organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benz­yl­oxy-2,5-bis­­(chloro­meth­yl)-4-meth­­oxy­benzene

aUniversity of Monastir, Faculté de Pharmacie de Monastir, Avenue Avicenne, 5019 Monastir, Tunisia, and bUniversity of Monastir, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia
*Correspondence e-mail: salah_belkiria@yahoo.com

(Received 18 June 2012; accepted 28 June 2012; online 4 July 2012)

In the title compound, C16H16Cl2O2, the dihedral angle between the two rings is 52.65 (10)°. The two Cl atoms are trans to one another being displaced by 1.644 (5) and −1.664 (4) Å from the plane of the benzene ring. Except for the two Cl atoms and the C atoms of the ring of the benz­yloxy group, all the other atoms of the compound lie in the same plane [maximum deviation = 0.056 (3) Å]. In the crystal, no significant intermolecular interactions are observed.

Related literature

For general background, physical properties and synthesis of poly(p-phenyl­ene­vinyl­ene) derivatives (PPVs), see: Trad et al. (2006[Trad, H., Majdoub, M. & Davenas, J. (2006). Mater. Sci. Eng. C, 26, 334-339.]). For related structures, see: Huang et al. (2011[Huang, X., Ren, L.-H., Yin, R.-H. & Gao, F. (2011). Acta Cryst. E67, o2330.]); Watanabe et al. (2005[Watanabe, M., Miura, A., Matsumoto, T., Mataka, S. & Thiemann, T. (2005). Acta Cryst. E61, o1936-o1938.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16Cl2O2

  • Mr = 311.19

  • Monoclinic, P 21 /c

  • a = 10.9026 (4) Å

  • b = 17.8127 (6) Å

  • c = 8.4221 (2) Å

  • β = 109.561 (4)°

  • V = 1541.21 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius κ-geometry TurboCAD-4 diffractometer

  • 4141 measured reflections

  • 3363 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.099

  • 1 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.166

  • S = 1.00

  • 3363 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1-benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene (MBzCl) was used as a monomer for the synthesis of π-conjugated polymers such as poly(p-phenylenevinylene) derivatives (PPVs) which have potential application as electroluminescent materials. The monomer (MBzCl) has been synthesized as described in literature (Trad et al., 2006).

The asymmetric unit of the title compound (MBzCl) contains one molecule which is presented in Fig.1. The dihedral angle between the two phenyl rings is 52.65 (10)°. The two planes containing respectively the two chloromethyl groups and the substituted benzene ring are nearly orthogonal to each other, with a dihedral angle equal to 87.69 (9)°. The two chlorine atoms are in trans position with respect to the benzene substituted group. All atoms of the compound (MBzCl) lie in the same plane, the largest deviation being 0.0563 (28) Å for atom C9, except the two chlorine atoms and the carbons of the phenyl of the benzyloxy group. Some selected bond lengths are given in table 2 and agree with those reported for similar compounds (Huang et al., 2011; Watanabe et al., 2005). A strong intramolecular hydrogen bond C7—H7A···O1 is observed (table 1). In the crystal structure, weak intermolecular C—H···Cl hydrogen bonds link molecules of (MBzCl) into chains which propagate along [010] as shown in Fig. 2.

Related literature top

For general background, physical properties and synthesis of poly(p-phenylenevinylene) derivatives (PPVs), see: Trad et al. (2006). For related structures, see: Huang et al. (2011); Watanabe et al. (2005).

Experimental top

The compound 1-benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene (MBzCl) was prepared in two steps: a mixture of 4-methoxyphenol (10 mmol), benzylchloride (15 mmol) and K2CO3 (20 mmol) was added to 10 ml of DMF and was heated under stirring at 353 K for 24 h. The product, 1-benzyloxy-4-methoxybenzene (MBz), was purified by recrystallization from ethanol and was obtained as white powder.Yield: 95%; mp 346 (2) K. In a next step, a suspension of (MBz) (10 mmol) and paraformaldehyde (50 mmol), in a mixture of glacial acetic acid (20 ml) and 37% hydrochloric acid (10 ml), was left to stir for approximately 20 h at room temperature. The resulting mixture was then poured into distilled water. The product (MBzCl) was extracted with dichloromethane and recrystallized from ethanol as colorless needle-like white crystals. Yield: 40%; mp: 388 (2) K.

Refinement top

All H atoms were refined using a riding model with C—H = 0.96 (CH3), 0.97 (CH2), 0.93 (CArH) Å and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C) and 1.2 Ueq(C) respectively.

Structure description top

The 1-benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene (MBzCl) was used as a monomer for the synthesis of π-conjugated polymers such as poly(p-phenylenevinylene) derivatives (PPVs) which have potential application as electroluminescent materials. The monomer (MBzCl) has been synthesized as described in literature (Trad et al., 2006).

The asymmetric unit of the title compound (MBzCl) contains one molecule which is presented in Fig.1. The dihedral angle between the two phenyl rings is 52.65 (10)°. The two planes containing respectively the two chloromethyl groups and the substituted benzene ring are nearly orthogonal to each other, with a dihedral angle equal to 87.69 (9)°. The two chlorine atoms are in trans position with respect to the benzene substituted group. All atoms of the compound (MBzCl) lie in the same plane, the largest deviation being 0.0563 (28) Å for atom C9, except the two chlorine atoms and the carbons of the phenyl of the benzyloxy group. Some selected bond lengths are given in table 2 and agree with those reported for similar compounds (Huang et al., 2011; Watanabe et al., 2005). A strong intramolecular hydrogen bond C7—H7A···O1 is observed (table 1). In the crystal structure, weak intermolecular C—H···Cl hydrogen bonds link molecules of (MBzCl) into chains which propagate along [010] as shown in Fig. 2.

For general background, physical properties and synthesis of poly(p-phenylenevinylene) derivatives (PPVs), see: Trad et al. (2006). For related structures, see: Huang et al. (2011); Watanabe et al. (2005).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compoud MBzCl with displacement ellipsoids drawn at the 30% probability.
[Figure 2] Fig. 2. The lattice framework of the title compound MBzCl, showing molecules linked through weak intermolecular C—H···Cl hydrogen bonds to form chains which propagate along [010].
1-Benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene top
Crystal data top
C16H16Cl2O2F(000) = 648
Mr = 311.19Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4284 reflections
a = 10.9026 (4) Åθ = 2.0–27.0°
b = 17.8127 (6) ŵ = 0.42 mm1
c = 8.4221 (2) ÅT = 298 K
β = 109.561 (4)°Needle-shaped, colourless
V = 1541.21 (9) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius κ-geometry TurboCAD-4
diffractometer
Rint = 0.099
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.0°
Graphite monochromatorh = 131
non–profiled ω/2θ scansk = 220
4141 measured reflectionsl = 1010
3363 independent reflections1 standard reflections every 60 min
1562 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.2353P]
where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H16Cl2O2V = 1541.21 (9) Å3
Mr = 311.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9026 (4) ŵ = 0.42 mm1
b = 17.8127 (6) ÅT = 298 K
c = 8.4221 (2) Å0.40 × 0.30 × 0.20 mm
β = 109.561 (4)°
Data collection top
Enraf–Nonius κ-geometry TurboCAD-4
diffractometer
Rint = 0.099
4141 measured reflections1 standard reflections every 60 min
3363 independent reflections intensity decay: 3%
1562 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
3363 reflectionsΔρmin = 0.33 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01947 (9)0.37837 (6)0.06080 (12)0.0810 (3)
Cl20.62734 (9)0.11217 (6)0.35509 (13)0.0854 (4)
O10.2844 (2)0.08686 (11)0.1620 (3)0.0591 (6)
O20.3519 (2)0.39330 (11)0.2330 (3)0.0676 (7)
C10.2962 (3)0.16329 (16)0.1757 (4)0.0456 (7)
C20.2106 (3)0.21379 (16)0.0689 (4)0.0488 (7)
H20.13880.19600.01790.059*
C30.2311 (3)0.29076 (16)0.0903 (4)0.0479 (7)
C40.3386 (3)0.31709 (16)0.2217 (4)0.0510 (7)
C50.4231 (3)0.26696 (17)0.3285 (4)0.0521 (7)
H50.49470.28490.41550.062*
C60.4029 (3)0.18995 (16)0.3084 (4)0.0485 (7)
C70.4947 (3)0.13664 (18)0.4269 (4)0.0596 (8)
H7A0.44810.09150.43680.071*
H7B0.52890.15950.53760.071*
C80.1388 (3)0.34438 (18)0.0267 (4)0.0590 (8)
H8A0.09500.31950.13300.071*
H8B0.18720.38650.04870.071*
C90.4639 (4)0.4225 (2)0.3585 (5)0.0789 (11)
H9A0.46280.40830.46790.118*
H9B0.46400.47630.35030.118*
H9C0.54080.40280.34210.118*
C100.1737 (3)0.05788 (17)0.0327 (4)0.0555 (8)
H10A0.17370.07520.07650.067*
H10B0.09460.07550.04910.067*
C110.1787 (3)0.02635 (16)0.0394 (4)0.0480 (7)
C120.1706 (3)0.06681 (18)0.1013 (4)0.0599 (8)
H120.16420.04190.20090.072*
C130.1719 (4)0.14467 (19)0.0975 (5)0.0704 (10)
H130.16630.17170.19410.084*
C140.1815 (3)0.18163 (19)0.0491 (5)0.0683 (9)
H140.18280.23380.05220.082*
C150.1892 (3)0.14167 (19)0.1900 (5)0.0678 (9)
H150.19550.16650.28960.081*
C160.1875 (3)0.06377 (17)0.1849 (4)0.0596 (8)
H160.19240.03670.28130.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0677 (6)0.0993 (7)0.0726 (6)0.0214 (5)0.0192 (5)0.0109 (5)
Cl20.0632 (6)0.1105 (8)0.0773 (7)0.0212 (5)0.0167 (5)0.0182 (5)
O10.0492 (12)0.0531 (12)0.0632 (14)0.0077 (10)0.0031 (10)0.0008 (10)
O20.0667 (15)0.0520 (13)0.0768 (17)0.0099 (11)0.0145 (12)0.0128 (11)
C10.0400 (15)0.0517 (17)0.0442 (15)0.0052 (12)0.0131 (12)0.0040 (13)
C20.0415 (16)0.0598 (19)0.0440 (16)0.0063 (13)0.0128 (13)0.0056 (14)
C30.0436 (15)0.0592 (18)0.0431 (16)0.0039 (14)0.0174 (13)0.0044 (13)
C40.0501 (17)0.0543 (18)0.0517 (17)0.0056 (14)0.0212 (14)0.0068 (14)
C50.0444 (16)0.0630 (19)0.0467 (16)0.0106 (14)0.0124 (13)0.0118 (14)
C60.0389 (14)0.0627 (18)0.0444 (15)0.0050 (13)0.0147 (12)0.0015 (14)
C70.0509 (18)0.072 (2)0.0514 (18)0.0006 (15)0.0107 (15)0.0008 (15)
C80.0568 (19)0.065 (2)0.0530 (19)0.0010 (16)0.0149 (15)0.0020 (16)
C90.089 (3)0.059 (2)0.080 (3)0.0217 (19)0.016 (2)0.0175 (18)
C100.0468 (16)0.0556 (19)0.0553 (19)0.0050 (14)0.0054 (14)0.0018 (14)
C110.0381 (14)0.0526 (17)0.0493 (17)0.0051 (13)0.0091 (12)0.0032 (14)
C120.063 (2)0.066 (2)0.0474 (19)0.0032 (16)0.0135 (15)0.0014 (15)
C130.077 (2)0.069 (2)0.061 (2)0.0076 (19)0.0188 (19)0.0162 (18)
C140.068 (2)0.0512 (19)0.082 (3)0.0034 (16)0.0195 (19)0.0040 (19)
C150.070 (2)0.068 (2)0.062 (2)0.0075 (17)0.0186 (17)0.0099 (17)
C160.064 (2)0.062 (2)0.0509 (19)0.0076 (16)0.0163 (15)0.0045 (15)
Geometric parameters (Å, º) top
Cl1—C81.801 (3)C8—H8B0.9700
Cl2—C71.798 (3)C9—H9A0.9600
O1—C11.369 (3)C9—H9B0.9600
O1—C101.424 (3)C9—H9C0.9600
O2—C41.365 (3)C10—C111.502 (4)
O2—C91.420 (4)C10—H10A0.9700
C1—C21.388 (4)C10—H10B0.9700
C1—C61.399 (4)C11—C121.364 (4)
C2—C31.391 (4)C11—C161.370 (4)
C2—H20.9300C12—C131.387 (4)
C3—C41.397 (4)C12—H120.9300
C3—C81.494 (4)C13—C141.372 (5)
C4—C51.378 (4)C13—H130.9300
C5—C61.391 (4)C14—C151.363 (5)
C5—H50.9300C14—H140.9300
C6—C71.493 (4)C15—C161.388 (4)
C7—H7A0.9700C15—H150.9300
C7—H7B0.9700C16—H160.9300
C8—H8A0.9700
C1—O1—C10117.2 (2)H8A—C8—H8B108.0
C4—O2—C9117.4 (3)O2—C9—H9A109.5
O1—C1—C2124.5 (2)O2—C9—H9B109.5
O1—C1—C6115.8 (3)H9A—C9—H9B109.5
C2—C1—C6119.8 (3)O2—C9—H9C109.5
C1—C2—C3120.7 (3)H9A—C9—H9C109.5
C1—C2—H2119.6H9B—C9—H9C109.5
C3—C2—H2119.6O1—C10—C11108.8 (2)
C2—C3—C4119.3 (3)O1—C10—H10A109.9
C2—C3—C8120.1 (3)C11—C10—H10A109.9
C4—C3—C8120.6 (3)O1—C10—H10B109.9
O2—C4—C5124.5 (3)C11—C10—H10B109.9
O2—C4—C3115.5 (3)H10A—C10—H10B108.3
C5—C4—C3120.0 (3)C12—C11—C16119.0 (3)
C4—C5—C6121.1 (3)C12—C11—C10120.3 (3)
C4—C5—H5119.5C16—C11—C10120.7 (3)
C6—C5—H5119.5C11—C12—C13120.7 (3)
C5—C6—C1119.2 (3)C11—C12—H12119.7
C5—C6—C7120.2 (3)C13—C12—H12119.7
C1—C6—C7120.7 (3)C14—C13—C12119.9 (3)
C6—C7—Cl2111.3 (2)C14—C13—H13120.1
C6—C7—H7A109.4C12—C13—H13120.1
Cl2—C7—H7A109.4C15—C14—C13119.8 (3)
C6—C7—H7B109.4C15—C14—H14120.1
Cl2—C7—H7B109.4C13—C14—H14120.1
H7A—C7—H7B108.0C14—C15—C16119.9 (3)
C3—C8—Cl1111.4 (2)C14—C15—H15120.0
C3—C8—H8A109.4C16—C15—H15120.0
Cl1—C8—H8A109.4C11—C16—C15120.7 (3)
C3—C8—H8B109.4C11—C16—H16119.7
Cl1—C8—H8B109.4C15—C16—H16119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.972.402.756 (4)101

Experimental details

Crystal data
Chemical formulaC16H16Cl2O2
Mr311.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9026 (4), 17.8127 (6), 8.4221 (2)
β (°) 109.561 (4)
V3)1541.21 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius κ-geometry TurboCAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4141, 3363, 1562
Rint0.099
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.166, 1.00
No. of reflections3363
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia and they wish to acknowledge Dr T. Guerfel for the data collection.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuang, X., Ren, L.-H., Yin, R.-H. & Gao, F. (2011). Acta Cryst. E67, o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrad, H., Majdoub, M. & Davenas, J. (2006). Mater. Sci. Eng. C, 26, 334–339.  Web of Science CrossRef CAS Google Scholar
First citationWatanabe, M., Miura, A., Matsumoto, T., Mataka, S. & Thiemann, T. (2005). Acta Cryst. E61, o1936–o1938.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds