organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(4-Bromo­phen­yl)ethyl­­idene]-2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Chemistry, Canara Engineering College, Mangalore 574 219, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 20 June 2012; online 23 June 2012)

In the title compound, C14H14BrN5O3, the mean plane of the imidazole ring (r.m.s deviation = 0.004 Å) forms a dihedral angle of 58.13 (7)° with the benzene ring. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. A short Br⋯Br contact of 3.4932 (2) Å also occurs.

Related literature

For general background to and applications of imidazole derivatives, see: Priya & Kalluraya (2005[Priya, V. F. & Kalluraya, B. (2005). Indian J. Chem. Sect. B, 44, 1456-1459.]); Krapcho & Turk (1966[Krapcho, J. & Turk, C. F. (1966). J. Med. Chem. 9, 191-195.]); Chu et al. (2004[Chu, T., Hu, S., Wei, B., Wang, Y., Liu, X. & Wang, X. (2004). Bioorg. Med. Chem. 14, 747-749.]); Khalafi-Nezhad et al. (2005[Khalafi-Nezhad, A., Rad, M. N. S., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931-1938.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrN5O3

  • Mr = 380.21

  • Monoclinic, P 21 /c

  • a = 8.4176 (1) Å

  • b = 10.6541 (1) Å

  • c = 17.4933 (2) Å

  • β = 90.100 (1)°

  • V = 1568.83 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 100 K

  • 0.37 × 0.33 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.441, Tmax = 0.701

  • 45099 measured reflections

  • 6320 independent reflections

  • 5026 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.02

  • 6320 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.81 (2) 2.04 (2) 2.8318 (14) 166.6 (18)
C9—H9A⋯O3ii 0.99 2.31 3.1818 (16) 147
C9—H9B⋯N4iii 0.99 2.40 3.3462 (16) 160
C10—H10A⋯O2ii 0.95 2.56 3.4488 (16) 155
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of imidazole derivatives has been the subject of much interest due to their importance in various applications and also due to their widespread potential as well as proven biological and pharmacological activities (Priya & Kalluraya, 2005). Various applications of imidazoles have been listed in the literature with functions as widely divergent as antidepressant agents (Krapcho & Turk, 1966), as a marker for imaging tumor hypoxia( Chu et al., 2004), and in antibacterial activity (Khalafi-Nezhad et al., 2005). In view of the obvious importance of imidazole derivatives as potential pharmacological agents, herein we report the crystal structure of the above imidazole derivative.

In the title molecule, Fig. 1, the mean plane of the imidazole ring (N3/N4/C10-C12, r.m.s deviation = 0.004 Å) forms a dihedral angle of 58.13 (7)° with the phenyl ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges. A short Br1···Br1 contact of 3.4932 (2) Å also occurs. In the crystal (Fig. 2), molecules are linked via intermolecular N2–H1N2···O1, C9–H9A···O3, C9–H9B···N4 and C10–H10A···O2 hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For general background to and applications of imidazole derivatives, see: Priya & Kalluraya (2005); Krapcho & Turk (1966); Chu et al. (2004); Khalafi-Nezhad et al. (2005). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acethydrazide (0.1 mol) and 1-(4-bromophenyl)ethanone (0.1 mol) in glacial acetic acid for 1 hour. After cooling the reaction mixture to room temperature and evaporation of the solvent under reduced pressure, the solid separated was filtered, washed with water and dried. The recrystallization of the sample was done using an ethanol-dioxane (1:1 v/v) mixture. The melting point of the compound was found to be 549 K. The slow evaporation of the ethanol-dioxane mixture of the compound gave crystals suitable for X-ray analysis.

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely [N–H = 0.81 (2) Å]. All other hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.95-0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

The chemistry of imidazole derivatives has been the subject of much interest due to their importance in various applications and also due to their widespread potential as well as proven biological and pharmacological activities (Priya & Kalluraya, 2005). Various applications of imidazoles have been listed in the literature with functions as widely divergent as antidepressant agents (Krapcho & Turk, 1966), as a marker for imaging tumor hypoxia( Chu et al., 2004), and in antibacterial activity (Khalafi-Nezhad et al., 2005). In view of the obvious importance of imidazole derivatives as potential pharmacological agents, herein we report the crystal structure of the above imidazole derivative.

In the title molecule, Fig. 1, the mean plane of the imidazole ring (N3/N4/C10-C12, r.m.s deviation = 0.004 Å) forms a dihedral angle of 58.13 (7)° with the phenyl ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges. A short Br1···Br1 contact of 3.4932 (2) Å also occurs. In the crystal (Fig. 2), molecules are linked via intermolecular N2–H1N2···O1, C9–H9A···O3, C9–H9B···N4 and C10–H10A···O2 hydrogen bonds (Table 1) into a three-dimensional network.

For general background to and applications of imidazole derivatives, see: Priya & Kalluraya (2005); Krapcho & Turk (1966); Chu et al. (2004); Khalafi-Nezhad et al. (2005). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N'-[(E)-1-(4-Bromophenyl)ethylidene]-2-(2-methyl-4-nitro- 1H-imidazol-1-yl)acetohydrazide top
Crystal data top
C14H14BrN5O3F(000) = 768
Mr = 380.21Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9969 reflections
a = 8.4176 (1) Åθ = 2.3–33.5°
b = 10.6541 (1) ŵ = 2.64 mm1
c = 17.4933 (2) ÅT = 100 K
β = 90.100 (1)°Block, yellow
V = 1568.83 (3) Å30.37 × 0.33 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6320 independent reflections
Radiation source: fine-focus sealed tube5026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 33.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.441, Tmax = 0.701k = 1616
45099 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.4612P]
where P = (Fo2 + 2Fc2)/3
6320 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C14H14BrN5O3V = 1568.83 (3) Å3
Mr = 380.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4176 (1) ŵ = 2.64 mm1
b = 10.6541 (1) ÅT = 100 K
c = 17.4933 (2) Å0.37 × 0.33 × 0.15 mm
β = 90.100 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6320 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5026 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.701Rint = 0.040
45099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.88 e Å3
6320 reflectionsΔρmin = 0.66 e Å3
214 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.021322 (19)0.359303 (13)0.050226 (9)0.03144 (5)
O10.45656 (12)0.54105 (9)0.08914 (5)0.02360 (19)
O20.13283 (13)0.85764 (9)0.31753 (6)0.0269 (2)
O30.04787 (11)0.73832 (11)0.26628 (7)0.0345 (3)
N10.33805 (12)0.23194 (9)0.05430 (6)0.01687 (18)
N20.40021 (13)0.34967 (10)0.04122 (6)0.01891 (19)
N30.31916 (11)0.50038 (9)0.22432 (6)0.01478 (17)
N40.36372 (12)0.68190 (10)0.28408 (6)0.01722 (18)
N50.09082 (13)0.76031 (10)0.28541 (7)0.0215 (2)
C10.29424 (16)0.06979 (12)0.03559 (7)0.0221 (2)
H1A0.36580.05880.07700.026*
C20.22669 (16)0.18701 (12)0.02307 (8)0.0241 (2)
H2A0.25180.25590.05530.029*
C30.12217 (16)0.20161 (12)0.03723 (8)0.0229 (2)
C40.08571 (16)0.10281 (12)0.08621 (7)0.0212 (2)
H4A0.01530.11490.12800.025*
C50.15433 (14)0.01392 (11)0.07288 (7)0.0184 (2)
H5A0.13000.08220.10580.022*
C60.25865 (14)0.03226 (11)0.01173 (7)0.0181 (2)
C70.32849 (15)0.15744 (11)0.00367 (7)0.0182 (2)
C80.40582 (14)0.43392 (11)0.09867 (7)0.0168 (2)
C90.35054 (14)0.39082 (11)0.17701 (7)0.0163 (2)
H9A0.25280.33990.17190.020*
H9B0.43350.33820.20120.020*
C100.17458 (14)0.55668 (11)0.23059 (7)0.0171 (2)
H10A0.07460.52630.21340.021*
C110.20643 (14)0.66705 (11)0.26741 (7)0.0172 (2)
C120.43050 (13)0.57897 (11)0.25673 (6)0.01558 (19)
C130.38107 (18)0.19047 (14)0.08367 (7)0.0267 (3)
H13A0.34210.27440.09690.040*
H13B0.33780.12900.11980.040*
H13C0.49740.18940.08620.040*
C140.60238 (15)0.54790 (13)0.26074 (8)0.0226 (2)
H14A0.65560.60590.29590.034*
H14B0.64940.55570.20980.034*
H14C0.61550.46160.27920.034*
H1N20.436 (2)0.3704 (17)0.0004 (12)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03837 (9)0.01604 (7)0.03988 (9)0.00786 (5)0.01265 (6)0.00296 (5)
O10.0347 (5)0.0166 (4)0.0195 (4)0.0089 (4)0.0077 (4)0.0024 (3)
O20.0300 (5)0.0167 (4)0.0342 (5)0.0039 (3)0.0041 (4)0.0044 (4)
O30.0162 (4)0.0334 (6)0.0537 (7)0.0041 (4)0.0052 (4)0.0103 (5)
N10.0189 (4)0.0138 (4)0.0179 (4)0.0020 (3)0.0007 (3)0.0014 (3)
N20.0244 (5)0.0161 (4)0.0162 (4)0.0052 (4)0.0044 (4)0.0017 (4)
N30.0153 (4)0.0130 (4)0.0160 (4)0.0008 (3)0.0029 (3)0.0008 (3)
N40.0176 (4)0.0152 (4)0.0189 (4)0.0000 (3)0.0009 (4)0.0017 (3)
N50.0204 (5)0.0181 (5)0.0261 (5)0.0030 (4)0.0068 (4)0.0003 (4)
C10.0245 (6)0.0194 (5)0.0222 (5)0.0008 (4)0.0012 (5)0.0056 (4)
C20.0272 (6)0.0159 (5)0.0291 (6)0.0019 (5)0.0055 (5)0.0065 (5)
C30.0255 (6)0.0147 (5)0.0284 (6)0.0028 (4)0.0095 (5)0.0003 (4)
C40.0241 (6)0.0183 (5)0.0212 (5)0.0036 (4)0.0030 (4)0.0009 (4)
C50.0213 (5)0.0156 (5)0.0183 (5)0.0013 (4)0.0020 (4)0.0024 (4)
C60.0201 (5)0.0149 (5)0.0192 (5)0.0007 (4)0.0024 (4)0.0030 (4)
C70.0200 (5)0.0168 (5)0.0176 (5)0.0017 (4)0.0007 (4)0.0028 (4)
C80.0182 (5)0.0154 (5)0.0168 (5)0.0018 (4)0.0030 (4)0.0012 (4)
C90.0199 (5)0.0116 (4)0.0175 (5)0.0016 (4)0.0035 (4)0.0016 (4)
C100.0145 (5)0.0167 (5)0.0201 (5)0.0011 (4)0.0033 (4)0.0007 (4)
C110.0172 (5)0.0148 (5)0.0197 (5)0.0011 (4)0.0040 (4)0.0004 (4)
C120.0165 (5)0.0140 (4)0.0163 (5)0.0002 (4)0.0002 (4)0.0004 (4)
C130.0371 (7)0.0252 (6)0.0178 (5)0.0095 (5)0.0034 (5)0.0032 (5)
C140.0162 (5)0.0221 (6)0.0296 (6)0.0026 (4)0.0041 (5)0.0036 (5)
Geometric parameters (Å, º) top
Br1—C31.8962 (13)C3—C41.3919 (19)
O1—C81.2302 (14)C4—C51.3912 (17)
O2—N51.2310 (15)C4—H4A0.9500
O3—N51.2363 (15)C5—C61.3989 (17)
N1—C71.2901 (15)C5—H5A0.9500
N1—N21.3783 (14)C6—C71.4824 (17)
N2—C81.3483 (15)C7—C131.5102 (18)
N2—H1N20.81 (2)C8—C91.5190 (16)
N3—C101.3614 (15)C9—H9A0.9900
N3—C121.3779 (15)C9—H9B0.9900
N3—C91.4554 (15)C10—C111.3671 (17)
N4—C121.3223 (15)C10—H10A0.9500
N4—C111.3644 (16)C12—C141.4857 (16)
N5—C111.4264 (15)C13—H13A0.9800
C1—C21.3898 (19)C13—H13B0.9800
C1—C61.3992 (17)C13—H13C0.9800
C1—H1A0.9500C14—H14A0.9800
C2—C31.383 (2)C14—H14B0.9800
C2—H2A0.9500C14—H14C0.9800
C7—N1—N2116.91 (10)C6—C7—C13119.67 (10)
C8—N2—N1119.67 (10)O1—C8—N2121.89 (11)
C8—N2—H1N2117.7 (13)O1—C8—C9120.65 (10)
N1—N2—H1N2122.6 (13)N2—C8—C9117.44 (10)
C10—N3—C12107.86 (9)N3—C9—C8109.07 (9)
C10—N3—C9124.22 (10)N3—C9—H9A109.9
C12—N3—C9126.68 (10)C8—C9—H9A109.9
C12—N4—C11103.86 (10)N3—C9—H9B109.9
O2—N5—O3123.61 (11)C8—C9—H9B109.9
O2—N5—C11119.47 (11)H9A—C9—H9B108.3
O3—N5—C11116.91 (11)N3—C10—C11104.02 (10)
C2—C1—C6121.13 (12)N3—C10—H10A128.0
C2—C1—H1A119.4C11—C10—H10A128.0
C6—C1—H1A119.4N4—C11—C10112.94 (10)
C3—C2—C1118.82 (12)N4—C11—N5122.29 (11)
C3—C2—H2A120.6C10—C11—N5124.74 (11)
C1—C2—H2A120.6N4—C12—N3111.32 (10)
C2—C3—C4121.70 (12)N4—C12—C14125.61 (11)
C2—C3—Br1118.46 (10)N3—C12—C14123.07 (10)
C4—C3—Br1119.80 (11)C7—C13—H13A109.5
C5—C4—C3118.74 (12)C7—C13—H13B109.5
C5—C4—H4A120.6H13A—C13—H13B109.5
C3—C4—H4A120.6C7—C13—H13C109.5
C4—C5—C6120.96 (11)H13A—C13—H13C109.5
C4—C5—H5A119.5H13B—C13—H13C109.5
C6—C5—H5A119.5C12—C14—H14A109.5
C5—C6—C1118.63 (11)C12—C14—H14B109.5
C5—C6—C7120.95 (11)H14A—C14—H14B109.5
C1—C6—C7120.41 (11)C12—C14—H14C109.5
N1—C7—C6115.78 (11)H14A—C14—H14C109.5
N1—C7—C13124.54 (11)H14B—C14—H14C109.5
C7—N1—N2—C8176.66 (12)C12—N3—C9—C873.37 (14)
C6—C1—C2—C30.25 (19)O1—C8—C9—N318.68 (16)
C1—C2—C3—C41.2 (2)N2—C8—C9—N3162.77 (10)
C1—C2—C3—Br1176.42 (10)C12—N3—C10—C110.47 (13)
C2—C3—C4—C51.3 (2)C9—N3—C10—C11168.42 (10)
Br1—C3—C4—C5176.37 (9)C12—N4—C11—C100.27 (14)
C3—C4—C5—C60.28 (19)C12—N4—C11—N5178.11 (11)
C4—C5—C6—C10.66 (18)N3—C10—C11—N40.13 (14)
C4—C5—C6—C7178.40 (11)N3—C10—C11—N5178.47 (11)
C2—C1—C6—C50.68 (19)O2—N5—C11—N40.47 (18)
C2—C1—C6—C7178.39 (12)O3—N5—C11—N4178.49 (12)
N2—N1—C7—C6178.98 (10)O2—N5—C11—C10178.65 (12)
N2—N1—C7—C130.29 (18)O3—N5—C11—C100.30 (19)
C5—C6—C7—N124.91 (17)C11—N4—C12—N30.58 (13)
C1—C6—C7—N1156.05 (12)C11—N4—C12—C14179.49 (12)
C5—C6—C7—C13154.40 (12)C10—N3—C12—N40.69 (13)
C1—C6—C7—C1324.64 (18)C9—N3—C12—N4168.26 (11)
N1—N2—C8—O1178.13 (11)C10—N3—C12—C14179.63 (11)
N1—N2—C8—C93.34 (17)C9—N3—C12—C1412.80 (18)
C10—N3—C9—C892.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.81 (2)2.04 (2)2.8318 (14)166.6 (18)
C9—H9A···O3ii0.992.313.1818 (16)147
C9—H9B···N4iii0.992.403.3462 (16)160
C10—H10A···O2ii0.952.563.4488 (16)155
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14BrN5O3
Mr380.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.4176 (1), 10.6541 (1), 17.4933 (2)
β (°) 90.100 (1)
V3)1568.83 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.37 × 0.33 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.441, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
45099, 6320, 5026
Rint0.040
(sin θ/λ)max1)0.784
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.02
No. of reflections6320
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.66

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.81 (2)2.04 (2)2.8318 (14)166.6 (18)
C9—H9A···O3ii0.99002.31003.1818 (16)147.00
C9—H9B···N4iii0.99002.40003.3462 (16)160.00
C10—H10A···O2ii0.95002.56003.4488 (16)155.00
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, T., Hu, S., Wei, B., Wang, Y., Liu, X. & Wang, X. (2004). Bioorg. Med. Chem. 14, 747–749.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhalafi-Nezhad, A., Rad, M. N. S., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938.  Web of Science PubMed CAS Google Scholar
First citationKrapcho, J. & Turk, C. F. (1966). J. Med. Chem. 9, 191–195.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPriya, V. F. & Kalluraya, B. (2005). Indian J. Chem. Sect. B, 44, 1456–1459.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds