organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3,6-di­methyl-1-phenyl-1H,4H-pyrano[2,3-c]pyrazol-4-one

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 June 2012; accepted 23 June 2012; online 30 June 2012)

In the title compound, C14H11ClN2O2, two independent mol­ecules (A and B) comprise the asymmetric unit with the main difference between them being the relative orientation of the pendent phenyl ring with respect to the fused-ring system [dihedral angles = 8.32 (8)° (A) and 28.32 (8)° (B)]. In the crystal, the A mol­ecules are connected into a linear supra­molecular chain along the a axis via C—H⋯O inter­actions and linked to this via C—H⋯Cl inter­actions are the B mol­ecules. The chains are connected into layers in the ab plane by ππ inter­actions between pyrazole (A) and pyran (B) rings, and between pyrazole (B) and pyran (A) rings [centroid–centroid distances = 3.5442 (11) and 3.4022 (10) Å, respectively].

Related literature

For the analgesic and anti-inflammatory activity of pyrano[2,3-c]pyrazole derivatives, see: Kuo et al. (1984[Kuo, S.-C., Huang, L.-J. & Nakamura, H. (1984). J. Med. Chem. 27, 539-544.]). For the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]). For the structure of the derivative without a chloro substituent, see: Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Hameed, S. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1120.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P b c a

  • a = 11.8864 (4) Å

  • b = 13.6276 (5) Å

  • c = 31.0273 (10) Å

  • V = 5025.9 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.817, Tmax = 1.000

  • 17994 measured reflections

  • 5796 independent reflections

  • 4522 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.03

  • 5796 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.32 3.203 (2) 154
C14—H14⋯Cl2i 0.95 2.74 3.448 (2) 132
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with reports that pyrano[2,3-c]pyrazole derivatives possess analgesic and anti-inflammatory activities (Kuo et al., 1984), the title compound (I) was synthesized, following a literature procedure (Gelin et al., 1983), and its crystal and molecular structure are reported on herein.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As seen from the overlay diagram, Fig. 2, these are virtually super-imposable. The primary difference between the molecules relates to the relative orientation of the pendent phenyl ring with respect to the fused-ring system [r.m.s. deviations = 0.024 and 0.021 Å, respectively] as seen in the dihedral angles of 8.32 (8) and 28.32 (8)°, respectively. In the structure of the derivative without a chloro substituent, the molecule is planar with the r.m.s. of all non-hydrogen atoms being 0.038 Å (Asiri et al., 2012).

In the crystal, the Cl1-containing molecules are connected into a linear supramolecular chain along the a axis via C—H···O interactions and linked to this via C—H···Cl interactions are the Cl2-containing molecules, Fig. 3 and Table 1. Chains are connected into layers in the ab plane by ππ interactions with the closest of these occurring between the five-membered and six-membered in an alternating sequence of the independent molecules [ring centroid(N1-pyrazole)···(O3-pyrano)i = 3.5442 (11) Å, angle of inclination = 2.29 (11)° for i: -x+1, -y, -z+1; ring centroid(N3-pyrazole)···(O1-pyrano)ii = 3.4022 (10) Å, angle of inclination = 5.38 (8)° for ii: x+1/2, -y+1/2, -z+1]. The layers stack along the c axis with no specific intermolecular interactions between them, Fig. 4.

Related literature top

For the analgesic and anti-inflammatory activity of pyrano[2,3-c]pyrazole derivatives, see: Kuo et al. (1984). For the synthesis, see: Gelin et al. (1983). For the structure of the derivative without a chloro substituent, see: Asiri et al. (2012).

Experimental top

To a solution of 4-(acetoacetyl)-3-methyl-1-phenyl-2-pyrazolin-5-one (0.01 M), made following a literature procedure (Gelin et al., 1983), in dry methylene chloride (20 ml) was added drop-wise sulfuryl chloride (1.35 g, 0.01 M). The mixture was allowed to stand at room temperature for 2 h and then poured into a 10% aqueous K2CO3 solution (50 ml) with stirring for 5 min. The aqueous layer was acidified with 10% HCl and extracted with chloroform. The combined organic extracts were washed with water and dried (Na2SO4). Removal of the solvent gave 4-(aceto-chloroacetyl)-3-methyl-1-phenyl-2-pyrazolin-5-one. Concentrated sulfuric acid (1 ml) was then added drop-wise. After 4 h at room temperature, the mixture was poured into ice-water (200 ml). The precipitate was extracted with chloroform. The chloroform layer was washed with 5% aqueous K2CO3 solution, dried and evaporated to give the title compound which was recrystallized from ethanol. M.p: 413–415 K cf. Lit. M.p. 413 K (Gelin et al., 1983). Yield: 68%.

Refinement top

C-bound H-atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

In connection with reports that pyrano[2,3-c]pyrazole derivatives possess analgesic and anti-inflammatory activities (Kuo et al., 1984), the title compound (I) was synthesized, following a literature procedure (Gelin et al., 1983), and its crystal and molecular structure are reported on herein.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As seen from the overlay diagram, Fig. 2, these are virtually super-imposable. The primary difference between the molecules relates to the relative orientation of the pendent phenyl ring with respect to the fused-ring system [r.m.s. deviations = 0.024 and 0.021 Å, respectively] as seen in the dihedral angles of 8.32 (8) and 28.32 (8)°, respectively. In the structure of the derivative without a chloro substituent, the molecule is planar with the r.m.s. of all non-hydrogen atoms being 0.038 Å (Asiri et al., 2012).

In the crystal, the Cl1-containing molecules are connected into a linear supramolecular chain along the a axis via C—H···O interactions and linked to this via C—H···Cl interactions are the Cl2-containing molecules, Fig. 3 and Table 1. Chains are connected into layers in the ab plane by ππ interactions with the closest of these occurring between the five-membered and six-membered in an alternating sequence of the independent molecules [ring centroid(N1-pyrazole)···(O3-pyrano)i = 3.5442 (11) Å, angle of inclination = 2.29 (11)° for i: -x+1, -y, -z+1; ring centroid(N3-pyrazole)···(O1-pyrano)ii = 3.4022 (10) Å, angle of inclination = 5.38 (8)° for ii: x+1/2, -y+1/2, -z+1]. The layers stack along the c axis with no specific intermolecular interactions between them, Fig. 4.

For the analgesic and anti-inflammatory activity of pyrano[2,3-c]pyrazole derivatives, see: Kuo et al. (1984). For the synthesis, see: Gelin et al. (1983). For the structure of the derivative without a chloro substituent, see: Asiri et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Super-imposition of the fused-ring systems of the two independent molecules in (I). The Cl1 and and Cl2-containing molecules are shown as red and blue images, respectively.
[Figure 3] Fig. 3. A view of the supramolecular chain along the a axis in (I) mediated by C—H···O and C—H···Cl interactions shown as orange and blue dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents of (I) highlighting the stacks of supramolecular layers along the c axis. The C—H···O, C—H···Cl and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
5-Chloro-3,6-dimethyl-1-phenyl-1H,4H- pyrano[2,3-c]pyrazol-4-one top
Crystal data top
C14H11ClN2O2F(000) = 2272
Mr = 274.70Dx = 1.452 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5991 reflections
a = 11.8864 (4) Åθ = 2.3–27.5°
b = 13.6276 (5) ŵ = 0.30 mm1
c = 31.0273 (10) ÅT = 100 K
V = 5025.9 (3) Å3Prism, colourless
Z = 160.40 × 0.20 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5796 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4522 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1710
Tmin = 0.817, Tmax = 1.000l = 2340
17994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 1.8272P]
where P = (Fo2 + 2Fc2)/3
5796 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H11ClN2O2V = 5025.9 (3) Å3
Mr = 274.70Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 11.8864 (4) ŵ = 0.30 mm1
b = 13.6276 (5) ÅT = 100 K
c = 31.0273 (10) Å0.40 × 0.20 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5796 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4522 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 1.000Rint = 0.041
17994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
5796 reflectionsΔρmin = 0.37 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47784 (4)0.10807 (4)0.536902 (15)0.02329 (13)
Cl20.02904 (4)0.13031 (4)0.482067 (16)0.02722 (14)
O10.80047 (10)0.08977 (9)0.56939 (4)0.0182 (3)
O20.49310 (11)0.08983 (10)0.63216 (5)0.0250 (3)
O30.10832 (10)0.18078 (9)0.36014 (4)0.0182 (3)
O40.27633 (11)0.13467 (10)0.47565 (4)0.0241 (3)
N10.87843 (13)0.06692 (12)0.63947 (5)0.0173 (3)
N20.83780 (13)0.05555 (11)0.68112 (5)0.0190 (3)
N30.29023 (13)0.18475 (11)0.32886 (5)0.0187 (3)
N40.40146 (12)0.17885 (12)0.34252 (5)0.0204 (3)
C10.72337 (17)0.10797 (16)0.49990 (6)0.0240 (4)
H1A0.65310.10030.48370.036*
H1B0.77690.05730.49090.036*
H1C0.75530.17300.49420.036*
C20.70039 (15)0.09791 (13)0.54658 (6)0.0186 (4)
C30.59974 (15)0.09712 (14)0.56689 (6)0.0192 (4)
C40.58537 (15)0.08820 (13)0.61417 (6)0.0186 (4)
C50.69231 (15)0.07793 (13)0.63565 (6)0.0168 (4)
C60.79054 (15)0.07976 (13)0.61251 (6)0.0164 (4)
C70.65511 (17)0.05340 (15)0.71804 (6)0.0237 (4)
H7A0.70220.03690.74290.035*
H7B0.59900.00170.71360.035*
H7C0.61690.11600.72330.035*
C80.72680 (15)0.06198 (13)0.67899 (6)0.0184 (4)
C90.99726 (15)0.06552 (13)0.63192 (6)0.0172 (4)
C101.06841 (16)0.04123 (15)0.66587 (6)0.0221 (4)
H101.03870.02670.69360.027*
C111.18377 (16)0.03853 (16)0.65855 (7)0.0256 (4)
H111.23300.02150.68150.031*
C121.22826 (16)0.06032 (15)0.61829 (7)0.0235 (4)
H121.30720.05820.61360.028*
C131.15581 (16)0.08529 (15)0.58498 (7)0.0240 (4)
H131.18560.10080.55740.029*
C141.04043 (16)0.08789 (15)0.59154 (6)0.0221 (4)
H140.99130.10480.56860.027*
C150.07309 (16)0.17796 (15)0.39208 (6)0.0216 (4)
H15A0.11280.13660.41300.032*
H15B0.09290.15740.36280.032*
H15C0.09490.24660.39630.032*
C160.05018 (16)0.16775 (13)0.39842 (6)0.0181 (4)
C170.10543 (16)0.15005 (14)0.43572 (6)0.0189 (4)
C180.22949 (16)0.14778 (13)0.44089 (6)0.0176 (4)
C190.28413 (15)0.16257 (13)0.39974 (6)0.0177 (4)
C200.22119 (15)0.17546 (13)0.36295 (6)0.0169 (4)
C210.50367 (16)0.15383 (15)0.41053 (7)0.0240 (4)
H21A0.56890.16300.39160.036*
H21B0.50610.08800.42320.036*
H21C0.50530.20300.43360.036*
C220.39769 (15)0.16529 (13)0.38481 (6)0.0187 (4)
C230.26647 (16)0.19886 (13)0.28403 (6)0.0186 (4)
C240.34540 (16)0.24761 (14)0.25905 (6)0.0213 (4)
H240.41290.27160.27160.026*
C250.32434 (17)0.26094 (15)0.21537 (6)0.0257 (4)
H250.37790.29400.19790.031*
C260.22545 (17)0.22611 (15)0.19720 (6)0.0264 (5)
H260.21140.23550.16730.032*
C270.14728 (17)0.17781 (15)0.22247 (6)0.0234 (4)
H270.07960.15420.20990.028*
C280.16698 (16)0.16358 (15)0.26614 (6)0.0218 (4)
H280.11340.13030.28350.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0166 (2)0.0292 (3)0.0240 (3)0.00225 (19)0.00503 (18)0.0020 (2)
Cl20.0242 (3)0.0396 (3)0.0178 (2)0.0002 (2)0.00323 (18)0.0053 (2)
O10.0145 (6)0.0254 (7)0.0146 (7)0.0014 (5)0.0003 (5)0.0012 (5)
O20.0145 (7)0.0334 (8)0.0270 (8)0.0006 (6)0.0026 (6)0.0034 (6)
O30.0147 (6)0.0240 (7)0.0161 (7)0.0002 (5)0.0003 (5)0.0024 (5)
O40.0233 (7)0.0314 (8)0.0178 (7)0.0013 (6)0.0047 (5)0.0031 (6)
N10.0139 (7)0.0234 (8)0.0146 (8)0.0006 (6)0.0011 (6)0.0014 (6)
N20.0179 (8)0.0240 (8)0.0150 (8)0.0006 (7)0.0027 (6)0.0019 (6)
N30.0155 (8)0.0240 (8)0.0165 (8)0.0009 (6)0.0017 (6)0.0012 (6)
N40.0155 (8)0.0241 (8)0.0215 (9)0.0006 (7)0.0035 (6)0.0019 (7)
C10.0196 (10)0.0339 (11)0.0184 (10)0.0001 (9)0.0028 (7)0.0002 (8)
C20.0164 (9)0.0207 (9)0.0187 (9)0.0021 (8)0.0039 (7)0.0016 (8)
C30.0158 (9)0.0207 (9)0.0212 (10)0.0018 (8)0.0041 (7)0.0031 (8)
C40.0171 (9)0.0179 (9)0.0209 (10)0.0010 (7)0.0010 (7)0.0025 (7)
C50.0154 (9)0.0187 (9)0.0164 (9)0.0006 (7)0.0016 (7)0.0025 (7)
C60.0169 (9)0.0165 (9)0.0159 (9)0.0005 (7)0.0007 (7)0.0023 (7)
C70.0213 (10)0.0313 (11)0.0184 (10)0.0020 (8)0.0042 (8)0.0025 (8)
C80.0188 (9)0.0186 (9)0.0177 (10)0.0006 (7)0.0009 (7)0.0014 (7)
C90.0129 (9)0.0189 (9)0.0197 (10)0.0001 (7)0.0006 (7)0.0040 (7)
C100.0175 (9)0.0316 (11)0.0172 (10)0.0002 (8)0.0008 (7)0.0026 (8)
C110.0179 (10)0.0354 (11)0.0237 (11)0.0016 (9)0.0085 (8)0.0047 (9)
C120.0129 (9)0.0293 (11)0.0283 (11)0.0003 (8)0.0010 (8)0.0071 (9)
C130.0200 (10)0.0310 (11)0.0209 (10)0.0020 (8)0.0022 (8)0.0007 (8)
C140.0196 (10)0.0287 (10)0.0182 (10)0.0007 (8)0.0012 (7)0.0009 (8)
C150.0183 (9)0.0263 (10)0.0201 (10)0.0006 (8)0.0008 (7)0.0027 (8)
C160.0189 (9)0.0180 (9)0.0174 (9)0.0007 (7)0.0013 (7)0.0008 (7)
C170.0204 (10)0.0197 (9)0.0167 (9)0.0009 (8)0.0018 (7)0.0011 (7)
C180.0203 (9)0.0160 (8)0.0166 (9)0.0008 (7)0.0012 (7)0.0001 (7)
C190.0177 (9)0.0174 (9)0.0180 (9)0.0002 (7)0.0025 (7)0.0008 (7)
C200.0163 (9)0.0163 (8)0.0182 (9)0.0012 (7)0.0005 (7)0.0002 (7)
C210.0182 (10)0.0300 (11)0.0239 (11)0.0017 (8)0.0047 (8)0.0028 (9)
C220.0174 (9)0.0184 (9)0.0202 (10)0.0014 (7)0.0008 (7)0.0016 (7)
C230.0217 (9)0.0194 (9)0.0147 (9)0.0046 (8)0.0012 (7)0.0005 (7)
C240.0201 (10)0.0232 (9)0.0207 (10)0.0016 (8)0.0002 (7)0.0022 (8)
C250.0272 (11)0.0319 (11)0.0181 (10)0.0012 (9)0.0058 (8)0.0018 (8)
C260.0318 (11)0.0321 (11)0.0153 (10)0.0069 (9)0.0001 (8)0.0002 (8)
C270.0216 (10)0.0287 (10)0.0197 (10)0.0040 (8)0.0033 (8)0.0020 (8)
C280.0200 (10)0.0268 (10)0.0185 (10)0.0013 (8)0.0001 (7)0.0022 (8)
Geometric parameters (Å, º) top
Cl1—C31.7285 (19)C10—H100.9500
Cl2—C171.7218 (19)C11—C121.389 (3)
O1—C61.350 (2)C11—H110.9500
O1—C21.389 (2)C12—C131.388 (3)
O2—C41.231 (2)C12—H120.9500
O3—C201.346 (2)C13—C141.387 (3)
O3—C161.386 (2)C13—H130.9500
O4—C181.227 (2)C14—H140.9500
N1—C61.350 (2)C15—C161.485 (3)
N1—N21.388 (2)C15—H15A0.9800
N1—C91.432 (2)C15—H15B0.9800
N2—C81.324 (2)C15—H15C0.9800
N3—C201.345 (2)C16—C171.352 (3)
N3—N41.391 (2)C17—C181.484 (3)
N3—C231.432 (2)C18—C191.447 (3)
N4—C221.326 (2)C19—C201.376 (2)
C1—C21.480 (3)C19—C221.428 (3)
C1—H1A0.9800C21—C221.499 (3)
C1—H1B0.9800C21—H21A0.9800
C1—H1C0.9800C21—H21B0.9800
C2—C31.352 (3)C21—H21C0.9800
C3—C41.482 (3)C23—C241.386 (3)
C4—C51.442 (3)C23—C281.392 (3)
C5—C61.371 (2)C24—C251.390 (3)
C5—C81.423 (3)C24—H240.9500
C7—C81.486 (3)C25—C261.387 (3)
C7—H7A0.9800C25—H250.9500
C7—H7B0.9800C26—C271.382 (3)
C7—H7C0.9800C26—H260.9500
C9—C141.388 (3)C27—C281.389 (3)
C9—C101.391 (3)C27—H270.9500
C10—C111.390 (3)C28—H280.9500
C6—O1—C2115.99 (14)C14—C13—H13119.6
C20—O3—C16115.74 (14)C12—C13—H13119.6
C6—N1—N2108.79 (14)C13—C14—C9119.50 (18)
C6—N1—C9131.59 (16)C13—C14—H14120.2
N2—N1—C9119.60 (14)C9—C14—H14120.2
C8—N2—N1107.03 (15)C16—C15—H15A109.5
C20—N3—N4109.56 (15)C16—C15—H15B109.5
C20—N3—C23131.01 (16)H15A—C15—H15B109.5
N4—N3—C23119.42 (15)C16—C15—H15C109.5
C22—N4—N3106.12 (15)H15A—C15—H15C109.5
C2—C1—H1A109.5H15B—C15—H15C109.5
C2—C1—H1B109.5C17—C16—O3120.95 (16)
H1A—C1—H1B109.5C17—C16—C15127.54 (17)
C2—C1—H1C109.5O3—C16—C15111.49 (15)
H1A—C1—H1C109.5C16—C17—C18125.37 (17)
H1B—C1—H1C109.5C16—C17—Cl2119.11 (15)
C3—C2—O1121.32 (17)C18—C17—Cl2115.51 (14)
C3—C2—C1128.32 (17)O4—C18—C19126.34 (18)
O1—C2—C1110.36 (15)O4—C18—C17123.30 (17)
C2—C3—C4124.33 (17)C19—C18—C17110.36 (16)
C2—C3—Cl1119.35 (15)C20—C19—C22103.99 (16)
C4—C3—Cl1116.32 (14)C20—C19—C18120.39 (17)
O2—C4—C5125.28 (18)C22—C19—C18135.59 (17)
O2—C4—C3123.38 (17)O3—C20—N3123.50 (16)
C5—C4—C3111.33 (16)O3—C20—C19127.05 (17)
C6—C5—C8104.63 (16)N3—C20—C19109.44 (16)
C6—C5—C4120.46 (17)C22—C21—H21A109.5
C8—C5—C4134.88 (17)C22—C21—H21B109.5
O1—C6—N1124.03 (16)H21A—C21—H21B109.5
O1—C6—C5126.54 (16)C22—C21—H21C109.5
N1—C6—C5109.41 (16)H21A—C21—H21C109.5
C8—C7—H7A109.5H21B—C21—H21C109.5
C8—C7—H7B109.5N4—C22—C19110.89 (16)
H7A—C7—H7B109.5N4—C22—C21120.85 (17)
C8—C7—H7C109.5C19—C22—C21128.26 (17)
H7A—C7—H7C109.5C24—C23—C28121.18 (17)
H7B—C7—H7C109.5C24—C23—N3118.27 (17)
N2—C8—C5110.14 (16)C28—C23—N3120.55 (17)
N2—C8—C7121.71 (17)C23—C24—C25119.05 (18)
C5—C8—C7128.14 (17)C23—C24—H24120.5
C14—C9—C10120.74 (17)C25—C24—H24120.5
C14—C9—N1120.63 (16)C26—C25—C24120.27 (19)
C10—C9—N1118.63 (17)C26—C25—H25119.9
C11—C10—C9118.84 (18)C24—C25—H25119.9
C11—C10—H10120.6C27—C26—C25120.13 (19)
C9—C10—H10120.6C27—C26—H26119.9
C12—C11—C10121.11 (18)C25—C26—H26119.9
C12—C11—H11119.4C26—C27—C28120.43 (19)
C10—C11—H11119.4C26—C27—H27119.8
C11—C12—C13119.08 (18)C28—C27—H27119.8
C11—C12—H12120.5C27—C28—C23118.95 (18)
C13—C12—H12120.5C27—C28—H28120.5
C14—C13—C12120.71 (19)C23—C28—H28120.5
C6—N1—N2—C80.26 (19)C10—C9—C14—C130.4 (3)
C9—N1—N2—C8178.57 (16)N1—C9—C14—C13179.52 (17)
C20—N3—N4—C220.45 (19)C20—O3—C16—C170.6 (2)
C23—N3—N4—C22179.61 (16)C20—O3—C16—C15178.27 (15)
C6—O1—C2—C30.9 (2)O3—C16—C17—C183.4 (3)
C6—O1—C2—C1179.75 (15)C15—C16—C17—C18175.20 (18)
O1—C2—C3—C40.3 (3)O3—C16—C17—Cl2177.84 (13)
C1—C2—C3—C4178.98 (18)C15—C16—C17—Cl23.5 (3)
O1—C2—C3—Cl1179.71 (13)C16—C17—C18—O4177.47 (18)
C1—C2—C3—Cl10.5 (3)Cl2—C17—C18—O41.3 (2)
C2—C3—C4—O2178.32 (18)C16—C17—C18—C192.8 (3)
Cl1—C3—C4—O21.1 (2)Cl2—C17—C18—C19178.44 (13)
C2—C3—C4—C51.5 (3)O4—C18—C19—C20179.30 (18)
Cl1—C3—C4—C5179.05 (13)C17—C18—C19—C200.4 (2)
O2—C4—C5—C6178.18 (18)O4—C18—C19—C221.6 (3)
C3—C4—C5—C61.6 (2)C17—C18—C19—C22178.2 (2)
O2—C4—C5—C84.2 (3)C16—O3—C20—N3178.86 (16)
C3—C4—C5—C8176.02 (19)C16—O3—C20—C192.8 (3)
C2—O1—C6—N1177.20 (16)N4—N3—C20—O3178.15 (15)
C2—O1—C6—C50.7 (3)C23—N3—C20—O31.8 (3)
N2—N1—C6—O1177.71 (15)N4—N3—C20—C190.4 (2)
C9—N1—C6—O13.6 (3)C23—N3—C20—C19179.65 (17)
N2—N1—C6—C50.5 (2)C22—C19—C20—O3178.29 (17)
C9—N1—C6—C5178.13 (18)C18—C19—C20—O33.3 (3)
C8—C5—C6—O1177.63 (16)C22—C19—C20—N30.2 (2)
C4—C5—C6—O10.6 (3)C18—C19—C20—N3178.16 (16)
C8—C5—C6—N10.5 (2)N3—N4—C22—C190.3 (2)
C4—C5—C6—N1178.81 (16)N3—N4—C22—C21178.95 (16)
N1—N2—C8—C50.1 (2)C20—C19—C22—N40.1 (2)
N1—N2—C8—C7179.79 (16)C18—C19—C22—N4178.07 (19)
C6—C5—C8—N20.4 (2)C20—C19—C22—C21179.13 (18)
C4—C5—C8—N2178.28 (19)C18—C19—C22—C211.1 (3)
C6—C5—C8—C7179.94 (18)C20—N3—C23—C24152.03 (19)
C4—C5—C8—C72.0 (3)N4—N3—C23—C2427.9 (2)
C6—N1—C9—C146.0 (3)C20—N3—C23—C2828.5 (3)
N2—N1—C9—C14172.56 (16)N4—N3—C23—C28151.54 (17)
C6—N1—C9—C10173.99 (18)C28—C23—C24—C250.2 (3)
N2—N1—C9—C107.5 (2)N3—C23—C24—C25179.24 (17)
C14—C9—C10—C110.8 (3)C23—C24—C25—C260.2 (3)
N1—C9—C10—C11179.18 (17)C24—C25—C26—C270.1 (3)
C9—C10—C11—C120.5 (3)C25—C26—C27—C280.1 (3)
C10—C11—C12—C130.1 (3)C26—C27—C28—C230.1 (3)
C11—C12—C13—C140.5 (3)C24—C23—C28—C270.0 (3)
C12—C13—C14—C90.2 (3)N3—C23—C28—C27179.40 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.323.203 (2)154
C14—H14···Cl2i0.952.743.448 (2)132
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.8864 (4), 13.6276 (5), 31.0273 (10)
V3)5025.9 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.817, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17994, 5796, 4522
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.03
No. of reflections5796
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.37

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.323.203 (2)154
C14—H14···Cl2i0.952.743.448 (2)132
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Hameed, S. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1120.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationKuo, S.-C., Huang, L.-J. & Nakamura, H. (1984). J. Med. Chem. 27, 539–544.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds