organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diosgenin hemihydrate

aEscuelas de Ingeniería en Petróleos e Ingeniería Química, Universidad del Istmo, Ciudad Universitaria s/n, 70760 Sto. Domingo Tehuantepec, Oax. 70760, Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 14 June 2012; accepted 20 June 2012; online 7 July 2012)

Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an Inter­national Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhang et al. (2005[Zhang, X., Cui, Y., Wang, L., Zhang, S., Yan, B. & Liu, Y. (2005). Acta Cryst. E61, o2324-o2325.]). Acta Cryst. E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin mol­ecules, with quite similar conformations, and one water mol­ecule. Hy­droxy groups in steroids and water mol­ecules form O—H⋯O hydrogen-bonded R54(10) ring motifs. Fused edge-sharing R(10) rings form a backbone oriented along [100], which aggregates the diosgenin mol­ecules in the crystal structure.

Related literature

For historical background to the use of diosgenin in the synthesis of progesterone, see: Lehmann (1992[Lehmann, P. A. (1992). Steroids, 57, 403-408.]); Djerassi (1992[Djerassi, C. (1992). Steroids, 57, 631-641.]); Zhang et al. (2011[Zhang, G. P., Shen, S. D., Lei, M. & Hu, L. H. (2011). Tetrahedron, 67, 5894-5896.]). For the solubility of diosgenin, see: Chen et al. (2012[Chen, F.-X., Zhao, M.-R., Ren, B.-Z., Zhou, C.-R. & Peng, F.-F. (2012). J. Chem. Thermodyn. 47, 341-346.]). For the structure of diosgenin dimethyl sulfoxide solvate, see: Zhang et al. (2005[Zhang, X., Cui, Y., Wang, L., Zhang, S., Yan, B. & Liu, Y. (2005). Acta Cryst. E61, o2324-o2325.]). For a steroidal crystal structure featuring an R54(10)-based supra­molecular structure, see: Xia et al. (2005[Xia, C.-N., Hu, W.-X. & Zhou, W. (2005). Acta Cryst. E61, o2896-o2898.]).

[Scheme 1]

Experimental

Crystal data
  • C27H42O3·0.5H2O

  • Mr = 423.61

  • Orthorhombic, P 21 21 21

  • a = 7.3483 (5) Å

  • b = 19.698 (2) Å

  • c = 33.440 (3) Å

  • V = 4840.3 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 136 K

  • 0.50 × 0.17 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.821, Tmax = 0.981

  • 17450 measured reflections

  • 4918 independent reflections

  • 3573 reflections with I > 2σ(I)

  • Rint = 0.131

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.177

  • S = 1.13

  • 4918 reflections

  • 570 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O3i 0.87 (2) 2.01 (2) 2.873 (6) 175 (6)
O1W—H1W⋯O53i 0.87 (2) 2.17 (3) 3.028 (6) 169 (5)
O3—H3⋯O1W 0.90 (7) 1.93 (7) 2.812 (6) 167 (6)
O53—H53⋯O3i 0.93 (7) 2.00 (7) 2.881 (6) 158 (6)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diosgenin is a steroid sapogenin available from natural sources, which is used for the commercial synthesis of steroid products like cortisone, pregnenolone and progesterone, amongst others (Djerassi, 1992; Zhang et al., 2011). Its most significant application has been as a precursor in an economical semi-synthesis of progesterone, developed by Marker before World War II. This route, known as the Marker degradation (Lehmann, 1992), has been designated as an International Historic Chemical Landmark by the American Chemical Society and the Sociedad Química de México. However, the X-ray structure of diosgenin remains unknown, and only the dimethyl sulfoxide solvate has been characterized crystallographically so far (Zhang et al., 2005). This is not surprising, taking into account the poor solubility of this steroid in polar solvents (Chen et al., 2012).

We have now crystallized diosgenin hemihydrate. The asymmetric unit contains two diosgenin molecules and one lattice water molecule (Fig. 1). Diosgenin displays a rigid conformation, as reflected by the small r.m.s. deviation for the fit between independent molecules, of 0.16 Å. This conformation is also very close to that observed in the DMSO solvate (Zhang et al., 2005; with r.m.s. deviations with the molecules of the title crystal: 0.22 and 0.23 Å).

In contrast with the DMSO solvate, in which discrete hydrogen bonds are formed between the steroid and the solvent, the hemihydrate gives rise to a supramolecular structure. Ring motifs R54(10) are formed by three diosgenin and two water molecules. These motifs share edges with neighboring symmetry-related R(10) rings, forming a chain of fused rings in the crystal (Fig. 2), oriented in the [100] direction. This backbone based on efficient hydrogen bonds aggregates molecules in the crystal, and allows the crystallization of the hemihydrate. Such one-dimensional supramolecular structure is found in other steroids hydrates. Indeed, 11 identical supramolecular arrangements were found in the CSD, predominantly for androstane and androstene derivatives hydrates (e.g. Xia et al., 2005). It thus seems that these kind of steroids functionalized with an alcohol group at C3 should have a propensity to crystallize as hydrates, since a stabilizing supramolecular structure may be arranged.

Related literature top

For historical background to the use of diosgenin in the synthesis of progesterone, see: Lehmann (1992); Djerassi (1992); Zhang et al. (2011). For the solubility of diosgenin, see: Chen et al. (2012). For the structure of diosgenin dimethyl sulfoxide solvate, see: Zhang et al. (2005). For a steroidal crystal structure featuring an R54(10)-based supramolecular structure, see: Xia et al. (2005).

Experimental top

Diosgenin hemihydrate was initially obtained as unreacted material in a reaction attempt between diosgenin and terephthaloyl chloride. The same hemihydrate may be obtained by stirring diosgenin in CH2Cl2 (1 mmol in 20 ml) until complete dissolution. After washing the solution with distilled water, the organic phase is dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue is then crystallized from hexane/acetone (3:2).

Refinement top

The search for a single-crystal was challenging. After a number of attempts, a sample with a thickness limited to 0.03 mm was collected, although data reduction revealed that it was not a single-crystal. The poor sample quality is reflected in the high residual for symmetry-equivalent reflections, Rint = 0.131. Hydroxy H atoms, H3, H53, H1W and H2W, were found in a difference map and refined freely. The geometry for the water molecule was however restrained, with O—H = 0.85 (2) Å, and H1W···H2W = 1.34 (1) Å. Other H atoms, bonded to C atoms, were placed in idealized positions and refined as riding to their carrier atoms. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl H atoms and x = 1.2 for other H atoms. The absolute configuration was assigned from chiral centers with known configuration in the steroidal nucleus, and measured Friedel pairs (3683) were merged.

Structure description top

Diosgenin is a steroid sapogenin available from natural sources, which is used for the commercial synthesis of steroid products like cortisone, pregnenolone and progesterone, amongst others (Djerassi, 1992; Zhang et al., 2011). Its most significant application has been as a precursor in an economical semi-synthesis of progesterone, developed by Marker before World War II. This route, known as the Marker degradation (Lehmann, 1992), has been designated as an International Historic Chemical Landmark by the American Chemical Society and the Sociedad Química de México. However, the X-ray structure of diosgenin remains unknown, and only the dimethyl sulfoxide solvate has been characterized crystallographically so far (Zhang et al., 2005). This is not surprising, taking into account the poor solubility of this steroid in polar solvents (Chen et al., 2012).

We have now crystallized diosgenin hemihydrate. The asymmetric unit contains two diosgenin molecules and one lattice water molecule (Fig. 1). Diosgenin displays a rigid conformation, as reflected by the small r.m.s. deviation for the fit between independent molecules, of 0.16 Å. This conformation is also very close to that observed in the DMSO solvate (Zhang et al., 2005; with r.m.s. deviations with the molecules of the title crystal: 0.22 and 0.23 Å).

In contrast with the DMSO solvate, in which discrete hydrogen bonds are formed between the steroid and the solvent, the hemihydrate gives rise to a supramolecular structure. Ring motifs R54(10) are formed by three diosgenin and two water molecules. These motifs share edges with neighboring symmetry-related R(10) rings, forming a chain of fused rings in the crystal (Fig. 2), oriented in the [100] direction. This backbone based on efficient hydrogen bonds aggregates molecules in the crystal, and allows the crystallization of the hemihydrate. Such one-dimensional supramolecular structure is found in other steroids hydrates. Indeed, 11 identical supramolecular arrangements were found in the CSD, predominantly for androstane and androstene derivatives hydrates (e.g. Xia et al., 2005). It thus seems that these kind of steroids functionalized with an alcohol group at C3 should have a propensity to crystallize as hydrates, since a stabilizing supramolecular structure may be arranged.

For historical background to the use of diosgenin in the synthesis of progesterone, see: Lehmann (1992); Djerassi (1992); Zhang et al. (2011). For the solubility of diosgenin, see: Chen et al. (2012). For the structure of diosgenin dimethyl sulfoxide solvate, see: Zhang et al. (2005). For a steroidal crystal structure featuring an R54(10)-based supramolecular structure, see: Xia et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A part of the one-dimensional supramolecular structure of the title compound, based on six diosgenin and three water molecules. H atoms not involved in hydrogen bonds have been omitted, and the projection is normal to [010]. One R(10) motif is shown as a solid yellow polygon, with H-bonds components of the edges displayed as dashed bonds.
(25R)-Spirost-5-en-3-ol hemihydrate top
Crystal data top
C27H42O3·0.5H2ODx = 1.163 Mg m3
Mr = 423.61Melting point: 590 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 1880 reflections
a = 7.3483 (5) Åθ = 3.5–67.7°
b = 19.698 (2) ŵ = 0.58 mm1
c = 33.440 (3) ÅT = 136 K
V = 4840.3 (8) Å3Plate, colourless
Z = 80.50 × 0.17 × 0.03 mm
F(000) = 1864
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
4918 independent reflections
Radiation source: Enhance (Cu) X-ray Source3573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.131
Detector resolution: 10.4685 pixels mm-1θmax = 67.4°, θmin = 3.5°
ω scansh = 58
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
k = 2023
Tmin = 0.821, Tmax = 0.981l = 4034
17450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
4918 reflections(Δ/σ)max < 0.001
570 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C27H42O3·0.5H2OV = 4840.3 (8) Å3
Mr = 423.61Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 7.3483 (5) ŵ = 0.58 mm1
b = 19.698 (2) ÅT = 136 K
c = 33.440 (3) Å0.50 × 0.17 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
4918 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
3573 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.981Rint = 0.131
17450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0723 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.31 e Å3
4918 reflectionsΔρmin = 0.36 e Å3
570 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5923 (7)0.7342 (3)0.13594 (14)0.0290 (12)
H1A0.72380.73080.14210.035*
H1B0.55410.78150.14130.035*
C20.5635 (7)0.7189 (3)0.09132 (15)0.0334 (13)
H2A0.61120.67310.08510.040*
H2B0.63170.75230.07500.040*
C30.3633 (7)0.7222 (3)0.08070 (15)0.0289 (11)
H3A0.31720.76940.08510.035*
O30.3447 (5)0.7044 (2)0.03903 (10)0.0320 (8)
H30.233 (9)0.695 (3)0.0297 (17)0.038*
C40.2557 (7)0.6725 (3)0.10695 (15)0.0308 (12)
H4A0.29200.62540.10020.037*
H4B0.12430.67730.10110.037*
C50.2877 (7)0.6847 (3)0.15135 (15)0.0272 (11)
C60.1487 (7)0.6917 (3)0.17587 (15)0.0279 (11)
H6A0.02980.69150.16470.033*
C70.1669 (7)0.7001 (3)0.22032 (14)0.0259 (11)
H7A0.13920.74770.22750.031*
H7B0.07620.67070.23380.031*
C80.3565 (7)0.6821 (2)0.23572 (14)0.0237 (11)
H8A0.37150.63160.23480.028*
C90.4999 (7)0.7147 (2)0.20819 (14)0.0231 (10)
H9A0.46820.76400.20640.028*
C100.4859 (7)0.6858 (2)0.16451 (15)0.0248 (11)
C110.6944 (7)0.7113 (3)0.22522 (15)0.0310 (12)
H11A0.77480.74060.20890.037*
H11B0.73970.66410.22290.037*
C120.7067 (7)0.7334 (3)0.26892 (15)0.0284 (11)
H12A0.83260.72650.27870.034*
H12B0.67800.78240.27100.034*
C130.5748 (7)0.6930 (3)0.29506 (14)0.0257 (11)
C140.3842 (7)0.7060 (2)0.27863 (14)0.0249 (11)
H14A0.36830.75640.27820.030*
C150.2581 (7)0.6793 (3)0.31154 (14)0.0289 (11)
H15A0.25040.62910.31110.035*
H15B0.13420.69860.30910.035*
C160.3531 (7)0.7045 (3)0.34912 (15)0.0274 (11)
H16A0.29160.74620.35950.033*
C170.5543 (7)0.7201 (2)0.33852 (15)0.0263 (11)
H17A0.57350.77040.33860.032*
C180.6231 (8)0.6166 (3)0.29475 (16)0.0329 (12)
H18A0.60830.59850.26760.049*
H18B0.74960.61060.30340.049*
H18C0.54220.59220.31310.049*
C190.5637 (8)0.6130 (3)0.16203 (16)0.0368 (13)
H19A0.52770.59230.13660.055*
H19B0.69680.61480.16370.055*
H19C0.51600.58590.18420.055*
C200.6654 (8)0.6881 (3)0.37263 (15)0.0331 (12)
H20A0.72020.64510.36220.040*
C210.8195 (9)0.7317 (4)0.38853 (18)0.0487 (16)
H21A0.88030.70800.41060.073*
H21B0.90730.74040.36710.073*
H21C0.77030.77500.39820.073*
C220.5214 (8)0.6686 (3)0.40287 (14)0.0314 (12)
O220.3637 (5)0.65326 (18)0.38008 (10)0.0306 (8)
C230.5652 (9)0.6065 (3)0.42891 (16)0.0375 (13)
H23A0.68380.61350.44230.045*
H23B0.57560.56580.41170.045*
C240.4197 (9)0.5945 (3)0.46013 (16)0.0382 (13)
H24A0.30550.58040.44680.046*
H24B0.45840.55730.47810.046*
C250.3849 (9)0.6590 (3)0.48480 (16)0.0388 (14)
H25A0.49670.67020.50050.047*
C260.3448 (8)0.7168 (3)0.45564 (16)0.0375 (13)
H26A0.32650.75940.47090.045*
H26B0.23060.70680.44110.045*
O260.4881 (6)0.72624 (19)0.42763 (10)0.0343 (9)
C270.2262 (10)0.6504 (5)0.5131 (2)0.062 (2)
H27A0.19910.69390.52600.094*
H27B0.11930.63490.49820.094*
H27C0.25740.61670.53360.094*
C510.1484 (8)0.9123 (3)0.08829 (15)0.0332 (12)
H51A0.26590.93560.09290.040*
H51B0.16350.86440.09660.040*
C520.1074 (8)0.9138 (3)0.04339 (16)0.0380 (14)
H52A0.10880.96140.03380.046*
H52B0.20260.88840.02880.046*
C530.0776 (8)0.8824 (3)0.03508 (15)0.0346 (13)
H53A0.07740.83450.04500.041*
O530.1234 (6)0.8824 (2)0.00652 (11)0.0398 (10)
H530.030 (10)0.864 (4)0.0216 (18)0.048*
C540.2235 (8)0.9220 (3)0.05734 (15)0.0326 (12)
H54A0.22590.96940.04750.039*
H54B0.34410.90150.05200.039*
C550.1871 (8)0.9218 (3)0.10181 (15)0.0284 (11)
C560.3132 (7)0.8993 (3)0.12685 (16)0.0307 (12)
H56A0.42710.88610.11590.037*
C570.2893 (8)0.8931 (3)0.17109 (16)0.0330 (12)
H57A0.26950.84480.17800.040*
H57B0.40240.90820.18450.040*
C580.1290 (7)0.9352 (2)0.18683 (15)0.0265 (11)
H58A0.16320.98430.18660.032*
C590.0371 (7)0.9245 (3)0.15971 (14)0.0255 (11)
H59A0.05960.87450.15920.031*
C600.0013 (8)0.9458 (3)0.11552 (15)0.0294 (12)
C610.2116 (8)0.9569 (3)0.17732 (16)0.0346 (13)
H61A0.31710.94340.16070.042*
H61B0.20061.00690.17600.042*
C620.2473 (8)0.9358 (3)0.22073 (16)0.0353 (13)
H62A0.27490.88670.22170.042*
H62B0.35490.96060.23090.042*
C630.0844 (7)0.9507 (3)0.24752 (15)0.0257 (11)
C640.0824 (7)0.9140 (2)0.22941 (14)0.0258 (11)
H64A0.04840.86500.22790.031*
C650.2273 (8)0.9192 (3)0.26234 (15)0.0345 (13)
H65A0.28370.96480.26290.041*
H65B0.32350.88450.25880.041*
C660.1155 (8)0.9059 (3)0.29997 (15)0.0299 (12)
H66A0.13500.85840.30960.036*
C670.0877 (8)0.9178 (3)0.29005 (14)0.0268 (11)
H67A0.15140.87300.28860.032*
C680.0511 (8)1.0276 (3)0.25050 (15)0.0319 (12)
H68A0.01781.04540.22410.048*
H68B0.16221.05010.25990.048*
H68C0.04801.03640.26940.048*
C690.0099 (9)1.0231 (3)0.11037 (16)0.0367 (13)
H69A0.07631.04460.12880.055*
H69B0.02181.03490.08280.055*
H69C0.13341.03900.11630.055*
C700.1610 (8)0.9579 (3)0.32608 (15)0.0291 (12)
H70A0.17861.00600.31730.035*
C710.3431 (8)0.9323 (3)0.34269 (17)0.0397 (14)
H71A0.43510.93320.32150.060*
H71B0.32860.88570.35250.060*
H71C0.38210.96170.36470.060*
C720.0016 (8)0.9564 (3)0.35482 (15)0.0309 (12)
O720.1563 (5)0.95371 (18)0.33112 (10)0.0299 (8)
C730.0145 (8)1.0185 (3)0.38266 (15)0.0329 (12)
H73A0.10061.02420.39770.039*
H73B0.03381.05980.36640.039*
C740.1697 (9)1.0106 (3)0.41173 (16)0.0380 (13)
H74A0.28651.01050.39700.046*
H74B0.17081.04950.43050.046*
C750.1508 (9)0.9442 (3)0.43536 (15)0.0360 (13)
H75A0.03800.94650.45210.043*
C760.1306 (9)0.8864 (3)0.40496 (16)0.0360 (13)
H76A0.11380.84300.41950.043*
H76B0.24390.88280.38910.043*
O760.0191 (5)0.89658 (17)0.37864 (10)0.0321 (8)
C770.3121 (10)0.9321 (3)0.46238 (19)0.0493 (16)
H77A0.33220.97220.47910.074*
H77B0.28820.89260.47950.074*
H77C0.42060.92350.44610.074*
O1W0.0209 (6)0.6938 (2)0.01496 (13)0.0484 (11)
H1W0.118 (6)0.669 (3)0.015 (2)0.058*
H2W0.055 (8)0.725 (2)0.0017 (17)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (3)0.036 (3)0.032 (3)0.005 (2)0.001 (2)0.004 (2)
C20.026 (3)0.039 (3)0.035 (3)0.008 (3)0.000 (2)0.002 (2)
C30.027 (3)0.027 (3)0.033 (3)0.002 (2)0.002 (2)0.005 (2)
O30.026 (2)0.039 (2)0.0305 (18)0.0009 (18)0.0054 (17)0.0040 (15)
C40.022 (3)0.036 (3)0.034 (3)0.003 (2)0.001 (2)0.004 (2)
C50.022 (3)0.024 (3)0.035 (3)0.002 (2)0.001 (2)0.001 (2)
C60.020 (3)0.027 (3)0.036 (3)0.002 (2)0.008 (2)0.002 (2)
C70.019 (3)0.029 (3)0.030 (2)0.001 (2)0.002 (2)0.0029 (19)
C80.024 (3)0.016 (2)0.031 (2)0.002 (2)0.001 (2)0.0033 (18)
C90.022 (2)0.016 (2)0.031 (2)0.001 (2)0.000 (2)0.0039 (17)
C100.019 (3)0.019 (2)0.037 (3)0.001 (2)0.000 (2)0.0010 (19)
C110.028 (3)0.032 (3)0.034 (3)0.004 (2)0.004 (2)0.001 (2)
C120.017 (3)0.033 (3)0.036 (3)0.003 (2)0.002 (2)0.001 (2)
C130.024 (3)0.024 (3)0.029 (2)0.005 (2)0.001 (2)0.0004 (19)
C140.026 (3)0.014 (2)0.035 (3)0.002 (2)0.002 (2)0.0013 (18)
C150.026 (3)0.030 (3)0.031 (3)0.001 (2)0.001 (2)0.0035 (19)
C160.028 (3)0.023 (3)0.031 (2)0.002 (2)0.003 (2)0.0028 (19)
C170.028 (3)0.017 (2)0.034 (3)0.001 (2)0.000 (2)0.0029 (19)
C180.029 (3)0.027 (3)0.042 (3)0.004 (2)0.002 (3)0.003 (2)
C190.040 (3)0.026 (3)0.045 (3)0.009 (3)0.002 (3)0.007 (2)
C200.031 (3)0.036 (3)0.032 (3)0.006 (3)0.000 (2)0.001 (2)
C210.033 (3)0.070 (5)0.043 (3)0.015 (3)0.004 (3)0.009 (3)
C220.034 (3)0.036 (3)0.024 (2)0.001 (3)0.002 (2)0.003 (2)
O220.030 (2)0.031 (2)0.0306 (18)0.0057 (17)0.0020 (17)0.0077 (14)
C230.041 (3)0.038 (3)0.034 (3)0.005 (3)0.000 (3)0.003 (2)
C240.045 (3)0.034 (3)0.035 (3)0.001 (3)0.006 (3)0.004 (2)
C250.036 (3)0.046 (3)0.034 (3)0.002 (3)0.003 (3)0.000 (2)
C260.035 (3)0.043 (3)0.035 (3)0.000 (3)0.000 (3)0.006 (2)
O260.036 (2)0.031 (2)0.0358 (18)0.0032 (18)0.0001 (18)0.0039 (15)
C270.045 (4)0.092 (6)0.050 (4)0.005 (4)0.006 (4)0.010 (4)
C510.024 (3)0.041 (3)0.035 (3)0.004 (3)0.003 (2)0.002 (2)
C520.032 (3)0.045 (3)0.036 (3)0.004 (3)0.005 (3)0.001 (2)
C530.036 (3)0.038 (3)0.030 (3)0.004 (3)0.005 (3)0.000 (2)
O530.043 (3)0.044 (2)0.0317 (19)0.003 (2)0.0002 (19)0.0063 (16)
C540.026 (3)0.036 (3)0.036 (3)0.002 (3)0.003 (2)0.000 (2)
C550.030 (3)0.020 (3)0.036 (3)0.004 (2)0.005 (2)0.0000 (19)
C560.024 (3)0.030 (3)0.038 (3)0.000 (2)0.003 (2)0.006 (2)
C570.025 (3)0.036 (3)0.038 (3)0.004 (3)0.001 (2)0.002 (2)
C580.026 (3)0.019 (3)0.034 (3)0.002 (2)0.002 (2)0.0015 (18)
C590.023 (3)0.022 (2)0.031 (3)0.006 (2)0.001 (2)0.0004 (19)
C600.031 (3)0.026 (3)0.032 (2)0.001 (2)0.001 (3)0.0020 (19)
C610.027 (3)0.040 (3)0.037 (3)0.000 (3)0.002 (3)0.004 (2)
C620.032 (3)0.034 (3)0.040 (3)0.003 (3)0.004 (3)0.002 (2)
C630.025 (3)0.021 (3)0.032 (2)0.003 (2)0.002 (2)0.0010 (19)
C640.029 (3)0.014 (2)0.035 (3)0.002 (2)0.002 (2)0.0031 (18)
C650.030 (3)0.038 (3)0.036 (3)0.008 (3)0.004 (3)0.002 (2)
C660.039 (3)0.019 (3)0.032 (3)0.005 (2)0.003 (3)0.0017 (19)
C670.035 (3)0.013 (2)0.033 (3)0.007 (2)0.001 (2)0.0033 (18)
C680.036 (3)0.026 (3)0.033 (3)0.003 (2)0.004 (3)0.003 (2)
C690.040 (3)0.037 (3)0.033 (3)0.002 (3)0.003 (3)0.003 (2)
C700.035 (3)0.023 (2)0.030 (3)0.002 (2)0.002 (2)0.0025 (19)
C710.031 (3)0.049 (4)0.039 (3)0.001 (3)0.000 (3)0.000 (2)
C720.031 (3)0.029 (3)0.033 (3)0.007 (3)0.002 (3)0.002 (2)
O720.030 (2)0.0288 (18)0.0314 (18)0.0001 (17)0.0032 (17)0.0004 (14)
C730.038 (3)0.024 (3)0.037 (3)0.003 (3)0.005 (3)0.000 (2)
C740.045 (3)0.034 (3)0.035 (3)0.006 (3)0.005 (3)0.007 (2)
C750.037 (3)0.041 (3)0.030 (3)0.004 (3)0.000 (3)0.001 (2)
C760.044 (4)0.028 (3)0.037 (3)0.001 (3)0.001 (3)0.003 (2)
O760.037 (2)0.0231 (18)0.0366 (18)0.0018 (18)0.0021 (18)0.0035 (14)
C770.054 (4)0.049 (4)0.045 (3)0.002 (3)0.007 (3)0.001 (3)
O1W0.038 (2)0.053 (3)0.053 (2)0.005 (2)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
C1—C21.537 (7)C51—C601.559 (8)
C1—C101.559 (7)C51—H51A0.9900
C1—H1A0.9900C51—H51B0.9900
C1—H1B0.9900C52—C531.519 (8)
C2—C31.515 (8)C52—H52A0.9900
C2—H2A0.9900C52—H52B0.9900
C2—H2B0.9900C53—O531.431 (6)
C3—O31.443 (6)C53—C541.521 (8)
C3—C41.535 (7)C53—H53A1.0000
C3—H3A1.0000O53—H530.93 (7)
O3—H30.90 (7)C54—C551.511 (7)
C4—C51.522 (7)C54—H54A0.9900
C4—H4A0.9900C54—H54B0.9900
C4—H4B0.9900C55—C561.326 (8)
C5—C61.316 (8)C55—C601.533 (8)
C5—C101.522 (7)C56—C571.495 (7)
C6—C71.502 (7)C56—H56A0.9500
C6—H6A0.9500C57—C581.534 (7)
C7—C81.527 (7)C57—H57A0.9900
C7—H7A0.9900C57—H57B0.9900
C7—H7B0.9900C58—C641.523 (7)
C8—C141.524 (7)C58—C591.535 (7)
C8—C91.541 (7)C58—H58A1.0000
C8—H8A1.0000C59—C611.548 (7)
C9—C111.540 (7)C59—C601.558 (7)
C9—C101.571 (6)C59—H59A1.0000
C9—H9A1.0000C60—C691.534 (8)
C10—C191.546 (7)C61—C621.532 (7)
C11—C121.528 (7)C61—H61A0.9900
C11—H11A0.9900C61—H61B0.9900
C11—H11B0.9900C62—C631.524 (8)
C12—C131.529 (7)C62—H62A0.9900
C12—H12A0.9900C62—H62B0.9900
C12—H12B0.9900C63—C681.538 (8)
C13—C141.526 (7)C63—C641.546 (7)
C13—C181.546 (8)C63—C671.563 (7)
C13—C171.556 (7)C64—C651.535 (7)
C14—C151.532 (7)C64—H64A1.0000
C14—H14A1.0000C65—C661.525 (7)
C15—C161.521 (7)C65—H65A0.9900
C15—H15A0.9900C65—H65B0.9900
C15—H15B0.9900C66—O721.436 (6)
C16—O221.448 (6)C66—C671.548 (8)
C16—C171.551 (7)C66—H66A1.0000
C16—H16A1.0000C67—C701.538 (7)
C17—C201.538 (7)C67—H67A1.0000
C17—H17A1.0000C68—H68A0.9800
C18—H18A0.9800C68—H68B0.9800
C18—H18B0.9800C68—H68C0.9800
C18—H18C0.9800C69—H69A0.9800
C19—H19A0.9800C69—H69B0.9800
C19—H19B0.9800C69—H69C0.9800
C19—H19C0.9800C70—C721.515 (8)
C20—C221.513 (8)C70—C711.534 (8)
C20—C211.518 (8)C70—H70A1.0000
C20—H20A1.0000C71—H71A0.9800
C21—H21A0.9800C71—H71B0.9800
C21—H21B0.9800C71—H71C0.9800
C21—H21C0.9800C72—O721.406 (7)
C22—O221.420 (7)C72—O761.429 (6)
C22—O261.426 (6)C72—C731.541 (7)
C22—C231.536 (8)C73—C741.507 (8)
C23—C241.513 (8)C73—H73A0.9900
C23—H23A0.9900C73—H73B0.9900
C23—H23B0.9900C74—C751.534 (8)
C24—C251.536 (8)C74—H74A0.9900
C24—H24A0.9900C74—H74B0.9900
C24—H24B0.9900C75—C771.509 (9)
C25—C271.512 (9)C75—C761.533 (8)
C25—C261.528 (8)C75—H75A1.0000
C25—H25A1.0000C76—O761.423 (7)
C26—O261.422 (7)C76—H76A0.9900
C26—H26A0.9900C76—H76B0.9900
C26—H26B0.9900C77—H77A0.9800
C27—H27A0.9800C77—H77B0.9800
C27—H27B0.9800C77—H77C0.9800
C27—H27C0.9800O1W—H1W0.87 (2)
C51—C521.532 (7)O1W—H2W0.87 (2)
C2—C1—C10114.0 (4)C52—C51—H51A108.4
C2—C1—H1A108.8C60—C51—H51A108.4
C10—C1—H1A108.8C52—C51—H51B108.4
C2—C1—H1B108.8C60—C51—H51B108.4
C10—C1—H1B108.8H51A—C51—H51B107.5
H1A—C1—H1B107.7C53—C52—C51110.3 (5)
C3—C2—C1110.7 (4)C53—C52—H52A109.6
C3—C2—H2A109.5C51—C52—H52A109.6
C1—C2—H2A109.5C53—C52—H52B109.6
C3—C2—H2B109.5C51—C52—H52B109.6
C1—C2—H2B109.5H52A—C52—H52B108.1
H2A—C2—H2B108.1O53—C53—C52112.9 (5)
O3—C3—C2107.9 (4)O53—C53—C54108.0 (5)
O3—C3—C4110.4 (4)C52—C53—C54109.4 (5)
C2—C3—C4109.8 (5)O53—C53—H53A108.8
O3—C3—H3A109.6C52—C53—H53A108.8
C2—C3—H3A109.6C54—C53—H53A108.8
C4—C3—H3A109.6C53—O53—H53111 (4)
C3—O3—H3118 (4)C55—C54—C53110.8 (5)
C5—C4—C3112.2 (4)C55—C54—H54A109.5
C5—C4—H4A109.2C53—C54—H54A109.5
C3—C4—H4A109.2C55—C54—H54B109.5
C5—C4—H4B109.2C53—C54—H54B109.5
C3—C4—H4B109.2H54A—C54—H54B108.1
H4A—C4—H4B107.9C56—C55—C54119.9 (5)
C6—C5—C10124.1 (5)C56—C55—C60123.1 (5)
C6—C5—C4120.3 (5)C54—C55—C60117.0 (5)
C10—C5—C4115.6 (5)C55—C56—C57124.8 (5)
C5—C6—C7124.0 (5)C55—C56—H56A117.6
C5—C6—H6A118.0C57—C56—H56A117.6
C7—C6—H6A118.0C56—C57—C58112.7 (5)
C6—C7—C8112.9 (4)C56—C57—H57A109.1
C6—C7—H7A109.0C58—C57—H57A109.1
C8—C7—H7A109.0C56—C57—H57B109.1
C6—C7—H7B109.0C58—C57—H57B109.1
C8—C7—H7B109.0H57A—C57—H57B107.8
H7A—C7—H7B107.8C64—C58—C57110.2 (4)
C14—C8—C7111.6 (4)C64—C58—C59109.6 (4)
C14—C8—C9110.0 (4)C57—C58—C59109.5 (4)
C7—C8—C9109.0 (4)C64—C58—H58A109.1
C14—C8—H8A108.7C57—C58—H58A109.1
C7—C8—H8A108.7C59—C58—H58A109.1
C9—C8—H8A108.7C58—C59—C61112.2 (4)
C11—C9—C8113.3 (4)C58—C59—C60112.9 (4)
C11—C9—C10112.9 (4)C61—C59—C60113.0 (4)
C8—C9—C10111.0 (4)C58—C59—H59A106.0
C11—C9—H9A106.3C61—C59—H59A106.0
C8—C9—H9A106.3C60—C59—H59A106.0
C10—C9—H9A106.3C55—C60—C69108.0 (5)
C5—C10—C19108.9 (5)C55—C60—C59110.7 (4)
C5—C10—C1108.2 (4)C69—C60—C59111.5 (4)
C19—C10—C1110.4 (4)C55—C60—C51108.8 (4)
C5—C10—C9109.7 (4)C69—C60—C51109.0 (5)
C19—C10—C9111.2 (4)C59—C60—C51108.9 (4)
C1—C10—C9108.4 (4)C62—C61—C59113.0 (5)
C12—C11—C9113.3 (4)C62—C61—H61A109.0
C12—C11—H11A108.9C59—C61—H61A109.0
C9—C11—H11A108.9C62—C61—H61B109.0
C12—C11—H11B108.9C59—C61—H61B109.0
C9—C11—H11B108.9H61A—C61—H61B107.8
H11A—C11—H11B107.7C63—C62—C61111.8 (5)
C11—C12—C13111.1 (4)C63—C62—H62A109.3
C11—C12—H12A109.4C61—C62—H62A109.3
C13—C12—H12A109.4C63—C62—H62B109.3
C11—C12—H12B109.4C61—C62—H62B109.3
C13—C12—H12B109.4H62A—C62—H62B107.9
H12A—C12—H12B108.0C62—C63—C68110.7 (4)
C14—C13—C12106.8 (4)C62—C63—C64107.6 (4)
C14—C13—C18111.8 (4)C68—C63—C64111.1 (5)
C12—C13—C18110.9 (4)C62—C63—C67116.3 (5)
C14—C13—C17101.0 (4)C68—C63—C67110.6 (4)
C12—C13—C17114.6 (4)C64—C63—C67100.1 (4)
C18—C13—C17111.3 (4)C58—C64—C65119.8 (5)
C8—C14—C13114.2 (4)C58—C64—C63114.6 (4)
C8—C14—C15119.3 (4)C65—C64—C63103.8 (4)
C13—C14—C15103.8 (4)C58—C64—H64A105.9
C8—C14—H14A106.2C65—C64—H64A105.9
C13—C14—H14A106.2C63—C64—H64A105.9
C15—C14—H14A106.2C66—C65—C64101.9 (4)
C16—C15—C14101.7 (4)C66—C65—H65A111.4
C16—C15—H15A111.4C64—C65—H65A111.4
C14—C15—H15A111.4C66—C65—H65B111.4
C16—C15—H15B111.4C64—C65—H65B111.4
C14—C15—H15B111.4H65A—C65—H65B109.2
H15A—C15—H15B109.3O72—C66—C65111.9 (4)
O22—C16—C15112.8 (4)O72—C66—C67104.9 (4)
O22—C16—C17104.5 (4)C65—C66—C67108.5 (4)
C15—C16—C17108.3 (4)O72—C66—H66A110.5
O22—C16—H16A110.4C65—C66—H66A110.5
C15—C16—H16A110.4C67—C66—H66A110.5
C17—C16—H16A110.4C70—C67—C66104.3 (4)
C20—C17—C16104.8 (4)C70—C67—C63120.3 (4)
C20—C17—C13120.0 (4)C66—C67—C63104.1 (4)
C16—C17—C13103.8 (4)C70—C67—H67A109.2
C20—C17—H17A109.2C66—C67—H67A109.2
C16—C17—H17A109.2C63—C67—H67A109.2
C13—C17—H17A109.2C63—C68—H68A109.5
C13—C18—H18A109.5C63—C68—H68B109.5
C13—C18—H18B109.5H68A—C68—H68B109.5
H18A—C18—H18B109.5C63—C68—H68C109.5
C13—C18—H18C109.5H68A—C68—H68C109.5
H18A—C18—H18C109.5H68B—C68—H68C109.5
H18B—C18—H18C109.5C60—C69—H69A109.5
C10—C19—H19A109.5C60—C69—H69B109.5
C10—C19—H19B109.5H69A—C69—H69B109.5
H19A—C19—H19B109.5C60—C69—H69C109.5
C10—C19—H19C109.5H69A—C69—H69C109.5
H19A—C19—H19C109.5H69B—C69—H69C109.5
H19B—C19—H19C109.5C72—C70—C71116.0 (4)
C22—C20—C21115.5 (5)C72—C70—C67102.5 (4)
C22—C20—C17103.2 (4)C71—C70—C67114.9 (5)
C21—C20—C17115.0 (5)C72—C70—H70A107.7
C22—C20—H20A107.5C71—C70—H70A107.7
C21—C20—H20A107.5C67—C70—H70A107.7
C17—C20—H20A107.5C70—C71—H71A109.5
C20—C21—H21A109.5C70—C71—H71B109.5
C20—C21—H21B109.5H71A—C71—H71B109.5
H21A—C21—H21B109.5C70—C71—H71C109.5
C20—C21—H21C109.5H71A—C71—H71C109.5
H21A—C21—H21C109.5H71B—C71—H71C109.5
H21B—C21—H21C109.5O72—C72—O76110.9 (4)
O22—C22—O26109.9 (5)O72—C72—C70106.3 (4)
O22—C22—C20105.4 (4)O76—C72—C70107.4 (5)
O26—C22—C20107.8 (5)O72—C72—C73107.9 (5)
O22—C22—C23107.8 (5)O76—C72—C73108.9 (4)
O26—C22—C23109.9 (4)C70—C72—C73115.3 (5)
C20—C22—C23115.7 (5)C72—O72—C66105.2 (4)
C22—O22—C16106.2 (4)C74—C73—C72111.5 (5)
C24—C23—C22111.6 (5)C74—C73—H73A109.3
C24—C23—H23A109.3C72—C73—H73A109.3
C22—C23—H23A109.3C74—C73—H73B109.3
C24—C23—H23B109.3C72—C73—H73B109.3
C22—C23—H23B109.3H73A—C73—H73B108.0
H23A—C23—H23B108.0C73—C74—C75110.6 (5)
C23—C24—C25111.1 (5)C73—C74—H74A109.5
C23—C24—H24A109.4C75—C74—H74A109.5
C25—C24—H24A109.4C73—C74—H74B109.5
C23—C24—H24B109.4C75—C74—H74B109.5
C25—C24—H24B109.4H74A—C74—H74B108.1
H24A—C24—H24B108.0C77—C75—C76110.8 (5)
C27—C25—C26109.6 (6)C77—C75—C74111.8 (5)
C27—C25—C24111.9 (6)C76—C75—C74107.4 (4)
C26—C25—C24107.8 (4)C77—C75—H75A108.9
C27—C25—H25A109.2C76—C75—H75A108.9
C26—C25—H25A109.2C74—C75—H75A108.9
C24—C25—H25A109.2O76—C76—C75112.4 (5)
O26—C26—C25112.0 (5)O76—C76—H76A109.1
O26—C26—H26A109.2C75—C76—H76A109.1
C25—C26—H26A109.2O76—C76—H76B109.1
O26—C26—H26B109.2C75—C76—H76B109.1
C25—C26—H26B109.2H76A—C76—H76B107.9
H26A—C26—H26B107.9C76—O76—C72113.0 (4)
C26—O26—C22113.9 (4)C75—C77—H77A109.5
C25—C27—H27A109.5C75—C77—H77B109.5
C25—C27—H27B109.5H77A—C77—H77B109.5
H27A—C27—H27B109.5C75—C77—H77C109.5
C25—C27—H27C109.5H77A—C77—H77C109.5
H27A—C27—H27C109.5H77B—C77—H77C109.5
H27B—C27—H27C109.5H1W—O1W—H2W100 (2)
C52—C51—C60115.3 (5)
C10—C1—C2—C357.4 (6)C60—C51—C52—C5354.7 (7)
C1—C2—C3—O3177.4 (4)C51—C52—C53—O53180.0 (5)
C1—C2—C3—C457.1 (6)C51—C52—C53—C5459.7 (6)
O3—C3—C4—C5173.9 (4)O53—C53—C54—C55177.9 (5)
C2—C3—C4—C555.0 (6)C52—C53—C54—C5558.9 (6)
C3—C4—C5—C6128.5 (5)C53—C54—C55—C56124.0 (5)
C3—C4—C5—C1053.2 (6)C53—C54—C55—C6053.6 (6)
C10—C5—C6—C71.6 (8)C54—C55—C56—C57176.5 (5)
C4—C5—C6—C7176.5 (5)C60—C55—C56—C570.9 (8)
C5—C6—C7—C814.4 (7)C55—C56—C57—C5817.8 (8)
C6—C7—C8—C14167.1 (4)C56—C57—C58—C64166.3 (4)
C6—C7—C8—C945.3 (5)C56—C57—C58—C5945.5 (6)
C14—C8—C9—C1146.5 (6)C64—C58—C59—C6150.3 (5)
C7—C8—C9—C11169.2 (4)C57—C58—C59—C61171.4 (4)
C14—C8—C9—C10174.8 (4)C64—C58—C59—C60179.4 (4)
C7—C8—C9—C1062.6 (5)C57—C58—C59—C6059.5 (6)
C6—C5—C10—C19107.5 (6)C56—C55—C60—C69109.3 (6)
C4—C5—C10—C1970.7 (6)C54—C55—C60—C6973.1 (6)
C6—C5—C10—C1132.5 (5)C56—C55—C60—C5912.9 (7)
C4—C5—C10—C149.3 (6)C54—C55—C60—C59164.6 (5)
C6—C5—C10—C914.4 (7)C56—C55—C60—C51132.5 (5)
C4—C5—C10—C9167.3 (4)C54—C55—C60—C5145.0 (6)
C2—C1—C10—C551.3 (6)C58—C59—C60—C5542.3 (6)
C2—C1—C10—C1967.8 (6)C61—C59—C60—C55170.9 (4)
C2—C1—C10—C9170.2 (4)C58—C59—C60—C6978.0 (6)
C11—C9—C10—C5174.5 (4)C61—C59—C60—C6950.7 (6)
C8—C9—C10—C546.0 (5)C58—C59—C60—C51161.8 (4)
C11—C9—C10—C1953.9 (6)C61—C59—C60—C5169.6 (5)
C8—C9—C10—C1974.5 (5)C52—C51—C60—C5545.3 (6)
C11—C9—C10—C167.5 (5)C52—C51—C60—C6972.2 (6)
C8—C9—C10—C1164.0 (4)C52—C51—C60—C59166.0 (5)
C8—C9—C11—C1247.6 (6)C58—C59—C61—C6251.2 (6)
C10—C9—C11—C12174.9 (4)C60—C59—C61—C62179.8 (5)
C9—C11—C12—C1354.6 (6)C59—C61—C62—C6354.8 (6)
C11—C12—C13—C1459.4 (6)C61—C62—C63—C6865.3 (6)
C11—C12—C13—C1862.7 (6)C61—C62—C63—C6456.2 (6)
C11—C12—C13—C17170.2 (5)C61—C62—C63—C67167.4 (5)
C7—C8—C14—C13176.9 (4)C57—C58—C64—C6558.7 (6)
C9—C8—C14—C1355.7 (5)C59—C58—C64—C65179.4 (4)
C7—C8—C14—C1559.6 (6)C57—C58—C64—C63176.9 (4)
C9—C8—C14—C15179.3 (4)C59—C58—C64—C6356.3 (5)
C12—C13—C14—C861.9 (5)C62—C63—C64—C5859.0 (6)
C18—C13—C14—C859.6 (6)C68—C63—C64—C5862.3 (6)
C17—C13—C14—C8178.0 (4)C67—C63—C64—C58179.2 (4)
C12—C13—C14—C15166.5 (4)C62—C63—C64—C65168.6 (4)
C18—C13—C14—C1572.0 (5)C68—C63—C64—C6570.2 (5)
C17—C13—C14—C1546.4 (5)C67—C63—C64—C6546.7 (5)
C8—C14—C15—C16170.0 (4)C58—C64—C65—C66170.2 (4)
C13—C14—C15—C1641.4 (5)C63—C64—C65—C6640.8 (5)
C14—C15—C16—O22135.3 (4)C64—C65—C66—O72134.0 (4)
C14—C15—C16—C1720.2 (5)C64—C65—C66—C6718.8 (6)
O22—C16—C17—C2014.0 (5)O72—C66—C67—C7016.9 (5)
C15—C16—C17—C20134.4 (4)C65—C66—C67—C70136.6 (4)
O22—C16—C17—C13112.7 (4)O72—C66—C67—C63110.1 (4)
C15—C16—C17—C137.7 (5)C65—C66—C67—C639.7 (6)
C14—C13—C17—C20148.9 (5)C62—C63—C67—C7094.5 (6)
C12—C13—C17—C2096.8 (6)C68—C63—C67—C7032.8 (7)
C18—C13—C17—C2030.1 (7)C64—C63—C67—C70150.0 (5)
C14—C13—C17—C1632.5 (5)C62—C63—C67—C66149.2 (5)
C12—C13—C17—C16146.8 (4)C68—C63—C67—C6683.4 (5)
C18—C13—C17—C1686.3 (5)C64—C63—C67—C6633.7 (5)
C16—C17—C20—C229.7 (5)C66—C67—C70—C727.3 (5)
C13—C17—C20—C22125.6 (5)C63—C67—C70—C72123.4 (5)
C16—C17—C20—C21136.4 (5)C66—C67—C70—C71134.0 (5)
C13—C17—C20—C21107.7 (6)C63—C67—C70—C71109.9 (5)
C21—C20—C22—O22157.4 (5)C71—C70—C72—O72156.0 (5)
C17—C20—C22—O2230.9 (5)C67—C70—C72—O7230.1 (5)
C21—C20—C22—O2639.9 (7)C71—C70—C72—O7637.2 (6)
C17—C20—C22—O2686.5 (5)C67—C70—C72—O7688.7 (5)
C21—C20—C22—C2383.6 (6)C71—C70—C72—C7384.4 (6)
C17—C20—C22—C23150.0 (4)C67—C70—C72—C73149.6 (4)
O26—C22—O22—C1674.3 (5)O76—C72—O72—C6674.0 (5)
C20—C22—O22—C1641.7 (5)C70—C72—O72—C6642.5 (5)
C23—C22—O22—C16165.9 (4)C73—C72—O72—C66166.8 (4)
C15—C16—O22—C22151.7 (4)C65—C66—O72—C72154.1 (4)
C17—C16—O22—C2234.4 (5)C67—C66—O72—C7236.6 (5)
O22—C22—C23—C2466.6 (6)O72—C72—C73—C7464.8 (6)
O26—C22—C23—C2453.2 (7)O76—C72—C73—C7455.7 (6)
C20—C22—C23—C24175.7 (5)C70—C72—C73—C74176.6 (5)
C22—C23—C24—C2553.1 (7)C72—C73—C74—C7554.9 (6)
C23—C24—C25—C27173.9 (5)C73—C74—C75—C77175.4 (5)
C23—C24—C25—C2653.4 (7)C73—C74—C75—C7653.6 (6)
C27—C25—C26—O26178.7 (5)C77—C75—C76—O76179.3 (5)
C24—C25—C26—O2656.7 (6)C74—C75—C76—O7656.9 (6)
C25—C26—O26—C2261.2 (6)C75—C76—O76—C7261.9 (6)
O22—C22—O26—C2660.9 (5)O72—C72—O76—C7659.6 (5)
C20—C22—O26—C26175.4 (4)C70—C72—O76—C76175.4 (4)
C23—C22—O26—C2657.6 (6)C73—C72—O76—C7659.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.87 (2)2.01 (2)2.873 (6)175 (6)
O1W—H1W···O53i0.87 (2)2.17 (3)3.028 (6)169 (5)
O3—H3···O1W0.90 (7)1.93 (7)2.812 (6)167 (6)
O53—H53···O3i0.93 (7)2.00 (7)2.881 (6)158 (6)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC27H42O3·0.5H2O
Mr423.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)136
a, b, c (Å)7.3483 (5), 19.698 (2), 33.440 (3)
V3)4840.3 (8)
Z8
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.50 × 0.17 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.821, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
17450, 4918, 3573
Rint0.131
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.177, 1.13
No. of reflections4918
No. of parameters570
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.87 (2)2.01 (2)2.873 (6)175 (6)
O1W—H1W···O53i0.87 (2)2.17 (3)3.028 (6)169 (5)
O3—H3···O1W0.90 (7)1.93 (7)2.812 (6)167 (6)
O53—H53···O3i0.93 (7)2.00 (7)2.881 (6)158 (6)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

We are grateful to Promep for financial support.

References

First citationChen, F.-X., Zhao, M.-R., Ren, B.-Z., Zhou, C.-R. & Peng, F.-F. (2012). J. Chem. Thermodyn. 47, 341–346.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDjerassi, C. (1992). Steroids, 57, 631–641.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLehmann, P. A. (1992). Steroids, 57, 403–408.  PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-N., Hu, W.-X. & Zhou, W. (2005). Acta Cryst. E61, o2896–o2898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Cui, Y., Wang, L., Zhang, S., Yan, B. & Liu, Y. (2005). Acta Cryst. E61, o2324–o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G. P., Shen, S. D., Lei, M. & Hu, L. H. (2011). Tetrahedron, 67, 5894–5896.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds