organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­aza­bi­cyclo­[2.2.2]octa­ne–trans,trans-hexa-2,4-dienedioic acid (1/1)

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 26 June 2012; accepted 28 June 2012; online 4 July 2012)

The title 1:1 co-crystal, C6H12N2·C6H6O4, the dicarb­oxy­lic acid mol­ecule is close to planar [r.m.s. deviation from the mean plane = 0.07 (1) Å]. In the crystal, the two mol­ecules are arranged alternately and are linked by O—H⋯N hydrogen bonds, leading to the formation of a chain along the [20-1] direction. The chains are assembled into a two-dimensional framework parallel to the (102) plane through weak C—H⋯O hydrogen bonds between the two types of mol­ecules.

Related literature

For background to the applications of co-crystals, see: Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]); Gao et al. (2004[Gao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]); Hori et al. (2009[Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567-569.]); Weyna et al. (2009[Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]). For a related structure, see: Moon & Park (2012[Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N2·C6H6O4

  • Mr = 254.28

  • Triclinic, [P \overline 1]

  • a = 8.1547 (2) Å

  • b = 8.9321 (2) Å

  • c = 9.4028 (2) Å

  • α = 86.258 (1)°

  • β = 67.376 (1)°

  • γ = 80.719 (1)°

  • V = 623.90 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.990

  • 10893 measured reflections

  • 2719 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.06

  • 2719 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.70 2.5299 (14) 170
O3—H3⋯N2i 0.84 1.71 2.5447 (15) 170
C3—H3A⋯O2ii 0.95 2.53 3.4182 (17) 155
C8—H8A⋯O3ii 0.99 2.60 3.4255 (18) 141
C9—H9A⋯O1iii 0.99 2.56 3.0789 (17) 113
Symmetry codes: (i) x-2, y, z+1; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Co-crystals made up of two or more components have attracted much attention in recent years owing to their contributions to supramolecular chemistry (Bhogala & Nangia, 2003; Gao et al., 2004), materials chemistry (Hori et al., 2009) and pharmaceutical chemistry (Weyna et al., 2009). As a part of our recent efforts to construct supramolecular architectures using the co-crystal strategy, the crystal structure of a co-crystal consisting of trans,trans-hexa-2,4-dienedioic acid and 4,4'-bipyridine molecules has been reported by us (Moon & Park, 2012). In this paper we present a co-crystal structure of trans,trans-hexa-2,4-dienedioic acid with 1,4-diazabicyclo[2.2.2]octane.

The title compound is shown in Fig. 1. The asymmetric unit contains one 1,4-diazabicyclo[2.2.2]octane molecule and one trans,trans-hexa-2,4-dienedioic acid molecule. The dicarboxylic acid molecule is essentially planar, with an r.m.s. deviation from the mean plane of 0.07 Å.

In the crystal structure, both components are arranged alternately, and linked by intermolecular O—H···N hydrogen bonds, leading to the formation of a one-dimensional chain. Additionally, the chains are assembled into a two-dimensional framework through weak intermolecular C—H···O hydrogen bonds between 1,4-diazabicyclo[2.2.2]octane and dicarboxylic acid molecules (Fig. 2, Table 1).

Related literature top

For background to the applications of co-crystals, see: Bhogala & Nangia (2003); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009). For a related structure, see: Moon & Park (2012).

Experimental top

A mixture of stoichiometric amounts of trans,trans-hexa-2,4-dienedioic acid and 1,4-Diazabicyclo[2.2.2]octane in DMF (in a 1:1 volume ratio) was heated until the two components dissolved and was then kept at room temperature. Upon slow evaporation of the solvent, X–ray quality single crystals were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model. C—H = 0.95 Å for Csp2, C—H = 0.99 Å for methylene C and O—H = 0.84 Å for the hydroxyl groups; Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Co-crystals made up of two or more components have attracted much attention in recent years owing to their contributions to supramolecular chemistry (Bhogala & Nangia, 2003; Gao et al., 2004), materials chemistry (Hori et al., 2009) and pharmaceutical chemistry (Weyna et al., 2009). As a part of our recent efforts to construct supramolecular architectures using the co-crystal strategy, the crystal structure of a co-crystal consisting of trans,trans-hexa-2,4-dienedioic acid and 4,4'-bipyridine molecules has been reported by us (Moon & Park, 2012). In this paper we present a co-crystal structure of trans,trans-hexa-2,4-dienedioic acid with 1,4-diazabicyclo[2.2.2]octane.

The title compound is shown in Fig. 1. The asymmetric unit contains one 1,4-diazabicyclo[2.2.2]octane molecule and one trans,trans-hexa-2,4-dienedioic acid molecule. The dicarboxylic acid molecule is essentially planar, with an r.m.s. deviation from the mean plane of 0.07 Å.

In the crystal structure, both components are arranged alternately, and linked by intermolecular O—H···N hydrogen bonds, leading to the formation of a one-dimensional chain. Additionally, the chains are assembled into a two-dimensional framework through weak intermolecular C—H···O hydrogen bonds between 1,4-diazabicyclo[2.2.2]octane and dicarboxylic acid molecules (Fig. 2, Table 1).

For background to the applications of co-crystals, see: Bhogala & Nangia (2003); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009). For a related structure, see: Moon & Park (2012).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular O—H···N and C—H···O hydrogen bonds shown as dashed lines. (Symmetry codes: i) x - 2, y, z + 1; ii) -x + 1, -y, -z + 1; iii) -x + 2, -y + 1, -z + 1.) H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
1,4-Diazabicyclo[2.2.2]octane–trans,trans-hexa-2,4-dienedioic acid (1/1) top
Crystal data top
C6H12N2·C6H6O4Z = 2
Mr = 254.28F(000) = 272
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1547 (2) ÅCell parameters from 5075 reflections
b = 8.9321 (2) Åθ = 3.3–28.4°
c = 9.4028 (2) ŵ = 0.10 mm1
α = 86.258 (1)°T = 173 K
β = 67.376 (1)°Plate, colourless
γ = 80.719 (1)°0.20 × 0.12 × 0.10 mm
V = 623.90 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2719 independent reflections
Radiation source: fine-focus sealed tube2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.980, Tmax = 0.990k = 1111
10893 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2432P]
where P = (Fo2 + 2Fc2)/3
2719 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C6H12N2·C6H6O4γ = 80.719 (1)°
Mr = 254.28V = 623.90 (2) Å3
Triclinic, P1Z = 2
a = 8.1547 (2) ÅMo Kα radiation
b = 8.9321 (2) ŵ = 0.10 mm1
c = 9.4028 (2) ÅT = 173 K
α = 86.258 (1)°0.20 × 0.12 × 0.10 mm
β = 67.376 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2382 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.024
10893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
2719 reflectionsΔρmin = 0.37 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76168 (14)0.35311 (12)0.48540 (14)0.0383 (3)
H10.86600.31850.42550.046*
O20.70091 (14)0.13027 (12)0.44151 (14)0.0356 (3)
O30.25828 (14)0.13485 (13)0.96677 (14)0.0384 (3)
H30.36110.17181.02760.046*
O40.20125 (14)0.37072 (12)0.96904 (14)0.0370 (3)
C10.65577 (17)0.25426 (15)0.50280 (15)0.0231 (3)
C20.46734 (18)0.30803 (16)0.60830 (16)0.0253 (3)
H20.43750.41000.64320.030*
C30.33925 (17)0.22026 (15)0.65586 (15)0.0221 (3)
H3A0.36790.11910.61900.027*
C40.15787 (17)0.27194 (16)0.76141 (15)0.0234 (3)
H40.12790.37500.79290.028*
C50.03082 (18)0.18318 (16)0.81672 (16)0.0257 (3)
H50.05980.08000.78570.031*
C60.15544 (18)0.23910 (16)0.92551 (16)0.0250 (3)
N11.08788 (14)0.27644 (12)0.31399 (13)0.0215 (3)
N21.41841 (14)0.22012 (13)0.14620 (13)0.0230 (3)
C71.11006 (18)0.27117 (17)0.15051 (16)0.0261 (3)
H7A1.05830.37000.11990.031*
H7B1.04550.19190.13660.031*
C81.31022 (19)0.23589 (17)0.04914 (16)0.0279 (3)
H8A1.33320.14060.00810.033*
H8B1.34540.31870.02670.033*
C91.18363 (18)0.39594 (16)0.33479 (16)0.0252 (3)
H9A1.17060.39820.44380.030*
H9B1.13020.49630.30870.030*
C101.38327 (18)0.36395 (16)0.23055 (17)0.0273 (3)
H10A1.41590.44840.15630.033*
H10B1.45750.35580.29360.033*
C111.16529 (18)0.12776 (15)0.35852 (16)0.0252 (3)
H11A1.10410.04670.34320.030*
H11B1.14710.12900.46880.030*
C121.36674 (19)0.09588 (16)0.25949 (17)0.0274 (3)
H12A1.43660.08770.32630.033*
H12B1.39430.00160.20470.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (5)0.0337 (6)0.0531 (7)0.0076 (4)0.0034 (5)0.0147 (5)
O20.0232 (5)0.0290 (5)0.0455 (7)0.0053 (4)0.0009 (5)0.0109 (5)
O30.0190 (5)0.0351 (6)0.0470 (7)0.0081 (4)0.0059 (5)0.0094 (5)
O40.0240 (5)0.0287 (6)0.0456 (7)0.0033 (4)0.0006 (5)0.0012 (5)
C10.0176 (6)0.0246 (7)0.0252 (7)0.0034 (5)0.0058 (5)0.0002 (5)
C20.0195 (7)0.0242 (6)0.0289 (7)0.0022 (5)0.0056 (5)0.0027 (5)
C30.0177 (6)0.0254 (6)0.0218 (6)0.0017 (5)0.0065 (5)0.0001 (5)
C40.0178 (6)0.0272 (7)0.0235 (6)0.0019 (5)0.0067 (5)0.0001 (5)
C50.0191 (7)0.0291 (7)0.0256 (7)0.0029 (5)0.0047 (5)0.0024 (5)
C60.0179 (6)0.0302 (7)0.0243 (7)0.0040 (5)0.0052 (5)0.0016 (5)
N10.0163 (5)0.0238 (6)0.0222 (6)0.0039 (4)0.0041 (4)0.0029 (4)
N20.0168 (5)0.0262 (6)0.0222 (6)0.0035 (4)0.0030 (4)0.0017 (4)
C70.0216 (7)0.0325 (7)0.0252 (7)0.0033 (5)0.0101 (5)0.0015 (5)
C80.0245 (7)0.0358 (8)0.0206 (6)0.0039 (6)0.0054 (5)0.0026 (5)
C90.0201 (6)0.0252 (7)0.0273 (7)0.0042 (5)0.0043 (5)0.0066 (5)
C100.0197 (6)0.0287 (7)0.0320 (7)0.0079 (5)0.0055 (6)0.0052 (6)
C110.0218 (7)0.0260 (7)0.0246 (7)0.0059 (5)0.0049 (5)0.0024 (5)
C120.0229 (7)0.0245 (7)0.0295 (7)0.0007 (5)0.0057 (6)0.0024 (5)
Geometric parameters (Å, º) top
O1—C11.2925 (16)N2—C81.4812 (18)
O1—H10.8400N2—C121.4815 (18)
O2—C11.2177 (17)N2—C101.4836 (17)
O3—C61.2944 (17)C7—C81.5324 (18)
O3—H30.8400C7—H7A0.9900
O4—C61.2217 (18)C7—H7B0.9900
C1—C21.4924 (18)C8—H8A0.9900
C2—C31.3284 (19)C8—H8B0.9900
C2—H20.9500C9—C101.5335 (18)
C3—C41.4477 (18)C9—H9A0.9900
C3—H3A0.9500C9—H9B0.9900
C4—C51.3301 (19)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C5—C61.4931 (18)C11—C121.5342 (18)
C5—H50.9500C11—H11A0.9900
N1—C71.4800 (17)C11—H11B0.9900
N1—C111.4825 (17)C12—H12A0.9900
N1—C91.4835 (16)C12—H12B0.9900
C1—O1—H1109.5H7A—C7—H7B108.2
C6—O3—H3109.5N2—C8—C7109.89 (11)
O2—C1—O1125.03 (13)N2—C8—H8A109.7
O2—C1—C2122.44 (12)C7—C8—H8A109.7
O1—C1—C2112.53 (12)N2—C8—H8B109.7
C3—C2—C1123.21 (12)C7—C8—H8B109.7
C3—C2—H2118.4H8A—C8—H8B108.2
C1—C2—H2118.4N1—C9—C10109.92 (10)
C2—C3—C4122.93 (13)N1—C9—H9A109.7
C2—C3—H3A118.5C10—C9—H9A109.7
C4—C3—H3A118.5N1—C9—H9B109.7
C5—C4—C3123.67 (13)C10—C9—H9B109.7
C5—C4—H4118.2H9A—C9—H9B108.2
C3—C4—H4118.2N2—C10—C9109.32 (10)
C4—C5—C6122.70 (13)N2—C10—H10A109.8
C4—C5—H5118.7C9—C10—H10A109.8
C6—C5—H5118.7N2—C10—H10B109.8
O4—C6—O3125.06 (13)C9—C10—H10B109.8
O4—C6—C5121.79 (12)H10A—C10—H10B108.3
O3—C6—C5113.15 (12)N1—C11—C12109.41 (10)
C7—N1—C11109.23 (10)N1—C11—H11A109.8
C7—N1—C9109.70 (11)C12—C11—H11A109.8
C11—N1—C9108.99 (10)N1—C11—H11B109.8
C8—N2—C12109.88 (11)C12—C11—H11B109.8
C8—N2—C10109.04 (11)H11A—C11—H11B108.2
C12—N2—C10108.85 (11)N2—C12—C11109.83 (11)
N1—C7—C8109.49 (11)N2—C12—H12A109.7
N1—C7—H7A109.8C11—C12—H12A109.7
C8—C7—H7A109.8N2—C12—H12B109.7
N1—C7—H7B109.8C11—C12—H12B109.7
C8—C7—H7B109.8H12A—C12—H12B108.2
O2—C1—C2—C37.1 (2)N1—C7—C8—N20.71 (16)
O1—C1—C2—C3172.87 (14)C7—N1—C9—C1058.31 (14)
C1—C2—C3—C4178.33 (12)C11—N1—C9—C1061.24 (14)
C2—C3—C4—C5176.16 (14)C8—N2—C10—C961.06 (14)
C3—C4—C5—C6179.99 (12)C12—N2—C10—C958.81 (14)
C4—C5—C6—O40.4 (2)N1—C9—C10—N22.11 (16)
C4—C5—C6—O3179.44 (13)C7—N1—C11—C1261.50 (14)
C11—N1—C7—C859.61 (14)C9—N1—C11—C1258.35 (14)
C9—N1—C7—C859.80 (14)C8—N2—C12—C1157.63 (14)
C12—N2—C8—C759.59 (14)C10—N2—C12—C1161.71 (14)
C10—N2—C8—C759.64 (14)N1—C11—C12—N22.54 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.702.5299 (14)170
O3—H3···N2i0.841.712.5447 (15)170
C3—H3A···O2ii0.952.533.4182 (17)155
C8—H8A···O3ii0.992.603.4255 (18)141
C9—H9A···O1iii0.992.563.0789 (17)113
Symmetry codes: (i) x2, y, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H12N2·C6H6O4
Mr254.28
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.1547 (2), 8.9321 (2), 9.4028 (2)
α, β, γ (°)86.258 (1), 67.376 (1), 80.719 (1)
V3)623.90 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10893, 2719, 2382
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.06
No. of reflections2719
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.702.5299 (14)169.6
O3—H3···N2i0.841.712.5447 (15)170.4
C3—H3A···O2ii0.952.533.4182 (17)155.2
C8—H8A···O3ii0.992.603.4255 (18)141.0
C9—H9A···O1iii0.992.563.0789 (17)112.5
Symmetry codes: (i) x2, y, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

This research was supported by the Research Funds of Kyungnam College of Information and Technology.

References

First citationBhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationHori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567–569.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds