302 (9)0.045*
H1C0.1652 (9)0.142 (3)0.2002 (8)0.045*
C20.19529 (8)0.2437 (3)0.12037 (8)0.0491 (4)
H2A0.21270.11100.11160.059*
H2B0.23190.34570.11980.059*
C30.11811 (9)0.2872 (3)0.05773 (8)0.0512 (4)
H3A0.09940.41560.06860.061*
H3B0.12260.30340.00970.061*
N40.06208 (7)0.12951 (18)0.04783 (6)0.0418 (3)
C50.01461 (8)0.2057 (2)0.00103 (8)0.0458 (4)
H5A0.01820.24890.04870.055*
H5B0.02420.32410.02600.055*
C60.07429 (8)0.0487 (2)0.01107 (8)0.0483 (4)
H6A0.12540.10480.04300.058*
H6B0.07260.01060.03840.058*
C70.46941 (7)0.2132 (2)0.30262 (7)0.0347 (3)
C80.51949 (8)0.3595 (3)0.30237 (8)0.0470 (4)
H80.50130.49090.28520.056*
C90.59622 (9)0.3155 (3)0.32714 (9)0.0583 (5)
H90.63040.41750.32760.070*
C100.62302 (9)0.1248 (3)0.35110 (9)0.0566 (5)
H100.67550.09520.36800.068*
C110.57335 (9)0.0231 (3)0.35052 (8)0.0512 (4)
H110.59150.15520.36640.061*
C120.49691 (8)0.0210 (2)0.32676 (8)0.0415 (3)
H120.46310.08090.32700.050*
C130.38687 (7)0.2669 (2)0.27915 (7)0.0340 (3)
O140.36433 (5)0.43634 (15)0.25215 (5)0.0429 (2)
O150.34467 (5)0.13526 (15)0.28820 (6)0.0435 (3)
N1'0.18677 (7)0.8130 (2)0.69616 (7)0.0387 (3)
H1'A0.2019 (9)0.704 (3)0.6812 (9)0.046*
H1'B0.2193 (9)0.845 (2)0.7439 (10)0.046*
H1'C0.1828 (9)0.917 (3)0.6640 (9)0.046*
C2'0.11280 (9)0.7645 (3)0.69548 (8)0.0490 (4)
H2'A0.09460.88140.71410.059*
H2'B0.11930.65060.73010.059*
C3'0.05450 (8)0.7108 (3)0.61682 (8)0.0484 (4)
H3'A0.07030.58540.60060.058*
H3'B0.00490.68570.61770.058*
N4'0.04519 (6)0.86872 (18)0.56193 (6)0.0409 (3)
C5'0.00761 (8)1.0480 (2)0.57298 (8)0.0458 (4)
H5'A0.03791.10200.62460.055*
H5'B0.04341.01140.56830.055*
C6'0.00043 (8)0.7944 (2)0.48472 (8)0.0441 (4)
H6'A0.05070.75390.47850.053*
H6'B0.02560.67470.47620.053*
C7'0.19900 (7)0.3513 (2)0.53125 (7)0.0351 (3)
C8'0.17823 (8)0.5420 (2)0.50088 (8)0.0425 (3)
H8'0.18150.65150.53320.051*
C9'0.15272 (9)0.5741 (3)0.42383 (9)0.0515 (4)
H9'0.13770.70440.40320.062*
C10'0.14927 (9)0.4151 (3)0.37717 (9)0.0533 (4)
H10'0.13150.43650.32430.064*
C11'0.17134 (9)0.2262 (3)0.40677 (8)0.0518 (4)
H11'0.16990.11810.37460.062*
C12'0.19571 (8)0.1943 (2)0.48389 (8)0.0440 (3)
H12'0.21020.06340.50430.053*
C13'0.22236 (7)0.3122 (2)0.61444 (7)0.0355 (3)
O14'0.23245 (6)0.46100 (17)0.65735 (5)0.0521 (3)
O15'0.23097 (6)0.13489 (16)0.63648 (6)0.0478 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (6)0.0325 (7)0.0436 (6)0.0018 (5)0.0115 (5)0.0006 (5)
C20.0417 (8)0.0570 (10)0.0495 (8)0.0097 (7)0.0207 (6)0.0086 (7)
C30.0576 (9)0.0497 (10)0.0432 (8)0.0072 (8)0.0193 (7)0.0004 (7)
N40.0427 (7)0.0410 (7)0.0360 (6)0.0020 (5)0.0119 (5)0.0013 (5)
C50.0519 (9)0.0402 (8)0.0360 (7)0.0059 (7)0.0107 (6)0.0001 (6)
C60.0448 (8)0.0519 (10)0.0428 (7)0.0073 (7)0.0144 (6)0.0012 (7)
C70.0362 (7)0.0386 (8)0.0291 (6)0.0007 (6)0.0141 (5)0.0019 (5)
C80.0428 (8)0.0523 (10)0.0458 (8)0.0024 (7)0.0195 (6)0.0051 (7)
C90.0424 (9)0.0790 (14)0.0564 (9)0.0083 (9)0.0242 (7)0.0073 (8)
C100.0378 (8)0.0872 (14)0.0471 (8)0.0120 (9)0.0209 (6)0.0019 (8)
C110.0468 (8)0.0586 (11)0.0473 (8)0.0164 (8)0.0198 (6)0.0009 (7)
C120.0405 (8)0.0430 (9)0.0401 (7)0.0045 (6)0.0169 (6)0.0012 (6)
C130.0375 (7)0.0331 (8)0.0299 (6)0.0004 (6)0.0133 (5)0.0028 (5)
O140.0447 (5)0.0350 (6)0.0472 (5)0.0067 (4)0.0184 (4)0.0049 (4)
O150.0346 (5)0.0389 (6)0.0540 (6)0.0003 (4)0.0167 (4)0.0055 (4)
N1'0.0444 (7)0.0342 (7)0.0334 (6)0.0010 (5)0.0132 (5)0.0019 (5)
C2'0.0499 (9)0.0546 (10)0.0447 (8)0.0003 (7)0.0227 (7)0.0058 (7)
C3'0.0402 (8)0.0472 (10)0.0529 (9)0.0060 (7)0.0159 (6)0.0023 (7)
N4'0.0353 (6)0.0389 (7)0.0423 (6)0.0011 (5)0.0113 (5)0.0021 (5)
C5'0.0419 (8)0.0485 (9)0.0432 (8)0.0010 (7)0.0152 (6)0.0082 (7)
C6'0.0376 (7)0.0406 (9)0.0476 (8)0.0017 (6)0.0127 (6)0.0088 (6)
C7'0.0308 (6)0.0379 (8)0.0375 (7)0.0013 (6)0.0159 (5)0.0026 (6)
C8'0.0444 (8)0.0390 (9)0.0466 (8)0.0006 (6)0.0223 (6)0.0053 (6)
C9'0.0560 (9)0.0530 (10)0.0492 (8)0.0069 (8)0.0265 (7)0.0185 (8)
C10'0.0478 (8)0.0758 (13)0.0375 (7)0.0002 (8)0.0198 (6)0.0123 (8)
C11'0.0554 (9)0.0616 (11)0.0402 (8)0.0002 (8)0.0226 (7)0.0054 (7)
C12'0.0472 (8)0.0404 (8)0.0425 (8)0.0024 (7)0.0179 (6)0.0008 (6)
C13'0.0312 (7)0.0365 (8)0.0388 (7)0.0026 (6)0.0154 (5)0.0036 (6)
O14'0.0690 (7)0.0428 (7)0.0385 (5)0.0114 (5)0.0181 (5)0.0018 (5)
O15'0.0582 (7)0.0390 (6)0.0432 (5)0.0003 (5)0.0195 (5)0.0086 (4)
Geometric parameters (Å, º) top
N1—C21.4792 (19)N1'—C2'1.475 (2)
N1—H1A0.945 (18)N1'—H1'A0.882 (19)
N1—H1B0.902 (16)N1'—H1'B0.897 (17)
N1—H1C0.925 (18)N1'—H1'C0.916 (18)
C2—C31.498 (2)C2'—C3'1.505 (2)
C2—H2A0.9900C2'—H2'A0.9900
C2—H2B0.9900C2'—H2'B0.9900
C3—N41.468 (2)C3'—N4'1.460 (2)
C3—H3A0.9900C3'—H3'A0.9900
C3—H3B0.9900C3'—H3'B0.9900
N4—C51.4625 (19)N4'—C6'1.4640 (18)
N4—C61.463 (2)N4'—C5'1.468 (2)
C5—C6i1.506 (2)C5'—C6'ii1.502 (2)
C5—H5A0.9900C5'—H5'A0.9900
C5—H5B0.9900C5'—H5'B0.9900
C6—C5i1.506 (2)C6'—C5'ii1.502 (2)
C6—H6A0.9900C6'—H6'A0.9900
C6—H6B0.9900C6'—H6'B0.9900
C7—C81.383 (2)C7'—C12'1.383 (2)
C7—C121.390 (2)C7'—C8'1.388 (2)
C7—C131.5127 (18)C7'—C13'1.5125 (18)
C8—C91.389 (2)C8'—C9'1.385 (2)
C8—H80.9500C8'—H8'0.9500
C9—C101.378 (3)C9'—C10'1.383 (3)
C9—H90.9500C9'—H9'0.9500
C10—C111.380 (3)C10'—C11'1.375 (3)
C10—H100.9500C10'—H10'0.9500
C11—C121.387 (2)C11'—C12'1.389 (2)
C11—H110.9500C11'—H11'0.9500
C12—H120.9500C12'—H12'0.9500
C13—O141.2436 (17)C13'—O15'1.2447 (17)
C13—O151.2690 (17)C13'—O14'1.2599 (17)
C2—N1—H1A105.8 (9)C2'—N1'—H1'A106.7 (11)
C2—N1—H1B106.8 (9)C2'—N1'—H1'B107.8 (10)
H1A—N1—H1B111.6 (14)H1'A—N1'—H1'B110.8 (14)
C2—N1—H1C111.9 (10)C2'—N1'—H1'C111.8 (10)
H1A—N1—H1C113.4 (14)H1'A—N1'—H1'C109.5 (14)
H1B—N1—H1C107.2 (14)H1'B—N1'—H1'C110.2 (15)
N1—C2—C3111.87 (13)N1'—C2'—C3'111.07 (12)
N1—C2—H2A109.2N1'—C2'—H2'A109.4
C3—C2—H2A109.2C3'—C2'—H2'A109.4
N1—C2—H2B109.2N1'—C2'—H2'B109.4
C3—C2—H2B109.2C3'—C2'—H2'B109.4
H2A—C2—H2B107.9H2'A—C2'—H2'B108.0
N4—C3—C2113.21 (13)N4'—C3'—C2'112.22 (13)
N4—C3—H3A108.9N4'—C3'—H3'A109.2
C2—C3—H3A108.9C2'—C3'—H3'A109.2
N4—C3—H3B108.9N4'—C3'—H3'B109.2
C2—C3—H3B108.9C2'—C3'—H3'B109.2
H3A—C3—H3B107.8H3'A—C3'—H3'B107.9
C5—N4—C6108.42 (11)C3'—N4'—C6'110.11 (12)
C5—N4—C3109.47 (12)C3'—N4'—C5'112.79 (12)
C6—N4—C3111.96 (12)C6'—N4'—C5'108.54 (11)
N4—C5—C6i111.48 (13)N4'—C5'—C6'ii110.65 (12)
N4—C5—H5A109.3N4'—C5'—H5'A109.5
C6i—C5—H5A109.3C6'ii—C5'—H5'A109.5
N4—C5—H5B109.3N4'—C5'—H5'B109.5
C6i—C5—H5B109.3C6'ii—C5'—H5'B109.5
H5A—C5—H5B108.0H5'A—C5'—H5'B108.1
N4—C6—C5i111.13 (12)N4'—C6'—C5'ii111.14 (12)
N4—C6—H6A109.4N4'—C6'—H6'A109.4
C5i—C6—H6A109.4C5'ii—C6'—H6'A109.4
N4—C6—H6B109.4N4'—C6'—H6'B109.4
C5i—C6—H6B109.4C5'ii—C6'—H6'B109.4
H6A—C6—H6B108.0H6'A—C6'—H6'B108.0
C8—C7—C12118.90 (13)C12'—C7'—C8'119.15 (12)
C8—C7—C13119.50 (13)C12'—C7'—C13'119.82 (13)
C12—C7—C13121.57 (12)C8'—C7'—C13'120.99 (13)
C7—C8—C9120.39 (16)C9'—C8'—C7'120.50 (14)
C7—C8—H8119.8C9'—C8'—H8'119.7
C9—C8—H8119.8C7'—C8'—H8'119.7
C10—C9—C8120.31 (16)C10'—C9'—C8'119.60 (15)
C10—C9—H9119.8C10'—C9'—H9'120.2
C8—C9—H9119.8C8'—C9'—H9'120.2
C9—C10—C11119.78 (15)C11'—C10'—C9'120.50 (14)
C9—C10—H10120.1C11'—C10'—H10'119.7
C11—C10—H10120.1C9'—C10'—H10'119.7
C10—C11—C12120.04 (16)C10'—C11'—C12'119.65 (16)
C10—C11—H11120.0C10'—C11'—H11'120.2
C12—C11—H11120.0C12'—C11'—H11'120.2
C11—C12—C7120.57 (14)C7'—C12'—C11'120.56 (15)
C11—C12—H12119.7C7'—C12'—H12'119.7
C7—C12—H12119.7C11'—C12'—H12'119.7
O14—C13—O15123.91 (12)O15'—C13'—O14'123.96 (12)
O14—C13—C7118.44 (12)O15'—C13'—C7'118.02 (12)
O15—C13—C7117.65 (12)O14'—C13'—C7'118.01 (12)
N1—C2—C3—N466.32 (18)N1'—C2'—C3'—N4'56.03 (18)
C2—C3—N4—C5164.89 (13)C2'—C3'—N4'—C6'168.40 (13)
C2—C3—N4—C674.84 (16)C2'—C3'—N4'—C5'70.19 (16)
C6—N4—C5—C6i57.36 (17)C3'—N4'—C5'—C6'ii179.90 (11)
C3—N4—C5—C6i179.76 (12)C6'—N4'—C5'—C6'ii57.80 (16)
C5—N4—C6—C5i57.14 (17)C3'—N4'—C6'—C5'ii177.99 (12)
C3—N4—C6—C5i178.01 (11)C5'—N4'—C6'—C5'ii58.10 (16)
C12—C7—C8—C91.1 (2)C12'—C7'—C8'—C9'1.6 (2)
C13—C7—C8—C9176.94 (13)C13'—C7'—C8'—C9'176.24 (13)
C7—C8—C9—C101.0 (2)C7'—C8'—C9'—C10'1.2 (2)
C8—C9—C10—C110.1 (2)C8'—C9'—C10'—C11'0.3 (2)
C9—C10—C11—C120.8 (2)C9'—C10'—C11'—C12'1.4 (2)
C10—C11—C12—C70.7 (2)C8'—C7'—C12'—C11'0.5 (2)
C8—C7—C12—C110.28 (19)C13'—C7'—C12'—C11'177.32 (13)
C13—C7—C12—C11177.74 (12)C10'—C11'—C12'—C7'0.9 (2)
C8—C7—C13—O147.89 (17)C12'—C7'—C13'—O15'6.79 (19)
C12—C7—C13—O14174.10 (12)C8'—C7'—C13'—O15'171.02 (13)
C8—C7—C13—O15172.22 (12)C12'—C7'—C13'—O14'172.71 (13)
C12—C7—C13—O155.79 (17)C8'—C7'—C13'—O14'9.48 (19)
Symmetry codes: (i) x, y, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15iii0.945 (18)1.833 (19)2.7739 (17)173.0 (15)
N1—H1B···O150.902 (16)1.895 (17)2.7836 (15)167.8 (14)
N1—H1B···O140.902 (16)2.632 (16)3.2580 (16)127.2 (13)
N1—H1C···O14iv0.925 (18)1.887 (18)2.7660 (16)157.9 (14)
N1—H1A···O140.882 (19)1.857 (19)2.7355 (17)174.2 (15)
N1—H1B···O14v0.897 (17)1.908 (17)2.7836 (16)164.8 (15)
N1—H1B···O15v0.897 (17)2.533 (16)3.1858 (16)130.1 (13)
N1—H1C···O15vi0.916 (18)1.934 (18)2.7585 (16)148.8 (14)
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H22N42+·2C7H5O2
Mr416.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)19.5300 (4), 6.6694 (2), 19.6178 (4)
β (°) 115.989 (1)
V3)2296.89 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.23 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.910, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
20137, 5194, 3970
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.02
No. of reflections5194
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995), SIR92 (Altomare et al., 1994), ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15i0.945 (18)1.833 (19)2.7739 (17)173.0 (15)
N1—H1B···O150.902 (16)1.895 (17)2.7836 (15)167.8 (14)
N1—H1B···O140.902 (16)2.632 (16)3.2580 (16)127.2 (13)
N1—H1C···O14ii0.925 (18)1.887 (18)2.7660 (16)157.9 (14)
N1'—H1'A···O14'0.882 (19)1.857 (19)2.7355 (17)174.2 (15)
N1'—H1'B···O14'iii0.897 (17)1.908 (17)2.7836 (16)164.8 (15)
N1'—H1'B···O15'iii0.897 (17)2.533 (16)3.1858 (16)130.1 (13)
N1'—H1'C···O15'iv0.916 (18)1.934 (18)2.7585 (16)148.8 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank Dr John E. Davies of the University of Cambridge (England) for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationCukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723–729.  CAS Google Scholar
First citationJunk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds