metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethyl­enedi­amine-κ2N,N′)bis­­(methanol-κO)copper(II) benzene-1,4-di­carboxyl­ate methanol disolvate

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@sbu.ac.ir

(Received 14 June 2012; accepted 26 June 2012; online 30 June 2012)

In the cation of the title compound, [Cu(C2H8N2)2(CH3OH)2](C8H4O4)·2CH3OH, the CuII atom lies on an inversion centre. The four N atoms of two ethyl­enediamine ligands around the CuII atom form the equatorial plane, while two methanol O atoms in the axial positions complete a Jahn–Teller distorted octa­hedral coordination. The benzene-1,4-dicarboxyl­ate anion is centrosymmetric. In the crystal, C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds link the cations, the anions and the methanol solvent mol­ecules.

Related literature

For the role of copper compounds in biology, see: Kovala-Demertzi et al. (1997[Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151-157.]). For background to copper coordination polymers with carboxyl­ate ligands, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O'Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Wen et al. (2005[Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347-3354.]). For related structures with copper(II) and carboxyl­ate anions, see: Al-Hashemi et al. (2010a[Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010a). J. Coord. Chem. 63, 3207-3217.],b[Al-Hashemi, R., Safari, N., Amani, S., Amani, V. & Khavasi, H. R. (2010b). Polyhedron, 29, 2409-2416.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O

  • Mr = 476.04

  • Monoclinic, P 21 /n

  • a = 7.3075 (15) Å

  • b = 12.416 (3) Å

  • c = 12.551 (3) Å

  • β = 92.43 (3)°

  • V = 1137.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.752, Tmax = 0.824

  • 7838 measured reflections

  • 3038 independent reflections

  • 2347 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.085

  • S = 1.03

  • 3038 reflections

  • 159 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.82 (3) 2.27 (3) 3.075 (3) 167 (3)
N1—H1D⋯O3i 0.84 (3) 2.20 (3) 3.009 (2) 162 (3)
N2—H2C⋯O3 0.86 (2) 2.12 (3) 2.976 (2) 169 (3)
N2—H2D⋯O1i 0.92 (2) 2.18 (3) 3.065 (3) 160 (2)
O3—H3A⋯O2 0.79 (2) 1.89 (2) 2.675 (2) 172 (3)
O4—H4A⋯O1ii 0.78 (2) 1.85 (2) 2.628 (2) 171 (3)
C7—H7C⋯O4iii 0.98 2.53 3.320 (3) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Copper plays a role in a number of biological processes with therapeutically administered drugs (Kovala-Demertzi et al., 1997). Coordination chemistry of Cu(II) complexes is important as building-blocks to construct novel coordination architectures (Wen et al., 2005). Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). In the recent years, we reported the synthesis and crystal structures of Cu(II) carboxylate complexes (Al-Hashemi et al., 2010a,b). In order to expand this field, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists a half of CuII ion, one ethylenediamine (en), one coordinated methanol, one uncoordinated methanol and a half of benzene-1,4-dicarboxylate anion. The CuII atom in the [Cu(en)2(CH3OH)2]2+ cation lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by two methanol O atoms in the axial positions. In the crystal, intermolecular C—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) link the cations, the anions and the methanol solvent molecules (Fig. 2), which are effective in the stabilization of the structure.

Related literature top

For the role of copper compounds in biology, see: Kovala-Demertzi et al. (1997). For background to copper coordination polymers with carboxylate ligands, see: Eddaoudi et al. (2001); Wen et al. (2005). For related structures with copper(II) and carboxylate anions, see: Al-Hashemi et al. (2010a,b).

Experimental top

Benzene-1,4-dicarboxylic acid (0.10 g, 0.59 mmol) was dissolved in 6 ml methanol and 3.9 ml ethylenediamine (0.30 mol L-1 in methanol). Then CuCl2.2H2O (0.10 g, 0.59 mmol) was added to the solution and the reaction mixture was stirred. After 10 min 2-methylimidazol (0.10 g, 1.18 mmol) was added to the stirred solution. The resulting violet solution stirred at 313 K for 25 min. This solution was left to evaporate slowly at room temperature. After one week, violet block crystals of the title compound were isolated (yield: 0.20 g, 70.2%).

Refinement top

H atoms bonded to O and N atoms were found in a difference Fourier map and refined isotropically. H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Copper plays a role in a number of biological processes with therapeutically administered drugs (Kovala-Demertzi et al., 1997). Coordination chemistry of Cu(II) complexes is important as building-blocks to construct novel coordination architectures (Wen et al., 2005). Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). In the recent years, we reported the synthesis and crystal structures of Cu(II) carboxylate complexes (Al-Hashemi et al., 2010a,b). In order to expand this field, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists a half of CuII ion, one ethylenediamine (en), one coordinated methanol, one uncoordinated methanol and a half of benzene-1,4-dicarboxylate anion. The CuII atom in the [Cu(en)2(CH3OH)2]2+ cation lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by two methanol O atoms in the axial positions. In the crystal, intermolecular C—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) link the cations, the anions and the methanol solvent molecules (Fig. 2), which are effective in the stabilization of the structure.

For the role of copper compounds in biology, see: Kovala-Demertzi et al. (1997). For background to copper coordination polymers with carboxylate ligands, see: Eddaoudi et al. (2001); Wen et al. (2005). For related structures with copper(II) and carboxylate anions, see: Al-Hashemi et al. (2010a,b).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (a) 1-x, 2-y, 1-z; (b) -x, 1-y, 1-z.]
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonds as blue dashed lines.
Bis(ethylenediamine-κ2N,N')bis(methanol-κO)copper(II) benzene-1,4-dicarboxylate methanol disolvate top
Crystal data top
[Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4OF(000) = 506
Mr = 476.04Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3038 reflections
a = 7.3075 (15) Åθ = 3.2–29.1°
b = 12.416 (3) ŵ = 1.01 mm1
c = 12.551 (3) ÅT = 120 K
β = 92.43 (3)°Block, violet
V = 1137.7 (5) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS-2T
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 29.1°, θmin = 3.2°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
h = 910
Tmin = 0.752, Tmax = 0.824k = 1715
7838 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4OV = 1137.7 (5) Å3
Mr = 476.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.3075 (15) ŵ = 1.01 mm1
b = 12.416 (3) ÅT = 120 K
c = 12.551 (3) Å0.30 × 0.25 × 0.20 mm
β = 92.43 (3)°
Data collection top
Stoe IPDS-2T
diffractometer
3038 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
2347 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.824Rint = 0.048
7838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
3038 reflectionsΔρmin = 0.31 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.01297 (9)
O10.7634 (2)0.76878 (13)0.41449 (15)0.0307 (4)
O20.4701 (2)0.71851 (12)0.40999 (14)0.0272 (4)
O30.49935 (19)0.51748 (11)0.33602 (12)0.0186 (3)
O40.0673 (2)0.60364 (12)0.33221 (13)0.0214 (3)
N10.1952 (2)0.60613 (15)0.55183 (16)0.0171 (3)
N20.1712 (2)0.40775 (14)0.41747 (15)0.0168 (3)
C10.1084 (3)0.69471 (18)0.6108 (2)0.0239 (5)
H1A0.07000.75300.56090.029*
H1B0.19690.72490.66480.029*
C20.0570 (3)0.35020 (18)0.33503 (19)0.0231 (4)
H2A0.12790.29100.30370.028*
H2B0.01740.40040.27720.028*
C30.5963 (3)0.78604 (16)0.42582 (17)0.0192 (4)
C40.5456 (3)0.89742 (16)0.46348 (16)0.0164 (4)
C50.3620 (3)0.92725 (17)0.47038 (17)0.0172 (4)
H50.26760.87780.45020.021*
C60.6820 (3)0.97086 (16)0.49332 (17)0.0173 (4)
H60.80690.95100.48880.021*
C70.5385 (3)0.5129 (2)0.22584 (18)0.0257 (5)
H7A0.45170.55860.18490.039*
H7B0.52720.43840.20060.039*
H7C0.66350.53860.21620.039*
C80.0619 (3)0.6480 (2)0.2634 (2)0.0299 (5)
H8A0.00260.68850.20620.045*
H8B0.13290.58980.23240.045*
H8C0.14460.69640.30400.045*
H3A0.500 (4)0.5781 (16)0.355 (2)0.036 (8)*
H4A0.127 (4)0.6514 (19)0.353 (2)0.040 (9)*
H1C0.258 (4)0.632 (2)0.506 (2)0.025 (7)*
H2C0.256 (3)0.445 (2)0.389 (2)0.026 (7)*
H1D0.266 (4)0.573 (2)0.596 (2)0.029 (7)*
H2D0.220 (3)0.358 (2)0.465 (2)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01172 (14)0.01237 (14)0.01498 (16)0.00083 (14)0.00256 (10)0.00271 (16)
O10.0276 (8)0.0218 (8)0.0430 (11)0.0109 (6)0.0046 (7)0.0054 (8)
O20.0341 (8)0.0163 (7)0.0319 (9)0.0010 (6)0.0104 (7)0.0046 (7)
O30.0202 (6)0.0142 (8)0.0216 (7)0.0017 (5)0.0041 (5)0.0032 (6)
O40.0197 (7)0.0191 (7)0.0261 (8)0.0041 (6)0.0064 (6)0.0008 (7)
N10.0154 (8)0.0178 (8)0.0180 (9)0.0000 (6)0.0009 (7)0.0001 (7)
N20.0179 (8)0.0154 (8)0.0175 (9)0.0011 (6)0.0037 (7)0.0013 (7)
C10.0232 (10)0.0184 (10)0.0306 (12)0.0037 (8)0.0043 (9)0.0086 (9)
C20.0278 (11)0.0210 (10)0.0208 (11)0.0013 (8)0.0071 (8)0.0074 (9)
C30.0267 (10)0.0167 (9)0.0145 (10)0.0065 (8)0.0031 (7)0.0025 (8)
C40.0221 (9)0.0154 (9)0.0120 (9)0.0038 (7)0.0035 (7)0.0036 (8)
C50.0198 (9)0.0168 (9)0.0152 (10)0.0007 (7)0.0014 (7)0.0007 (8)
C60.0179 (9)0.0199 (10)0.0140 (9)0.0044 (7)0.0019 (7)0.0018 (7)
C70.0260 (9)0.0297 (13)0.0215 (10)0.0006 (9)0.0006 (7)0.0047 (10)
C80.0245 (11)0.0382 (13)0.0274 (13)0.0068 (9)0.0077 (9)0.0074 (11)
Geometric parameters (Å, º) top
Cu1—N22.0150 (17)C1—H1B0.9900
Cu1—N12.0286 (18)C2—C1i1.518 (3)
Cu1—O42.4990 (17)C2—H2A0.9900
O1—C31.254 (3)C2—H2B0.9900
O2—C31.256 (3)C3—C41.513 (3)
O3—C71.425 (3)C4—C61.391 (3)
O3—H3A0.79 (2)C4—C51.397 (3)
O4—C81.418 (3)C5—C6ii1.387 (3)
O4—H4A0.78 (2)C5—H50.9500
N1—C11.483 (3)C6—C5ii1.387 (3)
N1—H1C0.82 (3)C6—H60.9500
N1—H1D0.84 (3)C7—H7A0.9800
N2—C21.485 (3)C7—H7B0.9800
N2—H2C0.86 (2)C7—H7C0.9800
N2—H2D0.92 (2)C8—H8A0.9800
C1—C2i1.518 (3)C8—H8B0.9800
C1—H1A0.9900C8—H8C0.9800
N2—Cu1—N2i180.0N2—C2—H2A110.2
N2—Cu1—N195.19 (7)C1i—C2—H2A110.2
N2i—Cu1—N184.81 (7)N2—C2—H2B110.2
N1i—Cu1—N1180.0C1i—C2—H2B110.2
O4—Cu1—N192.66 (7)H2A—C2—H2B108.5
O4—Cu1—N1i87.34 (7)O1—C3—O2125.47 (19)
O4—Cu1—N287.92 (7)O1—C3—C4116.41 (19)
O4—Cu1—N2i92.08 (7)O2—C3—C4118.12 (18)
C7—O3—H3A109 (2)C6—C4—C5119.24 (18)
C8—O4—H4A107 (2)C6—C4—C3120.07 (18)
C1—N1—Cu1109.39 (12)C5—C4—C3120.69 (18)
C1—N1—H1C109.0 (19)C6ii—C5—C4119.91 (18)
Cu1—N1—H1C116.0 (19)C6ii—C5—H5120.0
C1—N1—H1D107 (2)C4—C5—H5120.0
Cu1—N1—H1D107.2 (19)C5ii—C6—C4120.86 (18)
H1C—N1—H1D108 (3)C5ii—C6—H6119.6
C2—N2—Cu1106.80 (12)C4—C6—H6119.6
C2—N2—H2C111.4 (18)O3—C7—H7A109.5
Cu1—N2—H2C112.3 (19)O3—C7—H7B109.5
C2—N2—H2D108.3 (17)H7A—C7—H7B109.5
Cu1—N2—H2D106.7 (17)O3—C7—H7C109.5
H2C—N2—H2D111 (2)H7A—C7—H7C109.5
N1—C1—C2i108.47 (17)H7B—C7—H7C109.5
N1—C1—H1A110.0O4—C8—H8A109.5
C2i—C1—H1A110.0O4—C8—H8B109.5
N1—C1—H1B110.0H8A—C8—H8B109.5
C2i—C1—H1B110.0O4—C8—H8C109.5
H1A—C1—H1B108.4H8A—C8—H8C109.5
N2—C2—C1i107.42 (18)H8B—C8—H8C109.5
N2—Cu1—N1—C1175.14 (15)O2—C3—C4—C6172.9 (2)
N2i—Cu1—N1—C14.86 (15)O1—C3—C4—C5174.9 (2)
N1i—Cu1—N2—C223.15 (14)O2—C3—C4—C56.1 (3)
N1—Cu1—N2—C2156.85 (14)C6—C4—C5—C6ii0.0 (3)
Cu1—N1—C1—C2i31.5 (2)C3—C4—C5—C6ii178.98 (19)
Cu1—N2—C2—C1i46.2 (2)C5—C4—C6—C5ii0.0 (3)
O1—C3—C4—C66.2 (3)C3—C4—C6—C5ii178.99 (19)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.82 (3)2.27 (3)3.075 (3)167 (3)
N1—H1D···O3iii0.84 (3)2.20 (3)3.009 (2)162 (3)
N2—H2C···O30.86 (2)2.12 (3)2.976 (2)169 (3)
N2—H2D···O1iii0.92 (2)2.18 (3)3.065 (3)160 (2)
O3—H3A···O20.79 (2)1.89 (2)2.675 (2)172 (3)
O4—H4A···O1iv0.78 (2)1.85 (2)2.628 (2)171 (3)
C7—H7C···O4v0.982.533.320 (3)138
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)2(CH4O)2](C8H4O4)·2CH4O
Mr476.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.3075 (15), 12.416 (3), 12.551 (3)
β (°) 92.43 (3)
V3)1137.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerStoe IPDS2T
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.752, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
7838, 3038, 2347
Rint0.048
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.085, 1.03
No. of reflections3038
No. of parameters159
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.82 (3)2.27 (3)3.075 (3)167 (3)
N1—H1D···O3i0.84 (3)2.20 (3)3.009 (2)162 (3)
N2—H2C···O30.86 (2)2.12 (3)2.976 (2)169 (3)
N2—H2D···O1i0.92 (2)2.18 (3)3.065 (3)160 (2)
O3—H3A···O20.79 (2)1.89 (2)2.675 (2)172 (3)
O4—H4A···O1ii0.78 (2)1.85 (2)2.628 (2)171 (3)
C7—H7C···O4iii0.982.533.320 (3)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

We are grateful to Shahid Beheshti University for financial support.

References

First citationAl-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010a). J. Coord. Chem. 63, 3207–3217.  CAS Google Scholar
First citationAl-Hashemi, R., Safari, N., Amani, S., Amani, V. & Khavasi, H. R. (2010b). Polyhedron, 29, 2409–2416.  CAS Google Scholar
First citationEddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O'Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347–3354.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds