organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl­phen­yl)-3-phenyl­cyclo­hex-2-en-1-one

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dDepartment of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 13 June 2012; accepted 14 June 2012; online 20 June 2012)

In the title compound, C19H18O, the cyclo­hexene ring has an envelope conformation with the methine C atom on the flap. The phenyl and methyl­phenyl rings form a dihedral angle of 85.93 (11)°. The crystal packing is consolidated by van der Waals forces and weak C—H⋯π inter­actions.

Related literature

For the biological activity of α,β-unsaturated carbonyl compounds, see: Podraze (1991[Podraze, K. F. (1991). Org. Prep. Proced. Int. 23, 217.]); Suksamrarn et al. (2003[Suksamrarn, A., Poomsing, P., Aroonrerk, N., Punjanon, T., Suksamrarn, S. & Kongkun, S. (2003). Arch. Pharm. Res. 26, 816-820.]); Modzelewska et al. (2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]); Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]); Ferrer et al. (2009[Ferrer, R., Lobo, G., Gamboa, N., Rodrigues, J., Abramjuk, C., Jung, K., Lein, M. & Charris, J. E. (2009). Sci. Pharm. 77, 725-741.]); Asiri (2003[Asiri, A. M. (2003). Bull. Korean Chem. Soc. 24, 426-430.]); Forestier et al. (1989[Forestier, S., Moire, C. & Lang, G. (1989). US Patent No. 4867964.]); Kumar et al. (2003[Kumar, S. K., Hager, E., Catherine, P., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.]). For the synthesis of cyclo­hexenones, see: Diao & Stahl (2011[Diao, T. & Stahl, S. S. (2011). J. Am. Chem. Soc. 133, 14566-14569.]); González et al. (2009[González, -R. C., Escalante, L., Varela, J. A., Castedo, L. & Sáa, C. (2009). Org. Lett. 11, 1531-1533.]); Zhang et al. (2008[Zhang, C., Cui, D.-M., Yao, L.-Y., Wang, B.-S., Hu, Y.-Z. & Hayashi, T. (2008). J. Org. Chem. 73, 7811-7813.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O

  • Mr = 262.33

  • Monoclinic, P 21 /c

  • a = 17.085 (4) Å

  • b = 5.6807 (11) Å

  • c = 15.689 (3) Å

  • β = 113.152 (4)°

  • V = 1400.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.42 × 0.24 × 0.12 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.991

  • 9636 measured reflections

  • 2473 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.114

  • S = 0.90

  • 2473 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cgi 0.95 2.77 3.601 (3) 147
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

α,β-Unsaturated carbonyl compounds have shown various biological activities such as antioxidant (Suksamrarn et al., 2003), antitumor (Kumar et al., 2003), anticancer (Modzelewska et al., 2006) and antimalarial (Ferrer et al., 2009). In addition, chalcones also were widely used in cosmetic compositions (Forestier et al., 1989; Podraze, 1991) and applications of dyes (Asiri, 2003). Apart from being biologically important compounds, chalcone derivatives show non-linear optical (NLO) properties with excellent blue light transmittance and good crystallizability (Shettigar et al., 2006). In this context, herein we report the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the title compound is not planar. The C1–C6 cyclohexene ring in (I) has a nearly envelope conformation [puckering parameters (Cremer & Pople, 1975) QT = 0.511 (3) Å, θ = 53.4 (3) ° and φ = 247.6 (4) °]. The C7–C12 phenyl ring makes a dihedral angle of 85.93 (11)° with the methyl-substituted C13 C18 benzene ring.

The crystal packing of (I) is stabilized by van der Waals forces and weak C—H···π interactions (Table 1, Fig. 2).

Related literature top

For the biological activity of α,β-unsaturated carbonyl compounds, see: Podraze (1991); Suksamrarn et al. (2003); Modzelewska et al. (2006); Shettigar et al. (2006); Ferrer et al. (2009); Asiri (2003); Forestier et al. (1989); Kumar et al. (2003). For the synthesis of cyclohexenones, see: Diao & Stahl (2011); González et al. (2009); Zhang et al. (2008). For geometric analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of 222 mg (1 mmol) (2E)-3-(4-methylphenyl)-1-phenylprop-2-en-1-one in 40 ml e thanol, 100 mg of acetyl acetone was added in presence of 60 mg MeONa. The reaction mixture was refluxed for 7 h then cooled to room temperature (Diao & Stahl, 2011; González et al., 2009; Zhang et al., 2008). The excess solvent was removed under vacuum to afford the solid product which was filltered off and recrystallized from ethanol. The obtained crystals were in good quality (m.p. 343 K) for X-ray diffraction without further crystallization.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined by using a riding model, and with Uiso(H) = 1.2 (1.5 for methyl groups)Ueq(C).

Structure description top

α,β-Unsaturated carbonyl compounds have shown various biological activities such as antioxidant (Suksamrarn et al., 2003), antitumor (Kumar et al., 2003), anticancer (Modzelewska et al., 2006) and antimalarial (Ferrer et al., 2009). In addition, chalcones also were widely used in cosmetic compositions (Forestier et al., 1989; Podraze, 1991) and applications of dyes (Asiri, 2003). Apart from being biologically important compounds, chalcone derivatives show non-linear optical (NLO) properties with excellent blue light transmittance and good crystallizability (Shettigar et al., 2006). In this context, herein we report the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the title compound is not planar. The C1–C6 cyclohexene ring in (I) has a nearly envelope conformation [puckering parameters (Cremer & Pople, 1975) QT = 0.511 (3) Å, θ = 53.4 (3) ° and φ = 247.6 (4) °]. The C7–C12 phenyl ring makes a dihedral angle of 85.93 (11)° with the methyl-substituted C13 C18 benzene ring.

The crystal packing of (I) is stabilized by van der Waals forces and weak C—H···π interactions (Table 1, Fig. 2).

For the biological activity of α,β-unsaturated carbonyl compounds, see: Podraze (1991); Suksamrarn et al. (2003); Modzelewska et al. (2006); Shettigar et al. (2006); Ferrer et al. (2009); Asiri (2003); Forestier et al. (1989); Kumar et al. (2003). For the synthesis of cyclohexenones, see: Diao & Stahl (2011); González et al. (2009); Zhang et al. (2008). For geometric analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular packing of the title compound along the b axis.
5-(4-Methylphenyl)-3-phenylcyclohex-2-en-1-one top
Crystal data top
C19H18OF(000) = 560
Mr = 262.33Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 879 reflections
a = 17.085 (4) Åθ = 2.6–28.4°
b = 5.6807 (11) ŵ = 0.08 mm1
c = 15.689 (3) ÅT = 150 K
β = 113.152 (4)°Plate, colourless
V = 1400.1 (5) Å30.42 × 0.24 × 0.12 mm
Z = 4
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2473 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.979, Tmax = 0.991k = 66
9636 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
2473 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H18OV = 1400.1 (5) Å3
Mr = 262.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.085 (4) ŵ = 0.08 mm1
b = 5.6807 (11) ÅT = 150 K
c = 15.689 (3) Å0.42 × 0.24 × 0.12 mm
β = 113.152 (4)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2473 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1497 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.991Rint = 0.106
9636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.90Δρmax = 0.22 e Å3
2473 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26608 (10)0.8925 (3)1.12374 (11)0.0414 (6)
C10.23739 (15)0.7390 (4)1.06451 (16)0.0310 (8)
C20.14596 (15)0.7212 (4)1.00905 (15)0.0297 (8)
C30.11153 (14)0.5617 (4)0.94080 (15)0.0240 (8)
C40.16904 (13)0.3960 (4)0.91730 (15)0.0279 (8)
C50.25840 (14)0.4974 (4)0.94353 (15)0.0278 (8)
C60.29405 (14)0.5614 (4)1.04625 (15)0.0329 (8)
C70.01837 (14)0.5429 (4)0.88700 (15)0.0253 (8)
C80.01655 (14)0.3458 (4)0.83212 (15)0.0303 (8)
C90.10293 (15)0.3268 (4)0.78170 (16)0.0337 (9)
C100.15772 (14)0.5021 (4)0.78364 (16)0.0312 (8)
C110.12489 (15)0.6993 (4)0.83717 (16)0.0315 (9)
C120.03831 (14)0.7195 (4)0.88790 (15)0.0299 (8)
C130.31421 (13)0.3378 (4)0.91407 (15)0.0258 (8)
C140.34825 (14)0.1297 (4)0.96021 (16)0.0297 (8)
C150.39595 (14)0.0172 (4)0.92875 (16)0.0326 (8)
C160.41086 (14)0.0364 (4)0.85029 (16)0.0298 (8)
C170.37680 (14)0.2433 (4)0.80440 (17)0.0315 (8)
C180.32954 (14)0.3917 (4)0.83590 (16)0.0299 (8)
C190.46239 (15)0.1244 (5)0.81565 (18)0.0438 (10)
H20.109000.827401.021800.0360*
H4A0.143800.362700.849900.0330*
H4B0.173100.245300.950500.0330*
H50.251900.647900.908400.0330*
H6A0.297900.418201.083700.0390*
H6B0.352000.627301.064700.0390*
H80.019900.222300.829500.0360*
H90.125000.190500.745000.0400*
H100.217200.487700.748700.0370*
H110.162000.821800.839100.0380*
H120.016800.856600.924300.0360*
H140.338700.087501.013900.0360*
H150.419000.158000.961800.0390*
H170.385900.284600.750300.0380*
H180.307200.533400.803200.0360*
H19A0.424800.198100.757400.0660*
H19B0.489400.246600.862000.0660*
H19C0.506300.032700.805000.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (11)0.0482 (12)0.0358 (10)0.0067 (9)0.0149 (9)0.0171 (9)
C10.0361 (15)0.0347 (15)0.0259 (14)0.0045 (12)0.0162 (12)0.0028 (12)
C20.0302 (14)0.0327 (15)0.0303 (14)0.0009 (11)0.0162 (12)0.0025 (12)
C30.0284 (14)0.0235 (14)0.0236 (12)0.0014 (11)0.0139 (11)0.0030 (11)
C40.0288 (14)0.0281 (14)0.0275 (13)0.0007 (11)0.0119 (11)0.0002 (11)
C50.0288 (13)0.0285 (14)0.0260 (14)0.0006 (11)0.0107 (11)0.0017 (11)
C60.0318 (14)0.0377 (16)0.0287 (14)0.0005 (12)0.0113 (12)0.0038 (12)
C70.0275 (13)0.0268 (14)0.0242 (13)0.0022 (11)0.0129 (11)0.0037 (11)
C80.0296 (14)0.0297 (15)0.0310 (14)0.0024 (11)0.0114 (11)0.0023 (12)
C90.0326 (15)0.0304 (15)0.0365 (15)0.0035 (12)0.0119 (12)0.0050 (12)
C100.0238 (13)0.0362 (16)0.0303 (14)0.0009 (11)0.0071 (11)0.0056 (12)
C110.0319 (15)0.0313 (15)0.0336 (15)0.0065 (12)0.0153 (12)0.0033 (12)
C120.0324 (15)0.0275 (14)0.0305 (14)0.0014 (11)0.0132 (12)0.0029 (11)
C130.0214 (13)0.0275 (14)0.0266 (13)0.0026 (11)0.0073 (11)0.0027 (11)
C140.0293 (14)0.0347 (15)0.0274 (13)0.0023 (12)0.0135 (11)0.0008 (12)
C150.0276 (14)0.0294 (15)0.0384 (15)0.0008 (11)0.0105 (12)0.0015 (12)
C160.0230 (13)0.0312 (15)0.0351 (14)0.0040 (11)0.0113 (11)0.0062 (12)
C170.0282 (14)0.0359 (15)0.0338 (15)0.0041 (12)0.0159 (12)0.0028 (12)
C180.0314 (14)0.0285 (15)0.0283 (13)0.0031 (11)0.0103 (11)0.0012 (11)
C190.0377 (16)0.0459 (17)0.0542 (17)0.0025 (13)0.0250 (14)0.0032 (14)
Geometric parameters (Å, º) top
O1—C11.227 (3)C16—C191.510 (4)
C1—C21.462 (4)C17—C181.386 (3)
C1—C61.502 (4)C2—H20.9500
C2—C31.348 (3)C4—H4A0.9900
C3—C41.507 (3)C4—H4B0.9900
C3—C71.484 (3)C5—H51.0000
C4—C51.529 (3)C6—H6A0.9900
C5—C61.526 (3)C6—H6B0.9900
C5—C131.514 (3)C8—H80.9500
C7—C81.395 (3)C9—H90.9500
C7—C121.398 (3)C10—H100.9500
C8—C91.378 (4)C11—H110.9500
C9—C101.375 (4)C12—H120.9500
C10—C111.380 (3)C14—H140.9500
C11—C121.382 (4)C15—H150.9500
C13—C141.389 (3)C17—H170.9500
C13—C181.385 (3)C18—H180.9500
C14—C151.386 (3)C19—H19A0.9800
C15—C161.385 (3)C19—H19B0.9800
C16—C171.382 (3)C19—H19C0.9800
O1—C1—C2121.0 (2)C5—C4—H4B109.00
O1—C1—C6121.8 (2)H4A—C4—H4B108.00
C2—C1—C6117.3 (2)C4—C5—H5107.00
C1—C2—C3123.3 (2)C6—C5—H5107.00
C2—C3—C4119.4 (2)C13—C5—H5107.00
C2—C3—C7122.4 (2)C1—C6—H6A110.00
C4—C3—C7118.20 (19)C1—C6—H6B110.00
C3—C4—C5112.14 (19)C5—C6—H6A110.00
C4—C5—C6108.40 (19)C5—C6—H6B110.00
C4—C5—C13111.98 (19)H6A—C6—H6B108.00
C6—C5—C13115.3 (2)C7—C8—H8119.00
C1—C6—C5110.00 (19)C9—C8—H8119.00
C3—C7—C8120.8 (2)C8—C9—H9119.00
C3—C7—C12122.3 (2)C10—C9—H9119.00
C8—C7—C12116.9 (2)C9—C10—H10121.00
C7—C8—C9121.3 (2)C11—C10—H10121.00
C8—C9—C10121.0 (2)C10—C11—H11120.00
C9—C10—C11118.9 (2)C12—C11—H11120.00
C10—C11—C12120.3 (2)C7—C12—H12119.00
C7—C12—C11121.6 (2)C11—C12—H12119.00
C5—C13—C14122.4 (2)C13—C14—H14120.00
C5—C13—C18119.9 (2)C15—C14—H14120.00
C14—C13—C18117.6 (2)C14—C15—H15119.00
C13—C14—C15120.8 (2)C16—C15—H15119.00
C14—C15—C16121.6 (2)C16—C17—H17119.00
C15—C16—C17117.6 (2)C18—C17—H17119.00
C15—C16—C19121.6 (2)C13—C18—H18119.00
C17—C16—C19120.8 (2)C17—C18—H18119.00
C16—C17—C18121.1 (2)C16—C19—H19A109.00
C13—C18—C17121.4 (2)C16—C19—H19B109.00
C1—C2—H2118.00C16—C19—H19C109.00
C3—C2—H2118.00H19A—C19—H19B110.00
C3—C4—H4A109.00H19A—C19—H19C109.00
C3—C4—H4B109.00H19B—C19—H19C110.00
C5—C4—H4A109.00
O1—C1—C2—C3177.4 (2)C6—C5—C13—C18132.9 (2)
C6—C1—C2—C33.0 (3)C3—C7—C8—C9179.8 (2)
O1—C1—C6—C5146.2 (2)C12—C7—C8—C90.3 (3)
C2—C1—C6—C534.2 (3)C3—C7—C12—C11179.8 (2)
C1—C2—C3—C41.8 (3)C8—C7—C12—C110.3 (3)
C1—C2—C3—C7178.4 (2)C7—C8—C9—C100.1 (4)
C2—C3—C4—C525.3 (3)C8—C9—C10—C110.0 (4)
C7—C3—C4—C5154.5 (2)C9—C10—C11—C120.0 (4)
C2—C3—C7—C8165.5 (2)C10—C11—C12—C70.2 (4)
C2—C3—C7—C1215.0 (4)C5—C13—C14—C15177.1 (2)
C4—C3—C7—C814.8 (3)C18—C13—C14—C150.2 (4)
C4—C3—C7—C12164.7 (2)C5—C13—C18—C17176.7 (2)
C3—C4—C5—C655.5 (2)C14—C13—C18—C170.3 (4)
C3—C4—C5—C13176.21 (18)C13—C14—C15—C160.5 (4)
C4—C5—C6—C159.4 (2)C14—C15—C16—C170.4 (4)
C13—C5—C6—C1174.2 (2)C14—C15—C16—C19179.6 (2)
C4—C5—C13—C1474.3 (3)C15—C16—C17—C180.1 (4)
C4—C5—C13—C18102.5 (2)C19—C16—C17—C18179.9 (2)
C6—C5—C13—C1450.3 (3)C16—C17—C18—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cgi0.952.773.601 (3)147
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H18O
Mr262.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)17.085 (4), 5.6807 (11), 15.689 (3)
β (°) 113.152 (4)
V3)1400.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.24 × 0.12
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9636, 2473, 1497
Rint0.106
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.114, 0.90
No. of reflections2473
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cgi0.952.773.601 (3)147
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Higher Education Ministry of Egypt for financial support and also thank Manchester Metropolitan University, Erciyes University and the University of Leicester for supporting this study.

References

First citationAsiri, A. M. (2003). Bull. Korean Chem. Soc. 24, 426–430.  CAS Google Scholar
First citationBruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDiao, T. & Stahl, S. S. (2011). J. Am. Chem. Soc. 133, 14566–14569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrer, R., Lobo, G., Gamboa, N., Rodrigues, J., Abramjuk, C., Jung, K., Lein, M. & Charris, J. E. (2009). Sci. Pharm. 77, 725–741.  CrossRef CAS Google Scholar
First citationForestier, S., Moire, C. & Lang, G. (1989). US Patent No. 4867964.  Google Scholar
First citationGonzález, -R. C., Escalante, L., Varela, J. A., Castedo, L. & Sáa, C. (2009). Org. Lett. 11, 1531–1533.  Web of Science PubMed Google Scholar
First citationKumar, S. K., Hager, E., Catherine, P., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPodraze, K. F. (1991). Org. Prep. Proced. Int. 23, 217.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuksamrarn, A., Poomsing, P., Aroonrerk, N., Punjanon, T., Suksamrarn, S. & Kongkun, S. (2003). Arch. Pharm. Res. 26, 816–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, C., Cui, D.-M., Yao, L.-Y., Wang, B.-S., Hu, Y.-Z. & Hayashi, T. (2008). J. Org. Chem. 73, 7811–7813.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds