organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(2-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 June 2012; accepted 15 June 2012; online 30 June 2012)

In the title compound, C15H14N2O4, the dihedral angle between the benzene rings is 40.59 (4)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For a related sturucture and background to the properties and uses of hydrazones, see: Tameem et al. (2008[Tameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679-o680.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, P 21 /c

  • a = 15.1982 (2) Å

  • b = 8.2416 (1) Å

  • c = 10.7900 (1) Å

  • β = 101.173 (1)°

  • V = 1325.91 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.43 × 0.28 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.982

  • 21103 measured reflections

  • 5357 independent reflections

  • 4446 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.05

  • 5357 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.859 (15) 2.342 (15) 3.0800 (10) 144.3 (14)
O3—H1O3⋯N2 0.866 (18) 1.851 (18) 2.6271 (10) 148.3 (17)
O2—H1O2⋯O1ii 0.914 (18) 1.766 (18) 2.6713 (9) 170.3 (16)
C5—H5A⋯O2iii 0.95 2.54 3.2036 (11) 128
C15—H15A⋯O1iv 0.98 2.53 3.2646 (12) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Tameem et al., 2008), compound (I) (Fig. 1) was hereby synthesized based on the condensation reaction of 4-hydroxybenzhydrazide and 2-hydroxy-4-methoxybenzaldehyde.

All parameters in (I), are within normal ranges. The dihedral angle between C1—C6 and C9—C14 is 40.59 (4)°. In the molecule, intramolecular interaction of O3—H1O3···N2 form an S(6) hydrogen ring motif. In the crystal structure, the molecules are arranged into a three-dimensional network, connected by N1—H1N1···O3i, O2—H1O2···O1ii, C5—H5A···O2iii and C15—H15A···O1iv interactions (Table 1).

Related literature top

For a related sturucture and background to the properties and uses of hydrazones, see: Tameem et al. (2008).

Experimental top

A solution of 2-hydroxy-4-methoxybenzaldehyde (152 mg, 1 mmol) in methanol (10 ml) was added dropwise to a methanolic solution (10 ml) of 4-hydroxybenzhydrazide (152 mg, 1 mmol) and the mixture was refluxed for 2 h. The resulting solution was condensed on a steam bath to 5 ml and cooled to room temperature. Yellow blocks were separated out, washed with cooled methanol and dried in air.

Refinement top

N and O bound H atoms were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Structure description top

Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Tameem et al., 2008), compound (I) (Fig. 1) was hereby synthesized based on the condensation reaction of 4-hydroxybenzhydrazide and 2-hydroxy-4-methoxybenzaldehyde.

All parameters in (I), are within normal ranges. The dihedral angle between C1—C6 and C9—C14 is 40.59 (4)°. In the molecule, intramolecular interaction of O3—H1O3···N2 form an S(6) hydrogen ring motif. In the crystal structure, the molecules are arranged into a three-dimensional network, connected by N1—H1N1···O3i, O2—H1O2···O1ii, C5—H5A···O2iii and C15—H15A···O1iv interactions (Table 1).

For a related sturucture and background to the properties and uses of hydrazones, see: Tameem et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
(E)-4-Hydroxy-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9753 reflections
a = 15.1982 (2) Åθ = 2.7–35.0°
b = 8.2416 (1) ŵ = 0.11 mm1
c = 10.7900 (1) ÅT = 100 K
β = 101.173 (1)°Block, yellow
V = 1325.91 (3) Å30.43 × 0.28 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5357 independent reflections
Radiation source: fine-focus sealed tube4446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 34.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2322
Tmin = 0.956, Tmax = 0.982k = 1012
21103 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.4059P]
where P = (Fo2 + 2Fc2)/3
5357 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H14N2O4V = 1325.91 (3) Å3
Mr = 286.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1982 (2) ŵ = 0.11 mm1
b = 8.2416 (1) ÅT = 100 K
c = 10.7900 (1) Å0.43 × 0.28 × 0.18 mm
β = 101.173 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5357 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4446 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.982Rint = 0.023
21103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.50 e Å3
5357 reflectionsΔρmin = 0.26 e Å3
203 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31723 (4)0.31882 (9)0.55171 (6)0.01663 (14)
O20.51966 (4)0.76437 (9)0.99737 (6)0.01740 (14)
O30.09841 (4)0.09665 (9)0.36222 (6)0.01737 (14)
O40.20519 (4)0.02273 (9)0.21628 (6)0.01959 (14)
N10.19965 (5)0.38654 (10)0.64137 (7)0.01474 (14)
N20.14157 (5)0.29962 (10)0.55201 (7)0.01408 (14)
C10.32956 (6)0.51526 (12)0.85518 (8)0.01642 (16)
H1A0.27800.46820.87840.020*
C20.38846 (6)0.60648 (12)0.94252 (8)0.01661 (17)
H2A0.37740.62061.02550.020*
C30.46390 (6)0.67757 (11)0.90881 (8)0.01411 (15)
C40.47939 (6)0.65803 (11)0.78597 (8)0.01494 (16)
H4A0.52970.70850.76180.018*
C50.42107 (6)0.56481 (11)0.69974 (8)0.01445 (15)
H5A0.43240.55000.61700.017*
C60.34575 (5)0.49233 (11)0.73292 (8)0.01322 (15)
C70.28800 (5)0.39174 (11)0.63549 (8)0.01329 (15)
C80.05729 (6)0.31976 (11)0.55158 (8)0.01372 (15)
H8A0.03930.39160.61090.016*
C90.01035 (5)0.23455 (10)0.46203 (8)0.01278 (15)
C100.01179 (6)0.12335 (11)0.37274 (8)0.01310 (15)
C110.05540 (6)0.03854 (11)0.29367 (8)0.01457 (15)
H11A0.04020.03850.23570.017*
C120.14544 (6)0.06598 (11)0.29894 (8)0.01454 (15)
C130.16902 (6)0.17757 (11)0.38464 (8)0.01555 (16)
H13A0.23020.19760.38720.019*
C140.10109 (6)0.25820 (11)0.46569 (8)0.01491 (16)
H14A0.11660.33190.52570.018*
C150.29779 (6)0.01043 (14)0.22528 (9)0.02144 (19)
H15A0.33340.08540.16510.032*
H15B0.31870.10080.20580.032*
H15C0.30460.03830.31120.032*
H1N10.1785 (10)0.4363 (19)0.6991 (14)0.029 (4)*
H1O30.1324 (12)0.155 (2)0.4189 (18)0.047 (5)*
H1O20.5723 (12)0.788 (2)0.9722 (16)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0124 (3)0.0221 (3)0.0158 (3)0.0004 (2)0.0038 (2)0.0021 (2)
O20.0132 (3)0.0228 (3)0.0166 (3)0.0040 (2)0.0039 (2)0.0049 (2)
O30.0116 (3)0.0226 (3)0.0186 (3)0.0009 (2)0.0045 (2)0.0035 (2)
O40.0142 (3)0.0253 (4)0.0187 (3)0.0046 (2)0.0017 (2)0.0060 (3)
N10.0103 (3)0.0188 (4)0.0152 (3)0.0015 (2)0.0027 (2)0.0035 (3)
N20.0116 (3)0.0161 (3)0.0141 (3)0.0019 (2)0.0016 (2)0.0008 (2)
C10.0126 (3)0.0224 (4)0.0149 (3)0.0037 (3)0.0043 (3)0.0006 (3)
C20.0143 (4)0.0223 (4)0.0139 (3)0.0030 (3)0.0044 (3)0.0002 (3)
C30.0113 (3)0.0161 (4)0.0149 (3)0.0001 (3)0.0025 (3)0.0004 (3)
C40.0121 (3)0.0178 (4)0.0157 (3)0.0022 (3)0.0046 (3)0.0008 (3)
C50.0125 (3)0.0176 (4)0.0140 (3)0.0012 (3)0.0043 (3)0.0002 (3)
C60.0105 (3)0.0155 (4)0.0135 (3)0.0010 (3)0.0018 (2)0.0008 (3)
C70.0115 (3)0.0150 (4)0.0132 (3)0.0004 (3)0.0022 (2)0.0022 (3)
C80.0119 (3)0.0153 (4)0.0139 (3)0.0003 (3)0.0025 (2)0.0010 (3)
C90.0112 (3)0.0136 (4)0.0134 (3)0.0002 (3)0.0022 (2)0.0001 (3)
C100.0117 (3)0.0151 (4)0.0130 (3)0.0009 (3)0.0036 (2)0.0011 (3)
C110.0151 (4)0.0152 (4)0.0138 (3)0.0010 (3)0.0035 (3)0.0010 (3)
C120.0136 (3)0.0160 (4)0.0135 (3)0.0025 (3)0.0015 (3)0.0005 (3)
C130.0112 (3)0.0179 (4)0.0176 (4)0.0004 (3)0.0028 (3)0.0017 (3)
C140.0122 (3)0.0158 (4)0.0168 (4)0.0002 (3)0.0030 (3)0.0026 (3)
C150.0145 (4)0.0278 (5)0.0210 (4)0.0049 (3)0.0008 (3)0.0033 (4)
Geometric parameters (Å, º) top
O1—C71.2375 (11)C4—H4A0.9500
O2—C31.3525 (10)C5—C61.3979 (12)
O2—H1O20.915 (18)C5—H5A0.9500
O3—C101.3610 (10)C6—C71.4849 (12)
O3—H1O30.866 (19)C8—C91.4487 (11)
O4—C121.3568 (10)C8—H8A0.9500
O4—C151.4329 (12)C9—C141.4009 (12)
N1—C71.3571 (11)C9—C101.4166 (12)
N1—N21.3756 (10)C10—C111.3862 (12)
N1—H1N10.858 (16)C11—C121.3990 (12)
N2—C81.2907 (11)C11—H11A0.9500
C1—C21.3885 (12)C12—C131.3992 (13)
C1—C61.4008 (12)C13—C141.3865 (12)
C1—H1A0.9500C13—H13A0.9500
C2—C31.3971 (12)C14—H14A0.9500
C2—H2A0.9500C15—H15A0.9800
C3—C41.3997 (12)C15—H15B0.9800
C4—C51.3864 (12)C15—H15C0.9800
C3—O2—H1O2111.6 (11)N2—C8—C9121.03 (8)
C10—O3—H1O3107.8 (12)N2—C8—H8A119.5
C12—O4—C15117.28 (7)C9—C8—H8A119.5
C7—N1—N2119.35 (7)C14—C9—C10118.30 (8)
C7—N1—H1N1122.1 (10)C14—C9—C8119.27 (8)
N2—N1—H1N1118.5 (10)C10—C9—C8122.40 (8)
C8—N2—N1115.92 (7)O3—C10—C11118.44 (8)
C2—C1—C6120.29 (8)O3—C10—C9121.49 (8)
C2—C1—H1A119.9C11—C10—C9120.07 (8)
C6—C1—H1A119.9C10—C11—C12120.21 (8)
C1—C2—C3120.27 (8)C10—C11—H11A119.9
C1—C2—H2A119.9C12—C11—H11A119.9
C3—C2—H2A119.9O4—C12—C11114.94 (8)
O2—C3—C2118.12 (8)O4—C12—C13124.33 (8)
O2—C3—C4122.18 (8)C11—C12—C13120.73 (8)
C2—C3—C4119.70 (8)C14—C13—C12118.49 (8)
C5—C4—C3119.76 (8)C14—C13—H13A120.8
C5—C4—H4A120.1C12—C13—H13A120.8
C3—C4—H4A120.1C13—C14—C9122.16 (8)
C4—C5—C6120.91 (8)C13—C14—H14A118.9
C4—C5—H5A119.5C9—C14—H14A118.9
C6—C5—H5A119.5O4—C15—H15A109.5
C5—C6—C1119.05 (8)O4—C15—H15B109.5
C5—C6—C7117.28 (7)H15A—C15—H15B109.5
C1—C6—C7123.67 (8)O4—C15—H15C109.5
O1—C7—N1121.15 (8)H15A—C15—H15C109.5
O1—C7—C6122.80 (8)H15B—C15—H15C109.5
N1—C7—C6116.04 (7)
C7—N1—N2—C8169.85 (8)N2—C8—C9—C14179.21 (8)
C6—C1—C2—C30.66 (14)N2—C8—C9—C101.28 (13)
C1—C2—C3—O2179.55 (8)C14—C9—C10—O3178.72 (8)
C1—C2—C3—C40.73 (14)C8—C9—C10—O33.34 (13)
O2—C3—C4—C5178.60 (8)C14—C9—C10—C111.39 (13)
C2—C3—C4—C51.68 (14)C8—C9—C10—C11176.55 (8)
C3—C4—C5—C61.27 (13)O3—C10—C11—C12178.13 (8)
C4—C5—C6—C10.11 (13)C9—C10—C11—C121.98 (13)
C4—C5—C6—C7178.74 (8)C15—O4—C12—C11174.52 (8)
C2—C1—C6—C51.08 (14)C15—O4—C12—C135.41 (13)
C2—C1—C6—C7177.70 (9)C10—C11—C12—O4179.35 (8)
N2—N1—C7—O10.48 (13)C10—C11—C12—C130.72 (13)
N2—N1—C7—C6178.13 (7)O4—C12—C13—C14178.82 (8)
C5—C6—C7—O128.68 (13)C11—C12—C13—C141.10 (13)
C1—C6—C7—O1150.12 (9)C12—C13—C14—C91.70 (14)
C5—C6—C7—N1149.91 (8)C10—C9—C14—C130.47 (13)
C1—C6—C7—N131.29 (12)C8—C9—C14—C13178.48 (8)
N1—N2—C8—C9179.89 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.859 (15)2.342 (15)3.0800 (10)144.3 (14)
O3—H1O3···N20.866 (18)1.851 (18)2.6271 (10)148.3 (17)
O2—H1O2···O1ii0.914 (18)1.766 (18)2.6713 (9)170.3 (16)
C5—H5A···O2iii0.952.543.2036 (11)128
C15—H15A···O1iv0.982.533.2646 (12)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.1982 (2), 8.2416 (1), 10.7900 (1)
β (°) 101.173 (1)
V3)1325.91 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.28 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.956, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
21103, 5357, 4446
Rint0.023
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.05
No. of reflections5357
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.859 (15)2.342 (15)3.0800 (10)144.3 (14)
O3—H1O3···N20.866 (18)1.851 (18)2.6271 (10)148.3 (17)
O2—H1O2···O1ii0.914 (18)1.766 (18)2.6713 (9)170.3 (16)
C5—H5A···O2iii0.952.543.2036 (11)128
C15—H15A···O1iv0.982.533.2646 (12)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: abdussalam@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

We thank Universiti Sains Malaysia (USM) for awarding a RU (1001/PKIMIA/811196) grant. HKF also thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds